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On Zero-Error Coding of Correlated Sources
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Abstract—The problem of separatezero-errorcoding of corre- X
lated sources is considered. Inner and outer single-letter bounds t
are established for the achievable rate region, and conditions for
their coincidence are investigated. It is shown that successive en-
coding combined with time sharing is not always an optimal coding
strategy. Conditions for its optimality are derived.

The inner bound to the achievable rate region follows as a spe-
cial case of the single-letter characterization of a generalized zero- t
error multiterminal rate-distortion problem. The applications of
this characterization to a problem of remote computing are also Fig. 1. Separate coding of correlated sources.
explored. Other results include i) a product-space characterization

of the achievable rates, ii) bounds for finite block length, and iii) .
asymptotic fixed-length rates. [22]. On the other hand, for the zero-error version of the

Index Terms—Graph coloring, graph entropy, separate coding problem, a compl_JtabIe_ charact_erization is currently not_known
of correlated sources, Slepian-Wolf, zero-error information €Ven for the special point-to-point case, where the receiver has
theory. correlated side information unknown to the sender (i.e., the
“unknown side information problem”). In fact, we have shown
in [17] that a formula for the minimum rate of transmission in
the latter problem would easily yield a solution for the famous

ONSIDER the multiterminal system shown in Fig. 1ppen problem of determination of the zero-error capacity [20]

where two correlated sources are encoded separatefyan arbitrary discrete memoryless channel.
and decoded jointly while no communication is permitted Ourinner bound is defined as a functional on a graph associ-
between the encoders. We study the rates of transmissaiad with the problem, and represents an extension of the con-
when the receiver is required to reproduce the source signeépt ofgraph entropy an information-theoretic functional on
without any error(i.e., with zero error). We derive single-lettergraphs introduced by Kérner in [12]. Graph entropy was used
bounds for the asymptotically achievable rate region for boih [1] to give an upper bound to the minimum asymptotic rate
fixed- and variable-length codes. While the outer bound fdor the unknown side information problem. This functional has
variable-length coding is based on the results of Slepian aaldo been applied in purely graph-theoretic problems, such as
Wolf in [22], the inner bound follows from the exact charactereharacterization of normal graphs and perfect graphs, and to de-
ization of a generalized zero-error multiterminal rate-distortiative lower bounds for perfect hashing and Boolean circuit sizes.
problem. We also derive bounds for achievable rates for a fini{8ee [21] for a survey of some of these applications.) The inner
block length. bound derived in this paper also seems to be of independent in-

The problem of determining the asymptotically achievabkerest; we use its generalization to determine the achievable rate
rate region when the receiver is required to reproduce thegion for a problem of remote computing, thus, partially ex-
sourceswith a vanishingly small probability of errowas tending the results of [19].
completely solved by Slepian and Wolf in their classic paper The practical aspects of the coding of correlated sources have

recently received attention in the context of the spread of mul-
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This paper is organized as follows. In the next section, we for- y
) - a b c d e
mally define different classes of zero-error codes, and demon- 101 01 0 0 0
strate the differences on a running example, and provide re- bl o 01 01 0 o0
lated definitions. In Section Ill, we analyze the asymptotically z ¢l o0 0 01 01 O
achievable rate region for variable-length coding. After deriving dl o 0o o0 01 01
a product-space characterization, we provide single-letter inner e|01 0 0 O0 o01
and outer bounds. We also show that our derivations specialize Pxy(z,y)
to known results for the unknown side information problem.
Section IV is devoted to the derivation of conditions for the
tightness of the inner and outer bounds. In Sections V and VI, z | ¢x(z) y | ov(®)
bounds are obtained for the achievable rate regions for vari- a 1 a 1
able-length coding with finite block length, and for fixed-length b 2 b 2
. oo . c 1 [¢ 3
coding with infinite block length, respectively. We conclude d 5 d 4
with a short section summarizing the results. e 3 e 5
[I. PRELIMINARIES AND NOTATION
Let the pair of memoryless correlated sourdes,, Sy ) ¢y (v)

| 1 2 3 4 5
11 (aa) (ab) (cc) (cd) (*%)
¢x(z) 2| (%*) (bb) (be) (dd) (de)
3] (a) (%) 9 ) (e

produce, at each instant, a pair of lettersy) from the product

set X x ) according to the joint probability distribution
Pxy(z,y). Let Px(z) and Py-(y) denote the corresponding
marginal distributions ove®t’ and ), respectively. We may

assume without loss of generality thBk (z) > 0Vz € X, Y(dx(z), by (1))
and Py (y) > 0Vy € Y. Letz], = (Zm,Tm+1,---,%n)
and y? = (YmsYm+1s---5Yn), for 1 < m < n. Since Fig. 2. The joint distributiorx y (i, y) (top) and a valid fixed-length coding

