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when one of the channels fails, the distortion achieved with the receivgidn (attributed to EI Gamal and Cover in [22]). We cast this problem
single-side description is the corresponding “side” distortion. as the unconstrained minimization of a Lagrangian functional over cer-
The study of practical multiple description systems was inaugurattdn probability densities and output maps, and show that this functional
by Vaishampayan in [18]. Considering the design of balanced mus-identical to the free energy used in the DA algorithm for MDVQ
tiple description scalar quantizers (MDSQs), he derived an iteratidesign. Further, we prove that in several cases (including the impor-
design algorithm (closely related to Lloyd’s algorithm for quantizer degant one of squared error distortion and compactly supported source
sign [13]) that minimizes a weighted sum of the expected central aabhabet) the supports of the output maps minimizing the above func-
side distortions. (Here, the weights may be determined by the chanti@hal are discrete and finite. We then show that the DA algorithm for
failure probabilities, while the codebook sizes may be fixed by thdDVQ design simulates the calculation of the above functional, sub-
channel capacities.) This algorithm is guaranteed to find a locally oject to constraints on the maximum sizes allowed for the ranges of the
timal solution. In [7], an extension of this algorithm was proposedptimum output maps. We also interpret the phase transitions of the
for the design of unstructured MDVQs for arbitrary weights and rateA algorithm within the context of the calculation of the minimum rate
constraints. This extension continues to guarantee the local optimatityms. Note that a similar DA-based approach was previously proposed
promised by the original algorithm. in [17] for the calculation of the rate-distortion function of a (contin-
The occurrence of poor local minima on the cost surface, and theus) source.
consequent sensitivity of Lloyd’s locally optimal quantizer design al- While our focus here is on MD systems based on unstructured quan-
gorithm to initialization, is widely recognized. While one approach ttizers, several other approaches to the construction of MD systems have
overcoming this problem has concentrated on clever heuristic initiddeen studied in the literature. The design algorithm of Diggaai. in
izations, an alternate approach has considered the development ofsjlfor lattice MDVQs with arbitrary rate and distortion constraints,
gorithms which do not require initialization. See [8] for a summary adnd its asymptotic analysis therein, represents an important contribu-
both these approaches. In the case of multiple description (MD) quaion to the problem of structured-MDVQ design. MD systems based
tizers, the problem of poor local minima is exacerbated by the presn overcomplete expansions were considered in [2], [4], and [9], while
ence of a more complicated cost function. Vaishampayan already rewethods based on optimizing transforms and predictors were presented
ognized this problem in [18]; an important contribution of that papen [10], [14], and [20]. For results on the characterization of the MD
was the proposal of asymptotically good initializations for balanceathievable region (in the Shannon-theoretic sense) see [6], [22], and
MDSQ design for the Gaussian source. But such initializations hajs].
not been forthcoming for the design of unstructured MDVQs for arbi- We formulate the problem of MDVQ design and establish notation
trary source distributions with arbitrary distortion and rate constrainis. the next section. In Section Ill, we describe the DA approach to this
Pursuing the alternate approach, in this correspondence, we gmblem. Necessary conditions for optimality are then used to derive
pose an unstructured-MDVQ design algorithm which does not requiie iterative MDVQ design algorithm. We conclude the section by de-
initialization. This algorithm is an extension of the deterministic arscribing the “mass-constrained” form of our algorithm, which is our
nealing (DA) approach to single-description quantizer design, intrpreferred implementation. In Section IV, we rederive the algorithm by
duced in [16], which avoids many poor local minima via an annealingbnsidering calculation of the convex hull of an MD achievable re-
procedure. Our algorithm may be especially useful in training-basgibn. In Section V, we present simulation results and comparisons with
design of unstructured nonbalanced MD quantizers, where the seasglsting approaches. Phase transition analysis, including derivation of
for good initializations is hindered by the lack of knowledge of the gesritical temperatures at which the size of the reproduction setincreases,
ometry of the source distribution, as well as the continuum of possitifeconsidered in the Appendix.
rate and distortion constraints.
Certain chemical systems can be driven to their low energy states by
annealing, which is a gradual reduction of temperature, spendingalong ||, THE MDVQ PROBLEM AND DESIGN CONSIDERATIONS
time in the vicinity of phase transition points. Analogously, we ran-
domize the encoding rule of the multiple description system and seeRVe are interested in encoding a real-valued source represented by
to minimize the expected distortion cost subject to a specified level @fstationary and ergodic random proceSdlistributed ag(-). Let a
randomness measured by the Shannon entropy. This problem casibgle-letter distortion measudebe given. Consider a diversity system
formulated as the minimization of a Lagrangian functional that is anatith two channels capable of transmission of information at rétes
ogous to the Helmholtz free energy of chemical systems. The degeawl 12 bits per source sample (bpss), respectively. Each channel may
of randomness is parameterized by the “temperature” of the configugi-may not be in working order, and its condition is not known at the
tion. We start at a high degree of randomness, where we, in fact, marcoder. The encoder sends a different description over each channel,
imize the entropy. Here, the globally minimum configuration require@‘ld the decoder forms the best estimate of the source output from the
that all code vectors be coincident at the centroid of the source disttescriptions received via the channels that were functioning reliably.
bution; no initialization of codebook or index assignment is necessadn MDVQ maps anr-dimensional source vector to then-dimen-
We then track the minimum at successively lower levels of entropy, Isjonal reproduction vectors’, #*, and#”, which take values in the

