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Abstract

The design of vector quantizers for diversity-based communication over two or more

channels of possibly di�ering capacities and failure probabilities, is considered. The

standard iterative design method is highly dependent on initialization, especially of

index assignment. A \good" initialization is known for the special case of scalar quan-

tization of symmetric sources over identical channels, but does not generalize well to

vectors, unbalanced channels or possibly asymmetric sources. Instead, we propose to
pursue a deterministic annealing approach which is independent of initialization, does

not assume any prior knowledge of the source density and avoids many poor local min-

ima of the cost surface. The approach consists of iterative optimization of a random

encoder at gradually decreasing levels of randomness as measured by the Shannon en-

tropy. At the limit of zero entropy, a hard multiple description quantizer is obtained.

This process is directly analogous to annealing processes in physical chemistry. The

Lagrangian cost functional we use corresponds to the Helmholtz free energy of the

system, and the system undergoes phase transitions (where the cardinality of the ef-

fective reproduction alphabet increases) whose critical \temperatures", or values of

Lagrange multiplier, are computable. To illustrate the potential of our approach, we

present simulation results that show substantial performance gains over existing de-
sign techniques. Finally, we include a brief note discussing some preliminary work on

the relation between the proposed DA approach and the computation of an achievable

region for the multiple description problem.

1 Introduction

We consider the design of Multiple Description Vector Quantizers (MDVQ) for use in a
diversity-based communication system (hereafter referred to as a diversity system). A diver-
sity system provides several channels for communication between the transmitter and the



receiver. The MDVQ encoder encodes a �xed length block of source samples into individ-
ual indices for transmission over each of the channels, subject to separate rate constraints.
Each of these channels may fail independently, and the decoder reconstruction is based on
information received from the subset of channels that are in working order. Applications
of multiple description source codes are currently being pursued in speech and video cod-
ing over packet-switched networks and fading multipath channels [1]. MDVQs designed
for asymmetric channels are strongly motivated by packet-switched networks with priority
classes. Finally, scalable quantizer design may be viewed as a special case of MDVQ design.

For simplicity, we will restrict the discussion to diversity systems with two channels. The
two channels may have di�ering capacities and failure probabilities. (We call the special
case when the two channels allow the same rates and have identical failure probabilities
the case of balanced descriptions). When both the channels function reliably, the distortion
achieved with the joint description is the \central" distortion; when one of the channels fails,
the distortion achieved with the received single side description is the corresponding \side"
distortion.

The general problem of jointly good descriptions for a diversity system with two channels
was posed by Gersho, Ozarow, Witsenhausen, Wolf, Wyner and Ziv at the 1979 Information
Theory Workshop. In [6], El Gamal and Cover constructed an achievable rate region for the
multiple descriptions problem for a memoryless source and a single-letter �delity criterion.
Ozarow [7] showed that this region is, in fact, the rate distortion region for the memoryless
Gaussian source under the squared-error distortion criterion. Contributions to this problem
can also be found in Witsenhausen [8], Wolf, Wyner and Ziv [9], Witsenhausen and Wyner
[10], Berger and Zhang [11], [12], Ahlswede [13], and Equitz and Cover [14].

The design of multiple description scalar quantizers (MDSQs) was studied by Vaisham-
payan in [1] whose work generated new interest in the practical applications of multiple
description coding. He derived an iterative design algorithm (closely related to Lloyd's al-
gorithm for quantizer design [3]) that minimizes the overall average distortion cost which is
a weighted sum of the average central distortion and the two side distortions. The weights
for this sum are determined by the channel failure probabilities , and the sizes allowed for
the code books are �xed by the channel capacities. The algorithm is guaranteed to �nd a
locally optimal solution. An extension of this algorithm for the design of vector quantizers
has been proposed in [4]. The problem of good initializations for these algorithms has not
been entirely solved.

The main contribution of this paper is an algorithm to design unstructured MDVQs which
minimizes the overall average distortion cost. This optimization problem is non-convex, and
the distortion cost surface is riddled with local minima. The problem of local minima is
greatly exacerbated by the dependence of the average distortion cost on index assignment [1].
Existing iterative design methods [1], [4] that monotonically decrease the average distortion
cost are likely to be trapped in poor local minima, unless \good" initial code books and initial
index assignment are used. To the best of our knowledge, heuristic initializations for index
assignment have only been proposed for the special cases: balanced description MDSQs
[1], and balanced description lattice MDVQs [5]. These initializations do not generalize
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to the case of general MDVQs, nor for unbalanced descriptions, nor for arbitrary source
distributions. In contrast, the algorithm we propose does not require initialization of code
books or index assignment, and avoids many local minima of the cost surface. Further, no
knowledge of the underlying source distribution is needed. Our approach is inspired by, and
builds on the Deterministic Annealing (DA) approach for vector quantizer design [2]. It is
motivated by the observation of annealing processes in physical chemistry.