(SX SY) is memory'ess the probabmty of occurrence of thélplet (¢x, dv, L/) (middle and bottom). The symbel stands for a “don’t
pair (z7,y7) € X" x Y forn > 1is care” output.

atmost onsource paitz?, y7) € ¢35 (i) x ¢y (j) must satisfy
Py (a1, 1) HPYY i, Yi)- Py (x7,y7) > 0. If such a source paifzy, y7") exists, then
obviously

Smilarly (i j) = (a7, 47)
P3(z}) H Px(z;) and if no such pair exists, then the encoder output(@aj) can
never occur, and the value @f(, j) is irrelevant. In Fig. 2, a
and valid fixed-length scalafn = 1) code is shown for an example
distribution overX = Y = {a,b,c,d, e}.
HPY vi) A rate pair(Rx, Ry) is achievable by a fixed-length zero-
error code if for any > 0, there exists large enoughsuch that

Py (yy)

are the marginal probabilities ef’ andy?, respectively.

. . 1
Suppose that Alice has access to the sowgewhile Bob —logNx <Rx +¢
has access 8y, and they wish to convey their respective values 7{
to Merlin without any error Both Alice and Bob know the un- - log Ny <Ry + ¢

derlying distributionPxy (z, y), but no communication is per-
mitted between them. Suppose Alice and Bob usefitesl- Wwhere here, and in the sequel, logarithms are taken tohase

lengthencoding functions Hence, for the example in Fig. 2, the achievable rate region con-
tains(log 3,1og 5).

px X" —{1,2,...,Nx} The most natural and suitable setting for the problem of de-

by V" — {1,2,..., Ny} termining achievable rate pairs is, as will soon be clear, that

of graph theory. Therefore, we proceed by providing neces-
respectively. Correspondingly, Merlin uses the decoding fungsary graph-theoretic definitions. Construct the bipartite graph
tion G = (X UY, E) by setting, forr € X andy € )

¢¥:{1,2,...,Nx} x {1,2,..., Ny} — X" x J". {z,y} € £ <= Pxy(x,y) > 0.

In order for the triplet(¢x, ¢y, 1) to constitute a valid code, We call G the characteristic graphof the correlated sources
for each encoder output pair (Sx,Sy). Fig. 3(a) shows the characteristic graph corre-
sponding to the joint distributioPxy (z,y) in Fig. 2. This
(4,5) € {1,2,...,Nx} x{1,2,..., Ny} particular graph is known as the Shannon typewriter channel.
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a a red black

b b blue ‘\4 white

c c red \g yellow
d ‘\/~\4 d blue ‘K cyan

e 7\‘ e green 7\1 magenta

@ (b)
Fig. 3. The characteristic graph (a) and the bipartite coloring (b) correspondifigstoand(¢ x , ¢y ), respectively, in Fig. 2.

Forn > 1, define then-fold AND power ofG as the bipartite 0 00
graphG™ = (X™ U Y", E™), with 10 01
R, . 0e 10
{27,971} € E" < {z;,y;} € E, foralli=1,...,n (1) w\
. 10 110
for («7,y7) € &A™ x Y". Thus{z?,y?} € E™ if and only 7\.
if P%y (27,y7) > 0. The subgraplinducedin G by a subset 11 111

of nodesx’ C X and)’ C Y is the graph(X’ U )', E’)
with {z,y} € E’ifand only if {z,y} € E. A bipartite graph
G = (XY U )Y, E) is said to becompleteif {z,y} € E for all
(z,y) € X x .