recalculating the optimum locations of the reproduction points and mgdebooks’?“ = {i%. (. k) € Ix K}, X' = {#},j € J}, and
encoding probabilities at each stage. Coincident codevectors splitédt = {i7, k € K}, respectively. Here] = {1, 2, ..., 2" and
certain critical temperatures (which can be calculated), thus increasifig= {1. 2, ..., onit2y,

the effective codebook sizes. This phenomenon is analogous to th&he MDVQ encoder is the mappirg R" — J x K. Given source
phase transitions of statistical physics. At the limit of zero randomnesgctor z, it selects an index paitf(z) = (j, k). Each index is sent
the algorithm directly minimizes the expected distortion cost, and a derer its respective channel. The MDVQ decodee (I, 11, I2) is,
terministic encoder is obtained. in fact, a bank of three switched decoders each performing a lookup
The DA approach may also be interpreted within the rate-distasperation: the central decoder .J x i — R" takes in a double index
tion framework. Thus, we consider calculation of the minimum ratg/, %) and produces the code vectetj, k) = r?k The side decoders
sums at different sections (parameterized by the corresponding dister-J — R"™ andl.: K — R" take in the single indexesandj to
tion triples) of the convex hull of an MD achievable rate-distortion regroduce the code vectots(i) = &} andl>(j) = @3, respectively.
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For given values oR?;, R2, D1, andD, we wish to find an MDVQ We seek the distribution(y, k|#) which minimizesD subject to
which minimizes theexpected distortion cost a specified level of randomness, which is measured by the Shannon
entropy

(e, 1) = E{d(X, X")} + M E{d(X, X ")} + X E{d(X, X7)} :
@ HUEX)=- / daep(a) " q(. ko) log p(a)g(i. k).
Jik

overe andl. The specific choice oi; and ) in a practical system The corresponding Lagrangian to minimize is

is determined by the weights we wish to assign to the side distortions

relative to the central distortion, which could depend on the channel F=D-TH. (5)
failure probabilities.

In the subsequent discussions, we will often use the concise notauﬁw Lagrangian functiond is analogous to the Helmholtz free energy

of a physical system wher® is the energyH is the entropy, and the
D(x, yo, y1» y2) = d(x, yo) + Mid(x. y1) + Nod(z, y2)  (2) Lagrangian multipliefl is the temperature. Minimizing corresponds
to seeking isothermal equilibrium of the system.
Now note that (J, K, X) = H(J, K|X)+H (X ),andthe source
to denote the weighted distortion costofelative to the triple com- entropyH (X)) is independent of the encoding rule. We may therefore
posed of the central codevectgr and the side codevectoys andy..  drop the constankl (X') from the Lagrangian definition. Minimizing

This will enable us to tidy up several long equations. F with respect to the encoding probabilitieg/, &|+) yields
Note that the expected distortion cost depends on the code vector
(o, smce hey detenmine which pairofSide vectors are mappedo ach (. ) = <= (E)PCr B B L
‘ y ' o ” Zexp[ () Dla, &y ). 2]

central code vector. Locally optimal multiple description quantizer de-
sign algorithms [18], [7] must be initialized with codebooks and index
assignment. The choice of initial index assignment constrains the alg@re corresponding minimum dt is obtained by plugging (6) into (5)
rithm to a part of the cost surface, so that “good” initial index assign-

ment is crucial to the performance of the algorithm. But good heuristics .