Certain chemical systems can be driven to their low energy states by annealing, which is
a gradual reduction of temperature, spending a long time in the vicinity of phase transition
points. Analogously, we randomize the encoding rule of the multiple description system
and seek to minimize the expected distortion cost subject to a speci�ed level of randomness
measured by the Shannon entropy. This problem can be formulated as the minimization of
a Lagrangian functional that is analogous to the Helmholtz free energy of chemical systems.
The degree of randomness is parameterized by the \temperature" of the con�guration. We
start at a high degree of randomness, where we, in fact, maximize the entropy. Here, the
globally minimum con�guration requires that all code vectors be coincident at the centroid
of the source distribution; no initialization of code book or index assignment is necessary.
We then track the minimum at successively lower levels of entropy, by re-calculating the
optimum locations of the reproduction points and the encoding probabilities at each stage.
At the limit of zero randomness, the algorithm directly minimizes the average distortion
cost, and a deterministic encoder is obtained.

We formulate the problem of MDVQ design and establish notation in the next section. In
section 3 we describe the DA approach to this problem. Necessary conditions for optimality
are then used to derive an iterative MDVQ design algorithm. We conclude the section by
describing the \mass-constrained" form of our algorithm, which is our preferred implemen-
tation. In section 4 we present simulation results and comparisons with existing approaches.
We show that DA performs consistently better than existing approaches by avoiding many
poor local minima. We are currently investigating the links between the mass-constrained
DA algorithm for MDVQ design and the problem of computing the convex hull of an achiev-
able region for multiple descriptions. We sketch some preliminary observations in section 5.
Phase transition analysis, including derivation of critical temperatures at which the size of
the reproduction set increases, is considered in the appendix.

2 The MDVQ problem and design considerations

We are interested in encoding a source represented by a stationary and ergodic random
process fXkg. Consider a diversity system with two channels capable of transmission of
information at rates R1 and R2 bits/source sample, respectively. Each channel may or may
not be in working order, and its condition is not known at the encoder. The encoder sends
a di�erent description over each channel. The decoder forms the best estimate of the source
output from the descriptions received via the channels that were functioning reliably. An
MDVQ maps an n-dimensional source vector x to the n-dimensional reproduction vectors x̂0,
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x̂1 and x̂2, which take values in the code-books X̂ 0 = fx̂0ij; (i; j) 2 I1� I2g, X̂ 1 = fx̂1i ; i 2 I1g
and X̂ 2 = fx̂2j ; j 2 I2g, respectively. Here, I1 = f1; 2; : : : ; 2nR1g and I2 = f1; 2; : : : ; 2nR2g.

The MDVQ encoder is the mapping f : Rn 7! I1 � I2. Given source vector x, it selects
an index pair: f(x) = (i; j). Each index is sent over its respective channel. The MDVQ
decoder g = (g0; g1; g2) is, in fact, a bank of three switched decoders each performing a
look-up operation: the central decoder g0 : I1 � I2 7! Rn takes in a double index (i; j) and
produces the code vector g0(i; j) = x̂0ij. The side decoders g1 : I1 7! Rn and g2 : I2 7! Rn

take in the single indices i and j to produce the code vectors g1(i) = x̂1i and g2(j) = x̂2j
respectively.

Let x̂m(x), m = 0; 1; 2 be the central and side reproductions chosen by the quantizer when
presented the input vector xi, and let dm = d(x; x̂m(x)) be the corresponding per-vector
distortion. If random vector X represents the source, and random vectors X̂m; m = 0; 1; 2
represent the decoder outputs, the expected central and side distortions are given by

Efd(X; X̂m)g � (1=N)
X
x

fd(x; x̂m(x))g m = 0; 1; 2; (1)

where we assume that the source distribution may be approximated by a training set of N
vectors.

