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Abstract— We extend the error exponent results to 2-
layer scalable source coding. We consider separate er-
ror events at each layer so as to allow a trade-off analy-
sis for the error exponents when the rate and distortion
values are fixed. Given a discrete memoryless source,
we derive the single-letter characterization of the region
of all achievable 6-tuples (R1, R2, D1, D2, E1, E2), i.e., the
rate, distortion, and error exponent levels at each layer.
We also analyze the special case of successive refinability,
where the triplets (R1, D1, E1) and (R2, D2, E2) individually
achieve the nonscalable bounds. It is surprising that for
any D1, D2, and R1, there exists an R̂2 such that successive
refinability is ensured for all R2 ≥ R̂2.

Keywords—Scalable source coding, error exponents, suc-
cessive refinement.

I. Introduction

The rate-distortion function R(D) indicates the mini-
mum rate required to (asymptotically) achieve an average
distortion D. A more demanding rate-distortion problem
arises from statistical consideration of the error event,
i.e., the event that a source vector is compressed at dis-
tortion exceeding D. While the rate R(D) is sufficient
to ensure that the error probability vanishes as the block
length n tends to infinity, a major concern is with its as-
ymptotic rate of decay. The asymptotic decay is typically
quantified by the error exponent E = − 1

n log Pr[error].
Thus, the rate-distortion problem may be generalized to
ask one of the two questions: (i) What is the minimum
rate required to achieve an error exponent at or above
a given level? (ii) What is the maximum error exponent
achievable at or below a given coding rate? The standard
rate-distortion problem corresponds to the special case of
(i) with required error exponent E −→ 0.

The best error exponent for nonscalable source coding
was first characterized by Marton [7]. Given a discrete
memoryless source (DMS) with distribution P , and given
distortion and rate levels D and R, respectively, the best
error exponent is

EP (D, R) = inf
P ′:R<RP ′ (D)

D(P ′||P ) , (1)

where D(P ′||P ) is the information divergence and RP (D)
is the rate-distortion function for source P , which is given
by

RP (D) = min
Q(y|x):EP,Q{d(X,Y )}≤D

IP,Q(X ; Y ) . (2)
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This result is valid under the condition R ≥ RP (D).
Marton also discussed the existence of discontinuities in
EP (D, R) as a function of R, possibly for a countable set
of rates. Sufficient conditions for continuity of EP (D, R)
for all R were derived in [7] and [1].

In this paper, we extend these results to 2-layer
scalable coding, and derive a characterization for
EP (D1, D2, R1, R2, E1), the best error exponent achiev-
able in the second layer given the distortion and rate
constraints for both layers, and the error exponent con-
straint for the first layer. Kanlis and Narayan [6] previ-
ously considered an extension of the nonscalable result,
however they defined as error the event that either the
first layer distortion exceeds D1, or the second layer dis-
tortion exceeds D2, precluding a possible trade-off analy-
sis between the exponents of the two error probabilities.
Haroutunian et al. [5] analyzed the special “successive
refinability” case, i.e., the conditions under which

EP (D1, D2, R1, R2, EP (D1, R1)) = EP (D2, R2)

is satisfied. We further use our characterization of the
function EP (D1, D2, R1, R2, E1) to analyze the special
case of successive refinability, and prove a necessary and
sufficient condition which is fundamentally different from
the condition in [5]. In particular, it implies that for every
D1, D2, and R1, there exists a R̂2 such that successive
refinability is ensured for all R2 ≥ R̂2.

We begin with some preliminaries in the following sec-
tion. In Section 3, we employ the type covering lemmas
[3], [6], to construct a coding strategy and in Section 4 we
prove, by extending the approach of [7], that no better
coding strategy exists. Finally, in Section 5, we analyze
the special case of successive refinability.

II. Preliminaries and Basic Definitions

We denote the source and the reproduction alphabets
by X and X̂ , respectively. We assume a single-letter
distortion measure d : X × X̂ → [0,∞), i.e., the dis-
tortion measure extends to n dimensions as d(xn, x̂n) =
1
n

∑n
i=1 d(xi, x̂i). In the scalable coding scenario, for gen-

erality, we allow for two layer-specific single-letter distor-
tion measures d1 and d2. We denote by |f | the cardinality
of the range of a function f .