for choosing the initial index assignment are elusive, since they dependF q(Ijl,l}cI\lr) F

on the particular rate and distortion constraints, and some knowledge 0 a1 .9

of the source distribution. Strategies for initial index assignment are  — —T/d:rp(w) log Zexp {_D(T/v k> &5, &%) ) @)
discussed in detail in [18], where good heuristics are presented for the Tk T

special case of balanced descriptions and scalar quantizer. Moreover,

it was shown that heuristic index assignment is asymptotically optlrrw
(in the sense of high resolution) for the particular case of memoryle
Gaussian source and balanced MDSQs. However, these heurlstlc
not seem to generalize to the case of unstructured, unbalanced MDV/
It may here be noted that the corresponding index assignment problem

e now find the optimal sets of reproduction vectais, X', and.A">
|ch minimizeF™ for this random encoder. These vectors satisfy the
?8 owing necessary conditions:

for unbalancedattice MDVQ design was recently resolved in [5]. LU Fr = E) F" = E) F*=0. (8)
awjk &Li 93
Ill. DERIVATION OF THE DA ALGORITHM Substltutlng forF* from (7), we have, for alli,k e Xx° 2 ” e X',

andi? € A2
A formal derivation of DA can be based on principles of mforma- o

tion theory, by considering optimization of a random encoder subjec 0 9

to constraints on its degree of randomness. An alternate, but equg/}da p(zl|j, A) d(r l k) = / dxp(x|_}) o d( 7
lent, derivation appeals to Jaynes’ principle of maximum entropy f

statistical inference [11]. We shall use the former approach here. /de(.z 1) 0

k;

a57 ) =0.
A. Encoding Probabilities and Reproduction Points 9)

Let us begin by assuming that the three codebodks= {# 5t ) ) . -
= (2!}, and % = {2} are given. We use a random encodmd"ere*p 7, k), p(x|j), andp(x|k) denote the posterior probabilities
rule, and assign input source vectorto the index pair(j, k) with calculated using Bayes' rule. Y
probabllltyq(], k|z). The central decoder and the two side decoders FOT the squared error distortion cake:, y) = ||« — y||, the above
output?,, &, and? when presented with indexes, k). We can €quations reduce to the centroid rules
rewrite the expected distortion cost of (1) for a random encoder as

,;J])k = /d.?:p(.r|j, k)

(x, 7 k. &5, &%) ®)

D= /drp(r)ZQ(J, i = / do p(elj)e

. . - 22— d. |l- o (10)
where we drop the arguments Bffor notational simplicity. T = wp(elk)a.
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Note that the encoding probabilities of (6) and the centroid rules ®he corresponding minimum of the free energy over encoding proba-
(10) are just random relatives, respectively, of the encoding and dblities is (cf. (7))
coding rules for optimal MD quantizer design for squared error distor-

. g 20 Al 52

tion ([18], (9), and (18)—(20)). [ _T/dmp(_r) log 3" r(7)s(k) exp [_ D(aw, &y, &5, &%)
Our algorithm consists of minimizing™™ with respect to the code I T

vectors starting at a high temperature and tracking the minimum while (12)

decreasing the temperature.
The central iteration itself is composed of the following two steps: F* is to be minimized under the obvious constraints on the masses:

1) fix the codebooks and use (6) to compute the encoding probalil; 7(j) = 1 and}_, s(k) = 1. This yields the following update

ities; rules:
2) fix the encoding probabilities and optimize the codebooks ac- . ' . \
) cording to (9). oP P r(j) = / dep(x) " q(j, klo)
k

Clearly, this procedure is monotone nonincreasinginNote that the .
algorithm reduces to the known locally optimal MDVQ design algo- s(k) = /d:L’p:}; Zq(j, klx). (23)
rithm of [18] at the limit of zero temperature. J

At very high temperatures, the global minimum configuration cone
sists of all the (central and side) code vectors coincident at the centroi
of the source distribution. As the temperature is reduced from the irtlcl)-
tial high value, the set of coincident code vectors bifurcates into subsrelf%e/l'. N I . .
for the first time at some lower temperature. We call this bifurcation the . inimizing F* with respect to the central and side reproduction
first phase transition, and the corresponding temperature the first cﬂ?—'ms gives the update formulas
ical temperature, in analogy with the phase transitions seen during th
annealing of physical systems. As the temperature is lowered furth
these subsets again bifurcate, and each such bifurcation is a subsequent )
phase transition with its corresponding critical temperature. We analyze — / da p(z|k) i) d(z, #3) =
conditions for phase transitions and derive the critical temperatures in 9 i
the Appendix. A study of this phenomenon of phase transitions pro- (14)
vides insight into the annealing process. Further, since the phase tran- ) . ]
sitions are the critical points of the process, knowledge of the critic4fth the encoding probabilities of (11) used to calculate the posterior