Definition 1: Assignmentsb . (-) and®,,(-) of “colors” (or
labels), respectively, to th&’- and )-nodes of the bipartite

Fig. 4. A prefix-free code for the bipartite coloring in Fig. 3(b).

achievable by a variable-length zero-error code if forany0,
there exists large enoughsuch that

1
~ Y PREIex(el)] <Ry +e

graphG = (XY U, E) is called abipartite coloringof G if, for 1“”¥ exr

e . . 1/ 1/,
each color paifi, j), the subgraph induced &y, (i) x ®,"(5) z E: PRy by (y)| <Ry + €.
has at most one edge. o reyn

Observe the one-to-one correspondence between fixed-lengtfithe simplest variable-length coder is obtained by designing a
zero-error codes and bipartite colorings of the gragh. bipartite coloringd v x ¢y, of G", followed by encoding the two
Fig. 3(b) shows the bipartite coloring corresponding to trsets of colors (outputs d@f v and®,,) separately in a prefix-free
encoder pain¢x,¢y) in Fig. 2. Note that the set of valid fashion. The decoder first resolves the corresponding colors by
fixed-length codes, and hence, the set of rates achievableseparately parsing the bitstreams, and then decodes the unique
such codes, are completely captured@®yand do not further edge ofG™ determined by the decoded colors. We refer to this
depend onPxy (G is completely determined by whether orscheme agrefix-free codingFig. 4 shows a prefix-free code
not Pxy (z,y) > 0). We therefore denote the achievable rateorresponding to the bipartite coloring in Fig. 3(b). As in the

region byR%(G).
It is more efficient in terms of expended rates to wsei-

case of fixed-length codes, the set of valid prefix-free codes is
completely determined b¥. The expected rates are functionals

able-lengthcoding, where Alice and Bob, respectively, use thef only the marginals’x and Py-, and do not require any fur-

encoding functions

dx X" — {0,1}*
and
¢y : YY" — {0,1}".

ther information provided by’xy . Hence, the set of achievable
rates is completely determined & P, and Py, and will be
denoted byRP!(G, Py, Py).

More complicated variable-length coding schemes can be
constructed. Let us first consider thastantaneous codes
defined in [24].

Thg encoded bitstream produced by Alice (pr) is t.he concateDefinition 2: The triplet (¢, ¢y ,7) is an instantaneous
nation of the consecutive outputs ¢k (¢y), i.e., Alice and zero-error code if the decodeérreconstructgz?, y7) without

Bob send

bx (a7)px (22 )px (2 yy) -+

and
by (U7 )by (Ur't )by (Yoms) -+ -

respectively. Correspondingly, Merlin’'s decoding functign,

any error by reading only the firpx («7)| and|¢y (y})] bits
from the two encoded bitstreams, respectively.

Note that the decoder does not kngpw (z7)| or |y (y7)]
in advance. It was shown in [25] thdtx, ¢y ,v) is an
instantaneous code if and only if, for every distinct pair
(=T, 97), (21",91") € A" x P"

operates on the two encoded bitstreams and is required to output {1, ¥1'} €E", {z7",1"} € E"

both source sequences without error. A rate P&k, Ry ) is

:>(</>X(37111)7¢Y(y?’))7ép(¢x(xl1n)7</>Y(y/1n))- 2
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0 00 le 00
10 10 10 :\4: 10
0 11 1 :\Q. 11
110 K 01 100 01
111 7\ 1 1000 1

Fig. 5. An instantaneous code which is not prefix free. Itis easy to check tiy. 6. A uniquely decodable code which is not instantaneous.
(2) is indeed satisfied.

ever, one of our main results in this paper is the following the-

Here, (a,b)#,(a’,0"), whena,a’,b andb’ are binary strings, orem.
means that eithes is not a prefix ofa’, or b is not a prefix
of ', or both these conditions are satisfied. We show in Fig. 5 1heorem 1:
an instantaneous code for our running example, whiamots RP(G, Px, Py) = R™Y@, Px, Py)
prefix free (because bothand11 are codewords assigned by = R"(G, Py, Py)
¢y ). Observe that prefix-free codes automatically satisfy (2), def 4]
and therefore, form a subclass of instantaneous codes. Also, the = R"(G, Px, Py) ®)
set of achievable rates is completely determined (cf.(2)}Fby that is, the larger class of uniquely decodable codes offer no
Px, and Py, and will be denoted bR "' (G, Py, Py ). asymptoticadvantage over the simple prefix-free codes.