Definition 1: (R, D, E) is called an achievable rate-
distortion-exponent triplet if for any given δ > 0, there
exist an encoding function

f : Xn −→ {1, 2, . . . , 2nR} ,



and a decoding function

g : {1, 2, . . . , 2nR} −→ X̂n ,

such that

− 1
n

log Pr[d(Xn, g(f(Xn))) > D] > E − δ

for all n ≥ n0(δ).
From (1), it is clear that for a source P , and for E > 0,

(R, D, E) is achievable if and only if

R ≥ RP (D) and inf
P ′:R<RP ′ (D)

D(P ′||P ) > E , (3)

or in other words, if and only if

∀P ′ : D(P ′||P ) ≤ E =⇒ R ≥ RP ′(D) . (4)

Definition 2: The rate-distortion-exponent function,
RP (D, E), is defined as the minimum R such that
(R, D, E) is achievable for source P .

The condition (4) implies that

RP (D, E) = sup
P ′:D(P ′||P )≤E

RP ′(D) . (5)

In the special case of E −→ 0, (R, D, E) is achievable if
and only if R ≥ RP (D) is satisfied. Another extreme case
is when E −→ ∞, for which (5) yields R0(D), i.e., the
“zero-error” rate-distortion function [3, Theorem 2.4.2].

Definition 3: (R1, R2, D1, D2, E1, E2) with D2 ≤ D1

and R2 ≥ R1 is called an achievable 2-stage rate-
distortion-exponent 6-tuple if for any given δ1 > 0 and
δ2 > 0, there exist stage-encoding functions

f1 : Xn −→ {1, 2, . . . , 2nR1}
f2 : Xn −→ {1, 2, . . . , 2n[R2−R1]}

and stage-decoding functions

g1 : {1, 2, . . . , 2nR1} −→ X̂n

g2 : {1, 2, . . . , 2nR1} × {1, 2, . . . , 2n[R2−R1]} −→ X̂n ,

such that

− 1
n

log Pr[d1(Xn, g1(f1(Xn))) > D1] > E1 − δ1

and

− 1
n

log Pr[d2(Xn, g2(f1(Xn), f2(Xn))) > D2] > E2 − δ2

for all n ≥ n0(δ1, δ2).
The special case E1, E2 −→ 0 corresponds to Rimoldi’s

successive refinement characterization [8], as the 6-tuple
(R1, R2, D1, D2, E1, E2) becomes achievable if and only
if R1 ≥ RP (D1) and R2 ≥ RP (D1, D2, R1), where
RP (D1, D2, R1) is given by

RP (D1, D2, R1) = min
Q(y, z|x) : IP,Q(X; Y ) ≤ R1

EP,Q{d1(X, Y )} ≤ D1
EP,Q{d2(X, Z)} ≤ D2

IP,Q(X ; Y, Z)

(6)

if R1 ≤ RP (D2), and

RP (D1, D2, R1) = R1 (7)

otherwise1.
Definition 4: Given source P , distortion levels D1 ≥

D2, and rate R1 ≥ RP (D1, E1), the scalable
rate-distortion-exponent function RP (D1, D2, R1, E1, E2)
is defined as the minimum R2 such that
(R1, R2, D1, D2, E1, E2) is achievable.

Definition 5: Similarly, the scalable error exponent
function EP (D1, D2, R1, R2, E1) for source P , defined
under the conditions D1 ≥ D2, R1 ≥ RP (D1, E1), and
R2 ≥ RP (D1, D2, R1), is the minimum E2 such that
(R1, R2, D1, D2, E1, E2) is achievable.

III. Sufficient Conditions for Achievability

We derive sufficient conditions for achievability by con-
structing an actual scalable coding strategy. To this end,
we employ the type covering lemma [3], and its scalable
extension proved by Kanlis and Narayan [6]. The strat-
egy exploits a fundamental property of types: the num-
ber of distinct types for sequences of length n grows at
most polynomially with n. Hence, we may tailor encoding
functions to each type separately, without compromising
the overall coding rate asymptotically [3].

We denote by T n
P the set of all source vectors xn having

type P . We separately analyze the two cases E1 < E2 and
E1 ≥ E2. Note that in order for (R1, R2, D1, D2, E1, E2)
to be achievable, it is necessary to satisfy condition (4)
for the first layer:

∀P ′ : D(P ′||P ) ≤ E1 =⇒ R1 ≥ RP ′(D1) . (8)

Case I: E1 < E2.
We adopt the following strategy: For type P ′:

• If D(P ′||P ) ≤ E1, then we can generate 2nR1 balls
of radius D1 in the first layer, and for each D1-ball,
generate 2n[RP ′ (D1,D2,R1)−R1] balls of radius D2 in
the second layer, such that for every source vector
xn ∈ T n

P ′ , there exists a pair of D1- and D2-balls
covering xn. Since R1 ≥ RP ′(D1) from (8), this 2-
layer covering is indeed possible for large n, as proved
in [6].