temperatures allows us to accelerate the annealing between phase Reghabilities. _ _ _ _
sitions. MCDA increases the effective number of index pairs only when it

is needed, i.e., at a phase transition. Thus, it is computationally more
B. Mass-Constrained DA (MCDA) efficient than the earlier “unconstrained” approach. At the limit of low
temperatures, the two approaches converge to the same descent process
The observation of the phenomenon of phase transitions enablegdighe expected distortion cost, since their encoding probabilities are
to recast our algorithm in a more efficient form. Since all the (centrgdentical at the limit (they assign each data point to a single index pair
and side) code vectors are coincident at high temperatures, they CAM:) with probability 1. In the next section, we will provide an al-

be viewed as belonging to a single cluster, and this entire cluster gafhate interpretation of MCDA. Note that we use MCDA for all our
effectively be represented by a single index pair without affecting thgmulations.

expected distortion cost. When the codebooks bifurcate at the critical

temperatures, the effective number of clusters increases. Each of these

clusters should be represented by a different index pair. We use this

observation to derive the “mass-constrained” implementation of ourln this section, we make the following additional assumptioiis:

algorithm. is an independent and identically distributed (i.i.d.) random variable
Let us assume an unlimited supply of code vectors and index paifistributed over the alphabgt C R”, and the reproduction alphabet

The fraction of code vectors of the first side codebddkwhich are is the same as the source alphabet.

coincident at some point can be assigned a common first index forn [22], the following sufficient conditions for an MD achievable

transmission over one of the channels. Let this common indek berate-distortion region are attributed to EI Gamal and Céver.

the corresponding fraction of code vectors is labelgd (the cluster ~ The quintuple(R:, Rs, Do, D1, D2) is achievable if there exist

“prior” or “mass”), and the point where the code vectors are coincidef@ndom variableg and i” (defined on the space$ and X, respec-

is #}. Similarly, we assign a common indéxo the mass (k) of code tively) jointly distributed with.X' such that

vectors of the second side codebook coincidetfatConsequently, a . A

fractionr(j)s(k) of all index pairs are assigned the index pigirk), 1 = 1(X;J), Re 2 I(X; K),

ther words, the distribution of masses on the indexes is identical
he probability distribution induced on the indexes via the encoding

) 0 . .0 N
dxp(|j, k) 930 d(z, #j;) = /(1'7727(-7““) S d(x, &)
T : T;

IV. DA AND AN MD ACHIEVABLE REGION

and the central reproduction corresponding to this index paz‘rﬁ-,js and Ri+ R, > I(X;J, K)+I(J; K) (15)
We can recast the expression for the encoding probabiljty%|=) in
(6) as and deterministic functiong®(.J, K), *(.J), and#?(K') such that

BlA(X, #' ()] < Dy, E[d(X, #*(K))] < D2,

AT _ (1 pop0 Al 82
a(j, klz) = 4 (J)f(k)EXP [ (T)ID(IA» l]fra 'r’]: LLA)] . (11) and E[d(X, 2°(J, K))] < Do. (16)
> r(j)s(k)exp [- (7)D(= % a}, 7)) N N _ _ _
Ik 2Note that these sufficient conditions are in general not tight, as shown in

[22]. But Ozarow showed in [15] that they are tight for the important special
1The performance of the algorithm is insensitive to the choice of the coolirgse of the Gaussian source and squared-error distortion. Tight characterization
schedule. In our simulations we use the sche@@ile— aT(a < 1). of the MD achievable region is not known for any other interesting example.
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Denote byS the convex hull of the region characterized by (15) andrhile for fixedr ands, F'(g, r, s) is minimized by

16). Define . 0 Al

(16). Def oG ) = TR [ DG 85, 8, )
Rsum (Do, D1, D2) = inf I(X; J, K) T Jdjr(j) [dks(k)exp [—% D(x, @9, ik, 7

J, K:330 #1532 satisfying (16)

+1(J; K). 7

These facts follow from the easily verifiable identities
(Note that we do not impose the side rate constrafhts> I(X; .J)

andR, > I(Y; K).) Fg,r, s) =F(q, 7, s4) + D(rq|I7)
In the following lemma, we will show thaRsum (Do, D1, D2) — Fla. . s Dir i)+ Dis.lls
is the minimum rate sum of the section &fat the distortion triple (¢ 74 8) + Dlrallr) + Dlsals)