For given values of R1, R2, D1 and D2 we wish to �nd an MDVQ which minimizes

D(f; g) = Efd(X; X̂0)g+ �1Efd(X; X̂1)g+ �2Efd(X; X̂2)g; (2)

over f and g. The speci�c choice of �1 and �2 in a practical system is determined by the
weights we wish to assign to the side distortions relative to the central distortion, which
could depend on the channel failure probabilities. In the rest of this paper we shall con�ne
our attention to squared-error distortion, i.e., d(x; x̂m(x)) = jjx� x̂m(x)jj2, m = 0; 1; 2.

Note that the expected distortion cost depends on the code vector locations. Further,
it also depends on the indices assigned to codevectors since they determine which pair of
side vectors are mapped to each central code vector. Locally optimal multiple description
quantizer design algorithms [1], [4] must be initialized with code books and index assign-
ment. The choice of initial index assignment constrains the algorithm to a part of the cost
surface, so that \good" initial index assignment is crucial to the performance of the algo-
rithm. But good heuristics for choosing the initial index assignment are elusive, since they
depend on the particular rate and distortion constraints, and some knowledge of the source
distribution. Strategies for initial index assignment are discussed in detail in [1], where good
heuristics are presented for the special case of balanced descriptions and scalar quantizer.
Moreover, it was shown that heuristic index assignment is asymptotically optimal (in the
sense of high resolution) for the particular case of memoryless Gaussian source and balanced
descriptions if (a) the quantizer is scalar [1], or (b) if the quantizer has a lattice structure [5].
These heuristics cannot be extended to the case of unstructured MDVQs nor for unbalanced
descriptions.
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3 Derivation of the DA algorithm

3.1 General description

We have seen that the problem of �nding good code books and index assignments to initialize
existing multiple description quantizer design algorithms, is hard and generally unresolved.
We take a di�erent route, and propose an algorithm which does not depend on an initial set
of code books or an initial index assignment.

Our algorithm is based on DA, which is motivated by the observation of annealing pro-
cesses in physical chemistry. Here, certain chemical systems are driven to their low energy
states by a gradual reduction of temperature, spending a long time in the vicinity of the
phase transition points. A formal derivation of DA can be based on principles of information
theory or statistical physics. One approach optimizes a random encoder subject to con-
straints on its degree of randomness. An alternative derivation appeals to Jaynes's principle
of maximum entropy for statistical inference [15]. We shall use the former approach here.
Both derivations were shown to be equivalent in [17], which includes a tutorial overview of
the wide applicability of DA to general optimization problems. Of particular interest here is
the DA approach to computation of the rate-distortion function of continuous sources [16].

We consider a multiple description coding system where the deterministic encoder is
replaced by a random encoding rule. In other words, an input vector is assigned to each
possible pair of indices in probability. The probabilities are determined by �nding the dis-
tribution that minimizes the expected distortion cost of (2) subject to a speci�ed level of
randomness. The level of randomness is, naturally, measured by the Shannon conditional
entropy of the encoding probability distribution. This problem can be cast as the uncon-
strained minimization of a Lagrangian functional where the Lagrangian multiplier controls
the degree of randomness of the con�guration. The Lagrangian functional plays the role of
the free energy, while the Lagrange multiplier is the temperature in the analogous annealing
process of physical chemistry. We shall henceforth refer to them by these names.

The process of annealing consists of starting at a high temperature and gradually lowering
the temperature. The free energy is minimized at each temperature to �nd the encoding
probabilities and the optimal locations for the reproductions. In the physical analogy, it
means reaching isothermal equilibrium. At very high temperatures we mainly attempt to
maximize the encoding entropy. The encoding probabilities are uniformly distributed; the
globally optimal central and side code books each consist of coincident code vectors at the
centroid of the source distribution. As the temperature is lowered we trade entropy for
reduction in expected distortion cost. There occur stages when it becomes advantageous to
bifurcate sets of coincident code vectors, thus increasing the number of distinct reproductions
(e�ective reproduction cardinality). These are phase transitions in our physical analogy,
and the temperature at which each occurs is the corresponding \critical temperature". As
the temperature approaches zero, we minimize the expected distortion cost directly. The
encoding probabilities turn into hard mappings (i.e., they are either 0 or 1) as in a normal hard
quantizer, and the index assignment arises naturally. Successive iterations of the algorithm
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now only reduce the distortion cost: DA becomes a standard local optimization technique
at the limit of zero temperature, albeit, not with arbitrary initialization.