• If E1 < D(P ′||P ) ≤ E2, then we cover T n
P ′ with

2nRP ′(D2) balls, only for the purpose of using the
ball centers as second layer codevectors. In the first
stage, we send the first R1 bits, and do not reproduce
anything at the decoder, and in the second stage send
the rest of the bits (if any), and reproduce the ball
centers at the decoder.

• If E2 < D(P ′||P ), then we do not perform any cov-
ering.

1Observe that if R1 > RP (D2), the minimum in (6) is RP (D2),
which makes R1 greater than the achieved minimum. On the other
hand, if R1 ≤ RP (D2), then the minimum in (6) is always greater
than or equal to RP (D2).
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Fig. 1. A typical curve of achievable R2 versus E2, given fixed D1,
D2, R1, and E1, where R1 ≥ RP (D1, E1).

It is clear that the first and second-layer error exponents
are at least E1, and E2, respectively. The achieved rate
at the second layer is

R2 = max

{
sup

P ′:E1<D(P ′||P )≤E2

RP ′(D2),

sup
P ′:D(P ′||P )≤E1

RP ′(D1, D2, R1)

}
. (9)

or in a more compact form

R2 = max

{
RP (D2, E2), sup

P ′:D(P ′||P )≤E1

RP ′(D1, D2, R1)

}

(10)
since RP ′(D1, D2, R1) ≥ RP ′(D2) for all P ′.
Case II: E1 ≥ E2.

We adopt the following strategy: For type P ′:
• If D(P ′||P ) ≤ E2, then similarly to the first case,

we perform a two-layer covering of type P ′ us-
ing 2nR1 balls of radius D1 in the first layer, and
2nRP ′ (D1,D2,R1) balls of radius D2 in the second layer.
Since D(P ′||P ) ≤ E2 ≤ E1, it follows from (8) that
R1 ≥ RP ′(D1), and hence this 2-layer covering is
again possible.

• If E2 < D(P ′||P ) ≤ E1, then we cover T n
P ′ with

2nRP ′ (D1) balls, only for the purpose of using the
ball centers as first layer codevectors.

• If E1 < D(P ′||P ), then we do not perform any cov-
ering.

It is easily verified that the first and second-layer error
exponents are at least E1, and E2, respectively. The

R∗(D1, D2, R1, E1, E2)
4
= max

{
RP (D2, E2), sup

P ′:D(P ′||P )≤min(E1,E2)

RP ′(D1, D2, R1)

}
(12)

E∗(D1, D2, R1, R2, E1)
4
= min


EP (D2, R2), inf

P ′ : D(P ′||P ) ≤ E1 and
R2 < RP ′ (D1, D2, R1)

D(P ′||P )


 (13)

achieved rate at the second layer is given by

R2 = sup
P ′:D(P ′||P )≤E2

RP ′(D1, D2, R1) . (11)

Combining (9) and (11), we observe that if R2 ≥
R∗(D1, D2, R1, E1, E2), where R∗(D1, D2, R1, E1, E2) is
given in (12) at the bottom, then (R1, R2, D1, D2, E1, E2)
is achievable. However, for the purpose of the proof
that R∗(D1, D2, R1, E1, E2) actually specifies the entire
achievable region, it will be more convenient to work with
infimum of D(P ′||P ) over certain sets. The corresponding
sufficient condition for achievability is given by

E2 ≤ E∗(D1, D2, R1, R2, E1) ,

where E∗(D1, D2, R1, R2, E1) is defined as in (13) with
the standard convention that infimum over an empty set
yields infinity. A fairly general curve of the achieved R2

with this coding strategy is shown in Figure 1.

IV. Necessary Conditions for Achievability

For any coding strategy given by encoding and decod-
ing functions f1, f2, g1, and g2, as described in Defini-
tion 3, we introduce the notation

U1(f1, g1) = {xn : d1(xn, g1(f1(xn))) > D1} ,

for the set of points in Xn that are not reproduced within
distortion D1 at the first stage. Similarly, the set of points
that are not reproduced within distortion D2 at the sec-
ond stage is denoted by

U2(f1, f2, g2) = {xn : d2(xn, g2(f1(xn), f2(xn))) > D2} .