(Do, Dy, D). Fla. . 5) = Flare v )+ [ dep(o)Dialar).
Lemma 1: For fixed (Do, D1, D2), there exists a quintuple
(Ry, R»., Do, Dy, D>) on S with R, + R» not less than, but The result now follows, since the divergen¢.||.) is non- negativél

arbitrarily close t0Ruuu (Do, D1, D). For fixedr ands, substitutingy = ¢,-s in (19), we are left with
Proof: Itis clear from the definition of2... (Do, D1, D>) that, P it — [ dep(e)
for quintuples(R:, R2, Do, D1, D2) onS - fonll ) A
By + Ro 2 Reumn(Do. Da. D). tog [a00) [ avstiyexp| - P i a3 )]}
Now pick (.J, ') in (17) such thaf (X; .J, K) + I(.J; K) is suffi- (22)

ciently close toRsum (Do, D1, D2). We then have
Consider now the necessary conditions for optimality of the maps

I(X; L, K)+I(J; K)—I(X;J)-1(X; K) #°, #', and#?. These are derived via a standard procedure from the
calculus of variations: we require
= I(X; K|J) + I(J; K) — I(X;: K) HlUS of variations: we requl

o . ~ o
— I(X; K|J) + H(K|X) - H(K|J) 5c F@ tenle=o =0, i=0,1,2 (23)

=H(K|X)-H(K|J,X)=I(K; J|X)>0 for all admissiblé perturbation functiongo (j, k), n1(;), andn: (k).
- - After some manipulations, we obtain
by the nonnegativity of mutual information. This shows that the rate

E) .
pair (Ry, Ry) with By = I(X;.J) andRy, = I(X;.J, K)+1(J; K)— /drp( )0rs(J, Klr) m=g d(a, #(j, k) =0 (24)
I(X;.J)is on the section of at(Dy, D1, D.), and we are done.(] 8
Al
The determination of2.... (Do, D1, D) in (17) may be recast as /(]’”p( q”(”T T d(, @ (7))
an unconstrained minimization via a Lagrangian formulation. The cor- '
responding Lagrangian functional is = /de(l)q,S(H‘L) _ d(x, ,Az(k)) (25)
F= " if | /d.rp(.c) /dj dk q(j, k|z) r(j)—ands(k)—almost everywhere. Here,,(j|x) andg...(k|x) are
q,20,21 22 P

the marginals derived from..(j, k|z).
q(j, k| 1 o We will now show that the ranges of the optimum mafs:', and
{10“ e (|L§ {d(x. #5)+Aid(x, 25)+Nad(x, Ik)}:|' #? are often discrete and finite. Note that, in this caandk’ may be
(18) assumed to be discrete and finite as well (i.e., they may be replaced by
finite sets of indexes). If the poinig, y1, andy» are in the ranges of

Here,q(j, k|=)p(x) denotes the joint distribution of, K, andX,and £°, #', and#?, respectively, (24) imposes the following requirement
q(j) andq(k) are the corresponding marginal distributiofisA;, and  on (yo, y1, y2):
A2 are (nonnegative) Lagrangian multipliers. We now convert (18) into
a three-way minimization, in the spirit of the double minimization of / dxp(x)Z(x)
the Blahut-Arimoto algorithm [3], [1].

1
Lemma 2: - exp {_T [d(z, yo) + Md(z, y1) + Aad(, !/z)]}
F= o, / dxp(x) / didk a(j, kl) : a% (e, yo) = 0 (26)

q(, klz) | 1 £0 A1 a2 where
{mg r(stky T Pl Sk &5 )| (19) . 5
) — e q (Y exp—— Dy 79, 21 22
wherer ands are probability measures ovefr and iC, respectively, Z(x) = V djr(j) / ks (k) exp T Dla, &jes ), ‘L’")]
andD(-, -, -, -) was defined in (2).
Proof: Denote the argument of the infimum aboveB{y, r, s).
For fixedq, F(q, r, s) is minimized by Lemma 3: The ranges of the optimum map$, ', andz? are dis-

) ' ; crete and finite in the following cases:
re(j) = / de p(x) / dk q(j, klx)
. . 3Since we derive a necessary condition, we do not need to be too careful about

and how restrictive our definition of admissibility is. Hence, we simply require that
= | de ol dia(i ke 20 admissible functions be measurable, that the required integrals exist, and that
sq(k) = ep() [ djq(j, klz) (20) changing the order of integration and differentiation (where needed) is allowed.