The most general class of variable-length zero-error corre-

lated source codes is that ofiquely decodable codewhich i . treat orefix-f d th . .
we define below. A uniquely decodable coding scheme whidf reglon, we can treat pretix-iree codes as the entire varl-
Ble-length coding class. After proving this fact, we will de-

is not instantaneous has a high decoding complexity, as the de- . o .
coder may have to buffer the entire pair of bitstreams befopgc an nner bound t&®R*(G, PX’PY) py coq;tructmg actual
starting the decoding process. prefix-free codes for large. The derivation utilizes the concept

of bipartite coversi.e., a generalization of bipartite coloring.

Therefore, for the purpose of characterizing the asymptotic

Definition 3: The triplet(¢x, ¢y, ) is a uniquely decod-
able zero-error code if for anfy > 1, and for every finite se-
quence(zy ",y ") with PR (a1, y1'") > 0

Definition 4: LetC = (Cx,Cy ), whereCx andCy are (pos-
sibly overlapping) collections of subsets &fand)/, respec-
tively. We will call C a bipartite cover of7 if

1/)<¢X($?)¢X($3ﬁr1)-"¢X($%2_n+1)7 1) everyx € X (y € Y) is contained in some € Cx
(t € Cy) and
¢Y(yn)¢y(ygn )---¢Y(vaZ_n )) - (mNmyNn). (3) 2) for everys € Cx andt € Cy, the sets U ¢t induces a
' A Nrmntt ! ' subgraph inG with at most one edg@rom FE).

Fig. 6 shows a uniquely decodable code whichasinstan- ~ Note that each pais, ), with s € Cx andt € Cy, identify
taneous, as the paifs, ¢) and(d, ¢) are, respectively, assigneda unique edge afr. Also, the color classes in any bipartite col-
codewords(10,11) and (100, 1), i.e., (2) is violated. Yet, the oring for G induce a bipartite cover, where color classes play
code is uniquely decodable because ¢he-bitstream can it- the role of subsets iix andCy . The only difference is that the
self be uniquely parsed (as it is a concatenation of codewof#sets i€ x (or Cy-) of a bipartite cover can be overlapping in
1,10, 100, and1000), and oncepx (z) is recovered, the code- general.
words of all possible; form a prefix-free code, thus allowing We will call the bipartite cove€ = (Cx,Cy) anexact bi-
¢y (y) also to be recovered. Then it is easy to recovery}, partite coverif, for every s € Cx andt € Cy, the sets U ¢

becausex and¢y- induce a bipartite coloring of. induces a subgraph i@ with exactly one edgérom E). Note
Since the conditio®yy (22, 4N™) > 0in Definiton 3may that every bipartite grapf¥ = (X' UY, E)) has a bipartite cover:
be recast as TakeCx = {{L} HENS X} andCy = {{y} Ty € y} But
on on . not every bipartite graph has an exact bipartite cover. We shall
{Tkn—nt1,Ykn—ns1} € E", forallk =1,...,N (4) need thisimportant factin the sequel. For example, consider the

the region of achievable rates is a function of o6lyPy, and Z-Shaped” graph
Py, and will be denoted aR"Y(G, Px, Py). G=(XU),E)

From the foregoaing, itis clear that = ({x17a:27y17y2}, {{371-/?/1}7 {117273/1}-/ {372721/2}}) .

RY (@) cRY (@G, Px, Py) The only bipartite cover for this graph & = {{z1}, {z2}}
CRI™Y(G, Py, Py) andCy = {{y1}, {y=2}}, which is not exact.
ud Often of interest is the minimum achievable rate in a re-
gR (G, R\'7 PY) . . . . .
stricted correlated source coding scenario, which is commonly
for all G, Px, and Py-. One might expect each of the aboveeferred to as the “unknown side information problem.” In this
achievability regions to be strictly contained by the next. Howscheme, Bob directly encodes his informatighwithout any
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1) s andt take values iy andCy, respectively.