3.2 Encoding probabilities and reproduction points

Let us begin by assuming that the three code-books, X̂ 0 = fx̂0ijg, X̂ 1 = fx̂1i g and X̂ 2 = fx̂2jg
are given. We use a random encoding rule, and assign input source vector x to the index
pair (i; j) with probability q(ijjx). The central decoder and the two side decoders output
x̂0ij, x̂

1
i and x̂2j when presented with indices (i; j). We can rewrite the expected distortion

cost of (2) for a random encoder as

D =
X
x

p(x)
X
ij

q(ijjx)fjjx� x̂0ijjj2 + �1jjx� x̂1i jj2 + �2jjx� x̂2j jj2g; (3)

where we drop the arguments of D for notational simplicity.
Directly minimizing D with respect to the free parameters fq(ijjx)g would assign each

input vector to the index pair minimizing jjx� x̂0ij jj2+�1jjx� x̂1i jj2+�2jjx� x̂2j jj2 with prob-
ability 1. However, we recast this optimization problem as that of seeking the distribution
which minimizes D subject to a speci�ed level of randomness. The level of randomness is
measured by the Shannon entropy of the distribution, given as

H(I1; I2; X) = �X
x

X
ij

p(x)q(ijjx) log p(x)q(ijjx): (4)

The corresponding Lagrangian to minimize is

F = D � TH: (5)

The Lagrangian functional, F , is analogous to the Helmholtz free energy of a physical
system where D is the energy, H is the entropy and the Lagrangian multiplier, T , is the
temperature. Minimizing F corresponds to seeking isothermal equilibrium of the system.

Before proceeding further, we note that the joint entropy of (4) can be decomposed into
two terms: H(I1; I2; X) = H(X) + H(I1; I2jX), where H(X) = �Px p(x) log p(x) is the
source entropy and is independent of the encoding rule. We therefore drop the constant
H(X) from the Lagrangian de�nition, and con�ne our attention to the conditional entropy,

H(I1; I2jX) = �X
x

X
ij

p(x)q(ijjx) log q(ijjx): (6)

Minimizing F with respect to the encoding probabilities q(ijjx) gives,

q(ijjx) = exp[�( 1
T
)fjjx� x̂0ijjj2 + �1jjx� x̂1i jj2 + �2jjx� x̂2j jj2g]

Zx

; (7)

where the normalizing factor is

Zx =
X
ij

exp[�( 1
T
)fjjx� x̂0ijjj2 + �1jjx� x̂1i jj2 + �2jjx� x̂2j jj2g]: (8)
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The corresponding minimum of F is obtained by plugging (7) into (5)

F � = min
q(ijjx)

F = �TX
x

p(x) logZx: (9)

We now �nd the optimal sets of reproduction vectors X̂ 0, X̂ 1 and X̂ 2 which minimize F � for
this random encoder. These vectors satisfy,

@

@x̂0ij
F � = 0 8 x̂0ij 2 X̂ 0; (10)

@

@x̂1i
F � = 0 8 x̂1i 2 X̂ 1 (11)

and

@

@x̂2j
F � = 0 8 x̂2j 2 X̂ 2: (12)

For the squared error distortion case the above equations reduce to the centroid rules:

x̂0ij =
X
x

p(xjij)x; x̂1i =
P

x p(xji)x; x̂2j =
X
x

p(xjj)x; (13)

where p(xjij), p(xji) and p(xjj) denote the posterior probabilities calculated using Bayes's
rule.

Our algorithm consists of minimizing F � with respect to the code vectors starting at a
high temperature and tracking the minimum while decreasing the temperature. The central
iteration is composed of the following two steps:

1) �x the code books and use (7) to compute the encoding probabilities.
2) �x the encoding probabilities and optimize the code books according to (13).
Clearly, this procedure is monotone non-increasing in F �, and converges to a minimum.

At high temperature, the global minimum con�guration consists of all the (central and
side) code vectors coincident at the centroid of the source distribution. We then gradually
decrease the temperature and track the minimum. At the limit of low temperature the
encoding probabilities harden: each source vector is assigned with probability 1 to the index
pair (i; j) for which the distortion cost jjx� x̂0ijjj2+�1jjx� x̂1i jj2+�2jjx� x̂2j jj2 is minimized.
Thus the index assignment arises naturally. The analogy of this procedure with the chemical
process of annealing, which consists of maintaining a chemical system at thermal equilibrium
while carefully lowering the temperature to reach a �nal, low energy state, is evident.