depends only on.
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Fig. 1. MDSQ for Gaussian sourc®, = R, = 3 bpssA; = 0.006, A, = 0.012. Minimum and maximumD for LA are —22.52 dB and—19.55
dB. D for DA = —23.02 dB, achieved by the distortion tripldD,, D, D,) = (—26.50 dB,—4.60 dB,—12.51 dB. (For(R,, R., D,, D,) =
(3, 3, —4.60 dB,—12.51 dB, D promised by [15] is—25.18 dB.) For ease of comparison, a line along whigh= —23.02 dB is drawn. Design with
initialization from [18] is marked bw-.

1) d(=x, y) is a real, monotonic entire function efandy, and the fixed temperaturd’, and for fixed\; and)-, are identical to the cal-

source alphabet is discrete and finite; culations of (24), (25), (21), and (22) to determine the minimum-rate
2) d(x, y) = |lx — y||* is the squared-error distortion, and theSUm onS corresponding t¢ Do, D1, D2). . . .
source alphabet’ is compact. Consider the MCDA algorithm for MDVQ design, with prespeci-

fied constraints on the sizes of the various codebooks. These translate
Proof: A . . .
to corresponding constraints on the sizes of the solution sets of (24)

m;:asg rle):I{ajeésbdIsﬂiﬁeagdn?m;ﬁgtﬂg eft_lﬂfngﬂ-ggp cf:()zlg) ('§6t)henand (25). AsT is decreased from an initial high value, the MCDA al-
y be rep ) Dy a finite sum. . I ) | g%rithm “crawls up” the convex hulf. Note that the correct number of
real entire function ofyo, y1, andy:, since the entire functions are

closed under differentiation, composition, and finite summation. T nge vectorsto use atany temperature arises naturally in the MCDA al-
monotonicity ofd ensures th:slt the[?ran es:‘le o andi. are 'th'ﬁ rborithm, with code vectors splitting into new code vectors at the phase
icity ofd u 9 N 2 WIENIN 4 apsitionst Once the constraints on the solution set sizes are reached,

%’icn.itlélouvnle s theorem then demands that these ranges be discrete %‘edalgorithm may be interpreted as calculating the best approximation

. ith fixed reproduction alphabet sizes to the minimum rate sums on
Case 2):lt follows from [17, proof of Theorem 2] that the solutlonWI X proguct P 'z inimu .

. . - S. Finally, at the limit of zero temperature, the algorithm produces an
I' ¥ Yo . . . . . .
sets{yo}, {y1}, and{y, } for an integral equation of the form of (26), MDVQ with the desired codebook sizes, as explained in the previous

with d(z, y) = ||z —y||?, cannot have an accumulation point. Sidée .

. L . . ) sedctlon.
is compact, this implies that the solution sets are, in fact, discrete an
finite. d

V. SIMULATION RESULTS
Fix the values of the Lagrangian multiplie¥s, A, and X., and . ) )
consider the corresponding tripi@o, D, D-). The above discus- '€ Proposed DA-based design algorithm may be used to design
sion then shows that the minimum rate-sum of the sectios @t unstructured MDVQs with unequal rate and distortion constraints on

(Do, D1, D2) may be calculated using (24), (25), and (21) in the mint_he two channels. We illustrate the wide applicability of the DA algo-

imization of (22). If it is now assumed that the conditions of Lemma AthM Dy considering three examples: 1) scalar quantizer design for un-

are satisfied, the” andk_ may be taken to be discrete and finite, Séequal rate and equal distortio_n cor_wstraints, 2)_ scalar quantizer _design
that the integrals over these spaces in (24), (25), (21), and (22) maJ%reequal rate and 'unequa_l distortion constralnts,' and'3) two-dlmen-

replaced by finite sums. In this case, note that the Lagrangian functioﬁ!ﬂnal vector quantizer design for equal rate and distortion constraints.
of (22) is identical to the free energy of MCDA at the temperaflire

(12). Similarly, the transition probability distribution of (21) is identical

to the transition probabilities (11) of MCDA. The necessary conditions 4An additional approximation may be introduced since we ignore the possi-

for optimality of reproduction points of (24) and (25) are identical tgjjity of phase transitions where new code vectors grow continuously from zero
the codevector update rules of (14). Thus, the MCDA iterations atass. See [17] for a more detailed discussion of such phase transitions.
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Fig. 2. MDSQ for Gaussian sourc&, = 3 bpss,R, = 2 bpss,A; = A, = 0.01. Minimum and maximumD for LA are —18.34 dB and—16.78
dB. D for DA = —19.35 dB, achieved by the distortion trip{dD,, D,, D,) = (—22.49 dB,—6.31 dB,—4.38 dB. (For(R,, R, D,, D,) =
(3, 3, —6.31dB,—4.38 dB), D promised by [15] is—21.45 dB.) For ease of comparison, a line along wH2h= —19.35 dB is drawn.