2) Foreach:, p(s|z) > 0only if z € s. Similarly, p(t|y) >
Oonlyify € t.
We will succinctly represent these conditions by employing the
streamlined notatioX € S € Cx andY € T € Cy.
We will also need random variableX’ and Y’ jointly
a e distributed according toP(z,y) (not necessarily equal to

Pxy(z,y)) on X x ), whereP(z,y) satisfies, for all(z, y):
Fig. 7. The characteristic gragfix for successive coding of the source in p/,. ;
Fig. 3(a). P(z,y) > 0onlyif {z,y} € E, and

Y Pley) = Px(2)

error, expending asymptotic rafé(Y"). Merlin then recovers

y1 and Alice encodes} while treatingy} as the unknown side vey .
information available to Merlin. The following graphical con- Z P(a',y) = Py (y).
struction was introduced by Witsenhausen in [23] to tackle this z'€X

scheme which we cafluccessive encoding§orm the bipartite
graphG = (X U Y, F) and define the grap'’x = (X, Ex)
on the vertex seft’ by connecting distinct: and z’ if there
existsy € Y such that{z,y} € F and{z’,y} € E. See
Fig. 7 for the graphiGx corresponding td@= in Fig. 3(a). The
n-fold AND powerG% = (X", E%) is defined in a manner
analogous to (1): for distinat}, z7* € X™

We will indicate such random variables by writifd(’, Y’} €
E,and X’ ~ Px,Y’' ~ Py. When we consider a random
variableSx with conditional distributiom(sx|z) taking values
sx € T(Gx) such thap(sx|z) > 0only if z € sx, we will
denote it asX € Sx € 7(Gx). A random variablely- with
Y € Ty € T(Gy) is interpreted similarly.
Sometimes we fbxG and consider the class of all marginals
{z},27'} € E% on X and) obtained via joint distributions o’ x ) whose
< eitherz; = @, or {z;,2]} € Ex for 1 <i < n. Characteristic graph i&:. If the distributions(Px, Py) may
] be obtained as marginals of some joint distributiBfw, y)
One can change the rolestfand)’, and define?y = (, Ey)  whose characteristic graphds(i.e., P(z, y) > 0 if and only if

and G% similarly. A valid coloring of Gx is a mapping from z,y} € E), we will say that Py and Py are marginals oG”.
nodes to colors such that no two nodes connected with an edge

are assigned the same color. Now, there is a o_ne-to-one corrﬁé-_ A SYMPTOTIC BOUNDS FORV ARIABLE-L ENGTH CODING
spondence between fixed-length codes that Alice can use an

colorings of grapl@ x . Classes of variable-length codes are de- We begin by proving Theorem 1. Toward this end, we first
fined similarly to the general case. We proved in [17] using @serve using standard time-sharing arguments that the rate
result of Alon and Orlitsky [1] that for the determination of the€gion R (G, Px, Py) achievable by prefix-free codes is
minimum asymptotic rate Alice can achieve, it suffices to focugPnvex. Therefore, its boundary can be characterized by the
on the variable-length codes which simply encode a valid grapRgrangian

coloring in a prefix-free manner. That result, in fact, follows

easily from Theorem 1. L(G, Px, Py, a)
Let us conclude this section by outlining some notations and def min aRx + (1— )R
constructions defined on the grapfis G x, andGy that will (Rx,Ry)ERPI(G,Px,Py) X Y

be needed in the sequel. ) ) _

Let F = (Vr, Er) be an arbitrary graph with no loops orevaluate_d for alb < a< L M_otlvated by_thls Lagrangian
multiple edges. Two vertices are connectedin-the comple- formulation, we define théipartite chromatic entropyf G,
by the vertex el C Vj is said to beompletef {v,v'} € Ep We then use this functional for a product-space characterization
for every distinct paiw, v’ € Up. A complete subgraph is also®f L(G, Px, Py, a).
said to bemaximalif itis notinduced in any other complete sub-  pefinition 5: The bipartite chromatic entropy @f is given
graphinF'. Denote by7 (F) the collection of all maximal com- |,
plete subgraphs af. Note that the corresponding collection of
all maximal complete subgraphs kit i;_then-fold Cartesian_ H, (G, Px, Py,a)
power7 (F)". (See [3, Ch. 16, Proposition 8] for a proof of this do
fact.) Thus, denoting by(F) the size of the largest maximal = Juin {GH(‘I’X(X)) +(1- a)H(‘I’Y(Y))} (6)
complete subgraph df, we have that(F") = w(F)". Also e
denote by () the minimum number of colors needed in a valigyhere the minimization is with respect to all bipartite colorings
coloring of F'. It immediately follows thaj(F) > w(F). (x,®y) of G.