As the temperature is reduced from the initial high value the set of code vectors coincident
at the centroid of the source distribution bifurcates into subsets for the �rst time at some
lower temperature. We call this bifurcation the �rst phase transition, and the corresponding
temperature the �rst critical temperature, in analogy with the phase transitions seen during
the annealing of physical systems. As the temperature is lowered further these subsets again
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bifurcate, and each such bifurcation is a subsequent phase transition with its corresponding
critical temperature. We analyze conditions for phase transitions and derive the critical
temperatures in the appendix. A study of this phenomenon of phase transitions provides
insight into the annealing process. Further, since the phase transitions are the critical points
of the process, knowledge of the critical temperatures allows us to accelerate the annealing
between phase transitions.

3.3 The mass-constrained approach

The observation of the phenomenon of phase transitions enables us to recast our algorithm
in a more eÆcient form. Since all the (central and side) code vectors are coincident at high
temperatures, they can be viewed as belonging to a single cluster, and this entire cluster can
e�ectively be represented by a single index pair without a�ecting the expected distortion
cost. When the code books bifurcate at the critical temperatures the e�ective number of
clusters increases. Each of these clusters should be represented by a di�erent index pair. We
use this observation to derive the \mass-constrained" implementation of our algorithm.

Let us assume an unlimited supply of code vectors and index pairs. The fraction of code
vectors of the �rst side code book X̂ 1 which are coincident at some point can be assigned
a common �rst index for transmission over one of the channels. Let this common index be
i, the corresponding fraction of code vectors is labeled q(i) (the cluster \prior" or \mass"),
and the point where the code vectors are coincident is x̂1i . Similarly, we assign a common
index j to the mass q(j) of code vectors of the second side code book coincident at x̂2j .
Consequently, a fraction q(i)q(j) of all index pairs are assigned the index pair (i; j), and the
central reproduction corresponding to this index pair is x̂0ij. We can recast the expression
for the encoding probability q(ijjx) in (7) as

q(ijjx) = q(i)q(j) exp[�( 1
T
)fjjx� x̂0ijjj2 + �1jjx� x̂1i jj2 + �2jjx� x̂2j jj2g]

Zx

; (14)

where Zx is now modi�ed to

Zx =
X
ij

q(i)q(j) exp[�( 1
T
)fjjx� x̂0ijjj2 + �1jjx� x̂1i jj2 + �2jjx� x̂2j jj2g]; (15)

and F � is
F � = �TX

x

p(x) logZx; (16)

as in (9), except that Zx is now given by (15). F � is to be minimized under the obvious
constraints on the masses:

P
i q(i) = 1 and

P
j q(j) = 1. Minimizing F � with respect to

the central and side reproduction points again gives the update formulae of (13), with the
encoding probabilities of (14) used to calculate the posterior probabilities. The optimum
masses minimizing F � are calculated from the following update rules:

q(i) =
X
xj

p(x)q(ijjx); q(j) =
P

xi p(x)q(ijjx) (17)
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In other words, the distribution of masses on the indices is identical to the probability
distribution induced on the indices via the encoding rule.

The mass-constrained approach increases the e�ective number of index pairs only when
it is needed, i.e., at a phase transition. Thus it is computationally more eÆcient than the
earlier \unconstrained" approach. At the limit of low temperatures the two approaches
converge to the same descent process for the expected distortion cost, since their encoding
probabilities are identical at the limit (they assign each data point to a single index pair
(i; j) with probability 1). We use the mass-constrained approach for all our simulations.

4 Simulation results

The proposed DA-based design algorithm may be used to design unstructured MDVQs with
unequal rate and distortion constraints on the two channels. Note that the distortion con-
straints may be determined by the individual channel failure probabilities, while the rate
constraints would be �xed by the individual channel capacities. We illustrate the wide ap-
plicability of the DA algorithm by considering three examples: 1) two-dimensional vector
quantizer design for equal rate and distortion constraints, 2) scalar quantizer design for un-
equal rate and equal distortion constraints, and 3) scalar quantizer design for equal rate and
unequal distortion constraints.

For comparison, we consider the performance of the existing iterative MDVQ design tech-
nique [1], [4], which we call the \Lloyd approach" (LA) as it is directly based on Lloyd's
algorithm for conventional scalar quantizer [3] and its vector extension [18]. Recall that the
performance of LA depends heavily on the initialization. We use twenty di�erent random
initializations for the LA in our simulations. The initialization proposed in [1] is for MDSQ
design with equal rate and distortion constraints. In particular, this initialization does not
generalize to vectors or for unequal rate constraints. However, as an additional compar-
ison, we used this initialization for MDSQ design with equal rate but unequal distortion
constraints.