For comparison, we consider the performance of the existing iter@andomly initialized designs of LA. The DA design gaird dB over
tive MDVQ design technique [18], [7], which we call the “Lloyd ap-the best of the latter in terms of the expected distortion cost. Note that
proach” (LA) as it is directly based on Lloyd’s algorithm for conventhe heuristic index assignment cannot be extended to this case.
tional scalar quantizer design [13] and its vector extension [12]. RecallRecall that Ozarow determined, in [15], the MD achievable region
that the performance of LA depends heavily on the initialization. Wer the memoryless Gaussian source. We also compared the DA-based
use 20 differentandominitializations for the LA in our simulations. designs of Figs. 1 and 2 with the theoretical benchmark provided by
The initialization proposed in [18] is for MDSQ design with equal ratl5]. While the precise comparisons are noted in the captions of the
and distortion constraints. In particular, this initialization does not generresponding figures, here it must only be noted that the expected dis-
eralize to vectors or for unequal rate constraints. However, as an addition costs of the MDSQs designed by DA are withi2.2 dB of
tional comparison, we used this initialization for MDSQ design witlthe respective optimal expected distortion costs (in the limit of infinite
equal rate but unequal distortion constraints. block lengths) promised by the results of Ozarow.

In all three examples, the quantizer designed by DA is seen toln Fig. 3, we present the results for the design of two-dimensional
yield a significantly lower expected distortion cost than LA withvector quantizers for a Gauss—Markov source with autocorrelation co-
random/heuristic initializations. Further, the wide variation in perforfficient p = 0.9 and unit variance per dimension. A training set
mance of the quantizers designed by LA illustrates and emphasizesdh&000 vectors was used. The rate and distortion constraints were
significance of the problem of local minima even for simple low-rat&; = R, = 1.5 bpss (i.e., each side codebook has eight two-dimen-
quantizers. sional code vectors) anti = \» = 0.01. We compare the perfor-

In Fig. 1, we present the results for the design of scalar quantizensance of DA design with quantizers produced by LA for 20 different
with unequal distortion constraints for a unit-variance Gaussian sourcandom initializations. The distortion cost of the MDVQ designed by
The constraints were®; = R> = 3 bpss and\; = 0.006, Ao = DA is ~0.6 dB below the distortion of the “best” quantizer produced
0.012. The training set consisted of 5000 samples. The quantizers pby-random initializations of LA. Note that the heuristic index assign-
duced by LA with different random initializations show wide variatiorment proposed in [18] cannot be generalized to this case.
in performance (the best and the worst of these designs diffe/3nB Finally, note that the DA-based algorithm has a longer running time
in terms of the expected distortion cost). Note that LA initialized wittthan LA, but the ratio of the running times of the two algorithms is
the heuristic proposed in [18] yields significant gains over random iré- constant, influenced by the choice of the cooling schedule for the
tialization, and demonstrates the benefits of a good heuristic. Howevlermer.
MDSQ designed via the proposed DA approach outperforms @p
dB the best of all LA initializations.

In Fig. 2, we present results for scalar quantizer design under unequal
rate constraints. The constraints wef: = 3 bpss,R> = 2 bpss, Deterministic annealing is proposed for the design of MDVQs when
and\; = A, = 0.01. The training set consisted of 5000 samplethe two channels need not have identical capacities or failure probabil-
of a unit-variance Gaussian source. The DA design is compared wities. This approach eliminates the dependence on initial configuration

VI. CONCLUSION
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Fig. 3. Two-dimensional MDVQ for Gauss—Markov sougge= 0.9. R, = R, = 1.5bpssA; = A, = 0.01. Minimum and maximumD for LA are
—12.56 dB and—11.79 dB.D for D A = —13.20 dB, with corresponding distortion trig{dD,, D,, D.) = (—15.13 dB,—1.76 dB, 0.19 dB). For ease
of comparison, a line along whic> = —13.20 dB is drawn.