Theorem 1: Given a discrete source with probability
distribution P , let R1 ≥ RP (D1, E1). A coding strategy
given by f1, f2, g1, and g2 satisfies

1
n

log |f1| < R1

1
n

log |f1 × f2| < R2

− 1
n

log Pn(U1(f1, g1)) > E1 − δ1

for any given δ1 > 0, and for all n ≥ n0(δ1) only if

lim sup
n→∞

{
− 1

n
log Pn(U2(f1, f2, g2))

}
≤ E∗(D1, D2, R1, R2, E1 − δ1) . (14)



Remark: It follows from the theorem that the achiev-
able region constructed in the previous section is the
largest possible achievable region. In other words,

EP (D1, D2, R1, R2, E1)=E∗(D1, D2, R1, R2, E1)
RP (D1, D2, R1, E1, E2)=R∗(D1, D2, R1, E1, E2) .

Sketch of Proof: First, we define three sets

Q1 = {Q : D(Q||P ) < E1 − δ1}
Q2 = {Q : R2 < RQ(D1, D2, R1)}
Q3 = {Q : R2 < RQ(D2)} .

We observe that for any Q ∈ Q1, Qn(U1(f1, g1)) −→ 0
as n −→ ∞. Using this observation, we prove that
for all Q ∈ Q3 ∪ (Q1 ∩ Q2), there exists a constant
α(Q, D1, D2, R1, R2, E1) > 0 such that

Qn(U2(f1, f2, g2)) ≥ α(Q, D1, D2, R1, R2, E1) . (15)

Next, we define

Gn 4=
{

xn :
∣∣∣∣ 1
n

log
Qn(xn)
Pn(xn)

−D(Q||P )
∣∣∣∣ < η

}
.

The weak law of large numbers ensures that

Qn(Gn) > 1 − 1
2
α(Q, D1, D2, R1, R2, E1) , (16)

for all Q ∈ Q3 ∪ (Q1 ∩ Q2), for sufficiently large n. We
next consider the error probability at the second layer:

Pn(U2(f1, f2, g2))
≥ Pn(U2(f1, f2, g2) ∩ Gn)

=
∑

xn∈U2(f1,f2,g2)∩Gn

Pn(xn)

=
∑

xn∈U2(f1,f2,g2)∩Gn

Qn(xn) exp
{
− log

Qn(xn)
Pn(xn)

}

≥ Qn(U2(f1, f2, g2) ∩ Gn) exp{−n[D(Q||P ) + η]}
≥ 1

2
α(Q, D1, D2, R1, R2, E1) exp{−n[D(Q||P ) + η]}

for sufficiently large n, where the last inequality follows
from (15) and (16). This implies that

lim sup
n→∞

{
− 1

n
log Pn(U2(f1, f2, g2))

}
≤ D(Q||P ) + η

for all Q ∈ Q and all η. The result follows after taking the
infimum of both sides over the set Q, and letting η −→ 0.

V. Successive Refinability

Let R̂2 be defined as

R̂2 = sup
P ′:D(P ′||P )≤EP (D1,R1)

RP ′(D1, D2, R1) . (17)

Pictorially, R̂2 corresponds to the straight line in Figure 1
when E1 is set to EP (D1, R1). It follows from (13) that
successive refinement is achievable, i.e.,

EP (D1, D2, R1, R2, EP (D1, R1)) = EP (D2, R2)

at all second layer rates R2 ≥ R̂2. If R2 < R̂2, then by
(13), successive refinability requires

inf
P ′ : D(P ′||P ) ≤ EP (D1, R1) and

R2 < RP ′ (D1, D2, R1)

D(P ′||P ) = EP (D2, R2) .

(18)
The successive refinability condition for the case R2 < R̂2

may be restated equivalently as

EP (D1, R1) ≥ EP (D2, R2) (19)
RP∗(D1, D2, R1) = RP∗(D2) , (20)

where distribution P ∗ achieves the infimum in (18). Note
that for the special case R1 = RP (D1) and R2 = RP (D2),
it follows that EP (D1, R1) = EP (D2, R2) = 0 and the
above conditions for successive refinability reduce to

RP (D2) = RP (D1, D2, RP (D1)) ,

for which the necessary and sufficient condition is the
well-known Markovian condition given in [4].

VI. Conclusion

We characterized the region of all achievable 6-tuples
(R1, R2, D1, D2, E1, E2) for the scalable source coding
scenario. Given source P , the characterization is in
terms of the information divergence D(P ′||P ) and the
rate distortion functions RP ′(D2) and RP ′(D1, D2, R1),
for all sources P ′. We specialized the necessary and suffi-
cient achievability conditions to the successive refinabil-
ity case, and obtained the surprising result that it is
possible to achieve the bounds E1 = EP (D1, R1), and
E2 = EP (D2, R2), for all second layer rates R2 above a
specified threshold.
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