In all the three examples, the quantizer designed by DA is seen to yield a signi�cantly
lower expected distortion cost than LA with random/heuristic initializations. Further, the
wide variation in performance of the quantizers designed by LA illustrates and emphasizes
the signi�cance of the problem of local minima even for simple low rate quantizers.

In Figure 1, we present the results for the design of two-dimensional vector quantizers
for a Gauss-Markov source with autocorrelation coeÆcient � = 0:9 and unit-variance per
dimension. A training set of 5000 vectors was used. The rate and distortion constraints were:
R1 = R2 = 1:5 bits/source sample (i.e., each side code book has eight 2-d code vectors) and
�1 = �2 = 0:01. We compare the performance of DA design with quantizers produced by LA
for twenty di�erent random initializations. The distortion cost of the MDVQ designed by DA
is � 0:6 dB below the distortion of the \best" quantizer produced by random initializations
of LA. Note that the heuristic index assignment proposed in [1] cannot be generalized to this
case.

9



In Figure 2, we present the results for the design of scalar quantizers with unequal
distortion constraints for a unit-variance Gaussian source. The constraints were: R1 =
R2 = 3 bpss and �1 = 0:006; �2 = 0:012. The training set consisted of 5000 samples.
The quantizers produced by LA with di�erent random initializations show wide variation
in performance (the best and the worst of these designs di�er by � 3 dB in terms of the
expected distortion cost). Note that LA initialized with the heuristic proposed in [1] yields
signi�cant gains over random initialization, and demonstrates the bene�ts of a good heuristic.
However, MDSQ designed via the proposed DA approach outperforms by � 0:5 dB even LA
quantizer initialized with this clever heuristic.

In Figure 3, we present results for scalar quantizer design under unequal rate constraints.
The constraints were: R1 = 3 bpss, R2 = 2 bpss and �1 = �2 = 0:01. The training set
consisted of 5000 samples of a unit-variance Gaussian source. The DA design is compared
with randomly initialized designs of LA. The DA design gains � 1 dB over the best of the
latter in terms of the expected distortion cost. Note that the heuristic index assignment
cannot be extended to this case.

5 Interesting links with R-D theory and directions for

future work

In [16], a DA algorithm has been proposed to calculate the rate-distortion curve for continu-
ous alphabet sources. It was shown that the deterministic annealing process as parameterized
by the temperature directly corresponds to parametric solution of the variational equations
of rate-distortion theory. Further, gradually lowering the temperature starting at a high
value is equivalent to starting at zero slope and climbing up the rate-distortion curve. For
continuous sources under the squared error distortion criterion, the optimal reproduction al-
phabet has been shown to be discrete if the Shannon lower bound to the rate-distortion curve
is not tight [16]. In this case, DA can exactly compute the rate-distortion curve by avoiding
discretization for numerical computation (see [16] for details). In fact, the DA algorithm
for VQ design tracks the rate-distortion curve until the size of the optimal reproduction
alphabet equals the (pre-speci�ed) VQ codebook size. We are currently exploring similar
links between the parametric determination of the convex hull of an achievable region for
multiple descriptions and the DA algorithm for MDVQ design. We present some preliminary
observations here.

The multiple descriptions problem is concerned with �nding all quintuples (R1; R2; D0; D1; D2)
which are achievable in a rate-distortion sense. In [6] El Gamal and Cover proposed suÆcient
conditions for the achievable region. These conditions superseded an earlier characterization
of an achievable region:

The quintuple (R1; R2; D0; D1; D2) is achievable if there exist random variables I1 and I2
jointly distributed with a generic source random variable X such that

R1 � I(X; I1); R2 � I(X; I2) (18)
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R1 +R2 � I(X; I1; I2) + I(I1; I2); (19)

and there exist side and central reproductions X̂1, X̂2 and X̂0 which can be expressed as
(deterministic) functions of I1 and I2 in the following way

X̂1 = g1(I1); X̂2 = g2(I2); and X̂0 = g0(I1; I2); (20)

such that

Efd(X; X̂m)g �Dm � 0; m = 0; 1; 2; (21)

where d is a single letter distortion measure.
Zhang and Berger in [12] and Witsenhausen in [8] attribute this characterization to El

Gamal and Cover. In [12], Zhang and Berger show that the region characterized by this
earlier set of conditions is a subset of the region characterized in [6]. Note that the random
variables I1 and I2 and the functions g1, g2 and g0 lend themselves to easy interpretation
in terms of a coding system: realizations of I1 and I2 may be interpreted as the indices
transmitted over the two channels, while g0, g1 and g2 are respectively the central and side
decoder functions. This interpretation is precise if the reproduction is discrete. This was
shown to be the case for squared error distortion for the ordinary (single description) R-D
function. For the moment we conjecture it to be the case for multiple descriptions also.