and avoids many poor local minima of the cost surface. Further, nan write the necessary condition for the optimality of the codebooks
knowledge is assumed on the underlying probability distribution of tHet®, X', 1?) as

source. DA is motivated by analogy to statistical physics and is derived ) ) N )

from principles of information theory. A random encoding rule is used, O—F*(XO + €W’ X' el X7 4 eT7)] 2o =0

and the encoding probabilities are determined by minimization of t}?e Il choi f finit turbatiof. (Note that this leads directl
expected distortion cost at a specified level of entropy. The algorithl%r all choices ot finite perturbatior. (Note at this feads directly
the centroid rules of (9).) We must also require a condition on the

starts at the global minimum at high temperature and tracks the m‘ﬂ- S ) .
imum while lowering the temperature. An MD quantizer is obtained gecond‘derlvatlve to ensure the minimum is stable
the limit of low temperature. We compared ogrepproach with existing O_ZF*(A;O + e, A w4 €2)|_o >0 @7)
methods, and obtained consistent, substantial improvements. Oe?
for all choices of finite perturbatio®. A necessary condition for bi-
APPENDIX furcation is equality in (27). Applying straightforward differentiation,

. . . we obtain the following condition for equality in (27):
A continuous phase transition occurs when the temperature is re- 9 quality in (27)

duced below a critical value, if the existing solution changes from a
minimum of the Lagrangian functiondl* of (7) to a saddle point or I [ dx p(x)
a local maximum. We use this condition, and variational calculus, to
derive an expression for the critical temperatures. ' 2 "
Let us consider the perturbed central and side codebooks given by~ +2 Y a(j, k)¢x L {I‘Jn - <T) Ly, kL} L =0 (28)
ik

X0+ el’ = 12% + e, G k) €T X K A i identi
- te . {‘fik + f#l,;z; (s k) b whereq(j, k|2) is given by (6). Here[s,, is the(3n x 3n) identity
X +el ={3j+ep;,j€J} matrix

2

2 . 2,
Z(T)Q(Jw kla)ejn L4
ik

and 52 2 .2 2 - I, 0 0
X°+ el = {2, +et;, k€ K} r=|o vrr 0

Whereu'r(jk, 4} andy? are the perturbation vectors, and the nonnega-
\ _ _ e 0 0 VI,
tive scalak is used to scale the perturbations. We dendte, ¥', ¥?)
by ¥ and the vector of concatenated perturbation$, «; ¢¢) by wherel, is the(n x ) identity matrix, and
;1. Further, we define the concatenation of central and side error vec- _ ,
tors ase;k = ((x — &9 (x — &) (x — #})). Here, and in the subse- Copje = »_p(lj, k)ejuesn
quent derivations, all vectors (unless transposed) are row vectors. ®

In terms of the Lagrange functional of (7) evaluated with thés the covariance matrix of the posterior distributien:|j, &) of the

perturbed codebook&*(X° 4+ ¢¥°, X' + €¥', X2 + €¥?), we cluster corresponding to the index péjt k).
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We claim that the left-hand side of (27) is positive for all perturba- [2]
tions iff the second term of (28) is positive. The “if” part is trivial since
the first term of (28) is nonnegative. We prove the “only if” part. Con-
sider a subset of index pait@, with coincident central and side code 3
vectors. This subset bifurcates if the matFix, — (%)LCMML loses
positive definiteness, in which case the second term on the left-hand4]
side of (28) can be nonpositive. (Note ti@t, ;. is the same for all
(j, k) € C.) We now show a particular perturbation that makes the [5]
first term vanish in this case. In fact

vk =0, V(. k) €C and > =0 (6]
(j,k)ec [7]

works. So the subset bifurcates at temperatufg if the conditional
distributionp(z|j k) satisfies the condition [8]
2 [l

det I3, — T LCI“kL = 0. (29)
[10]

The above condition is implicit in the critical temperature. The critical
temperature for the first phase transition (i.e., when the code vectors
coincident at the centroid of the source distribution move apart for thél1]
first time) can be explicitly evaluated, giving

[12]
(23]

T‘«l = 2(1 + )\1 + kz)a/max (30)
whereamax IS the largest eigenvalue of the source covariance matrix
This critical temperature may be compared with the critical temperaturém]
for the first phase transition when DA is used for single-description VQ
design [16]:7°PY? = 2045, and

[15]

MDVQ _
T, =

(14 A1 4 A)TEPVE.

[16]

This result is consistent with the observation that the MDVQ design
algorithm degenerates to the DA algorithm for single description VQI17]
design [16] ifA\1 = X2 = 0. [18]
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