We investigate the problem of �nding quintuples on the convex hull of this region, denoted
byR. We formulate this problem as the minimization of the central distortion, Efd(X; X̂0)g,
subject to constraints on the side distortions and the rates, as given above. This is an
optimization problem with inequality constraints, and we use the Kuhn-Tucker theorem [19]
for its solution.

Lemma 1: If R � I(X; I1; I2) + I(I1; I2) then there exist R1 and R2 s.t. R1 + R2 = R
and R1 � I(X; I1), R2 � I(X; I2).

Proof:

I(X; I1; I2) + I(I1; I2)� I(X; I1)� I(X; I2) = I(X; I2jI1) + I(I1; I2)� I(X; I2);

= I(X; I2jI1) +H(I2jX)�H(I2jI1);
= H(I2jX)�H(I2jI1; X) = I(I2; I1jX) � 0;

(22)

by the non-negativity of mutual information. Hence, I(X; I1; I2) + I(I1; I2) � I(X; I1) +
I(X; I2). So, R � I(X; I1; I2) + I(I1; I2) implies 9R1; R2 such that R1 + R2 = R and
R1 � I(X; I1), R2 � I(X; I2).

This shows that we can use only the constraint on the total rate R1 + R2 (18) and the
constraints on the distortions (20) to �nd some quintuples on the convex hull of R. It is then
always possible to partition the total rate in such a way as to satisfy the constraints on the
individual rates. The individual constraints on the side rates need to be considered together
only to �nd those points on the convex hull of R where the individual descriptions are on
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their respective rate-distortion curves. But this case is of limited interest in practice. So we
formulate the problem as the unconstrained minimization of the Lagrangian functional

J = Efd(X; g0(I1; I2))g+�1Efd(X; g1(I1))g+�2Efd(X; g2(I2))g+T (I(X; I1; I2)+I(I1; I2));
(23)

over the joint probability density of X, I1 and I2 and the decoder functions g0, g1 and g2.
T , �1 and �2 are Lagrangian multipliers.

Minimizing J over the decoder functions simply gives the centroid rules of (13) above.
The conditional probability distribution of I1 and I2 given X that minimizes J is of the
same form as q(ijjx) for the mass-constrained MDVQ design approach ((14) above). Thus
the mass-constrained form of the DA algorithm for MDVQ design can be interpreted as
tracking a trajectory on the boundary of R until the (pre-speci�ed) code book sizes are
reached. Future work includes the characterization of conditions for discretization of the
reproductions, and the exploration of the potential contribution of the DA viewpoint to the
determination of the achievable region.

6 Conclusion

Deterministic annealing is proposed for the design of multiple description vector quantiz-
ers when the two channels need not have identical capacities or failure probabilities. This
approach eliminates the dependence on initial con�guration and avoids many poor local
minima of the cost surface. Further, no knowledge is assumed on the underlying probability
distribution of the source. DA is motivated by analogy to statistical physics and is derived
from principles of information theory. A random encoding rule is used, and the encoding
probabilities are determined by minimization of the expected distortion cost at a speci�ed
level of entropy. The algorithm starts at the global minimum at high temperature and tracks
the minimum while lowering the temperature. A multiple description quantizer is obtained
at the limit of low temperature. We compared our approach with existing methods, and
obtained consistent, substantial improvements.

Appendix

A phase transition occurs when the temperature is reduced below a critical value, if the
existing solution changes from a minimum of the Lagrangian functional F � of (9) to a saddle
point or a local maximum. We use this condition, and variational calculus to derive an
expression for the critical temperatures.

Let us consider the perturbed central and side code books given by X̂ 0 + �	0 = fx̂0ij +
 0
ij; (i; j) 2 I1 � I2g, X̂ 1 + �	1 = fx̂1i +  1

i ; i 2 I1g and X̂ 2 + �	2 = fx̂2j +  2
j ; j 2 I2g, where

 0
ij,  

1
i and  

2
j are the perturbation vectors, and the non-negative scalar � is used to scale the

perturbations. We denote (	0;	1;	2) by 	 and the vector of concatenated perturbations,
( 0

ij  1
i  2

j ), by  ij. Further, we de�ne the concatenation of central and side error vectors

12



as eij = ((x� x̂0ij) (x� x̂1i ) (x� x̂2j)). In the subsequent derivations, unless transposed, all
vectors are row vectors.

In terms of the Lagrange functional of (9) evaluated with the perturbed codebooks,
F �(X̂ 0 + �	0; X̂ 1 + �	1; X̂ 2 + �	2), we can write the necessary condition for the optimality
of the code books (X̂ 0; X̂ 1; X̂ 2) as

d

d�
F �(X̂ 0 + �	0; X̂ 1 + �	1; X̂ 2 + �	2)j�=0 = 0; (24)

for all choices of �nite perturbation 	. (Note that this leads directly to the centroid rules of
(13)). We must also require a condition on the second derivative to ensure the minimum is
stable:

d2

d�2
F �(X̂ 0 + �	0; X̂ 1 + �	1; X̂ 2 + �	2)j�=0 � 0; (25)

for all choices of �nite perturbation 	. A necessary condition for bifurcation is equality in
(25). Applying straightforward di�erentiation, we obtain the following condition for equality
in (25):

T
X
x

p(x)[
X
ij

(
2

T
)q(ijjx)eijL2 t

ij]
2

+ 2
X
ij

q(ij) ijL[I3n � (
2

T
)LCxjijL]L 

t
ij = 0 ; (26)

where q(ijjx) is given by (7). I3n is the (3n� 3n) identity matrix.

L =

0
B@
In 0 0
0
p
�1In 0

0 0
p
�2In

1
CA, where In is the (n� n) identity matrix.

Cxjij =
P

x p(xjij)etijeij is the covariance matrix of the posterior distribution p(xjij) of
the cluster corresponding to the index pair (i; j).

We claim that the left hand side of (25) is positive for all perturbations i� the second term
of (26) is positive. The \if" part is trivial since the �rst term of (26) is non-negative. We
prove the \only if" part. Consider a subset of index pairs, C, with coincident central and side
code vectors. This subset bifurcates if the matrix I3n�( 2

T
)LCxjijL loses positive de�niteness,

in which case the second term on the l.h.s. of (26) can be non-positive. (Note that Cxjij is
the same for all the index pairs of this subset.) We now show a particular perturbation that
makes the �rst term vanish in this case. It is easily veri�ed that any perturbation satisfying

 ij = 0; 8 (i; j) 62 C and
X

(i;j)2C

 ij = 0; (27)

makes the �rst term of (26) vanish. So the subset C bifurcates at temperature T if the
conditional distribution p(xjij) satis�es the condition

det[I3n � (
2

T
)LCxjijL] = 0: (28)
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The above condition is implicit in the critical temperature. The critical temperature for the
�rst phase transition (i.e., when the code vectors coincident at the centroid of the source
distribution move apart for the �rst time) can be explicitly evaluated, giving

Tc1 = 2(1 + �1 + �2)�max (29)

where �max is the largest eigenvalue of the source covariance matrix. This critical tempera-
ture may be compared with the critical temperature for the �rst phase transition when DA
is used for single-description VQ design [2]: T SDVQ

c1
= 2�max, and

TMDVQ
c1

= (1 + �1 + �2)T
SDVQ
c1

: (30)

This result is expected since the MDVQ design algorithm degenerates into the DA algorithm
for VQ design [2] if �1 = �2 = 0.
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Figure 1: 2-d MDVQ for Gauss-Markov source, � = 0:9. R1 = R2 = 1:5bpss, �1 = �2 = 0:01.
Minimum and maximum D for LA are �12:56dB and �11:79dB. D for DA = �13:20dB.
For ease of comparison, a line along which D = �13:20dB is drawn.
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Figure 2: Multiple description scalar quantizer for Gaussian source. R1 = R2 = 3 bpss,
�1 = 0:006, �2 = 0:012. Minimum and maximum D for LA are �22:52dB and �19:55dB. D
for DA = �23:02dB. For ease of comparison, a line along which D = �23:02dB is drawn.
Design with initialization from [1] is marked by +.
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Figure 3: Multiple description scalar quantizer for Gaussian source. R1 = 3 bpss, R2 = 2
bpss, �1 = �2 = 0:01. Minimum and maximum D for LA are �18:34dB and �16:78 dB. D
for DA = �19:35dB. For ease of comparison, a line along which D = �19:35dB is drawn.
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