Given a bipartite cove€ = (Cx,Cy) of G, we will often .
define the random variablésandT via the collections of con- ~ Lemma 1.

ditional probability distributiong(s|z) andp(t|y) of the fol- |
lowing form. L(G, Px, Py,a) = lim —H(G", Py, Py, a).  (7)

n—oo n
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Proof: The limitin (7) exists, since the chromatic entropylaking the limitn. — oo in (11), we obtain
H,(G", P}, P¢, «) is subadditive with respect to, i.e.,
L(G,R\’,PY,O{)

H, (Gntm pptm pntm o
X( »E X 4 Y ’ ) < mi

n aRx + (1 —a)Ry .
SHX(Gn7P)Té7P}7’I'7O‘)+HX<Gm7Pj\r'l7PT’n7a>- (8) - (RXvRY)GR“d(G:PX:PY){ X ( ) Y}

To see this, Iet(<1>g?),<1>§?)) and (<I>({7‘).<I>§i”)) be the bipar- Thg pr_oqf is _completed by observing the reversed inequality,
tite colorings of G™ and G™, achieVingHX(G",P§7P¢7a) which is implied by the fact that

ar2d+H>§(Gm,PgP,P{ZL,a)(, :Les)pectively. Define the functions Rpf(G./ Px,Py) C Rud(G-/PX’P}/). 0
L™ on X"t ™ and®y " on Y t™, by

n+m); n4m n) m); n+m Corollary 1:
Y (a1t = (@ P (w1), 8¢ (27 11) y
O™ () = (@ (1), T (yp 1) L(G, Px, Py, @)
Then (8) holds sinced ™™, &{""™)) is a bipartite coloring = (RX7RY)€1£H1(G7PX7PY) {O‘RX +(1- O‘)RY}

of G"*™ achieving the right-hand side of (8). ) ) o )
Now, since every prefix-free code is obtained by combiningf- (7) is & product-space characterization for the entire class
a bipartite coloring with separate prefix-free codinglofand Of variable-length codes.

Y-colors, it is clear that Although the characterization (7) is complete, it is not
computable in general. As mentioned earlier, the task of Alice
lHX(G",Pf\E,P{i,a) + 1 >L(G, Px, Py, ) and I_30b _is to inform Merlin, without error, _of the edges
n n occuring inG™. By (1), an edge occurs ™ if and only
ZlHX(G"7P§7P¢7a) if edges inG occur in all the corresponding: successive
n coordinates. Roughly speaking, the inability to construct
for anyn > 1. The result follows by lettings — oo. 0 codes which optimally exploit this interdependence between

) i the coordinates is the crux of the difficulty in evaluating the
Proof (Theorem 1) Qon3|der a uniquely decodat.)le.cod%chievame rate regioR"!(G, Px, Py). A natural approach
(¢x, ¢y, ¢), operating with block length > 1, and achieving 5 hoynding this region, which sidesteps consideration of the
(Rx, Ry). SetN = 1. It follows from (3) and (4) that interdependence, is to require Merlin to recover every edge in
n n n g in . In n G without error even when such edges occuany of the n
{ol o1t € B o "} € B successive coordinates. In Sections 111-B—I11-D, we will present
= (¢x(27), v (47)) # (dx(21"). ¢y (11"))  a step-by-step development of theactachievable rate region

. . C for this stronger requirement, thus obtaining the inner bound
since otherwise the decodg¢rcannot distinguisfz?, 7} and g q 9

{7, y{"}. This, in turn, implies thap x x ¢y induces a bipar- R™(@, Px, Py) C R'NG, Px, Py).

tite coloring, or in other wordspx and ¢y are “one-to-one”

codes for theY- and theY-colors, respectively, in a bipartite Recall that the Slepian—Wolf result [22] is a single-letter

coloring of G. Therefore, using Alon and Orlitsky’s result oncharacterization of the entire region of achievable rates for

one-to-one codes [2], we can write the weaker requirement of vanishingly small probability of
LT error (instead of zero error). In Section IlI-E, we exploit that

Ry > — |H(¢x(X7)) —log (H(dx(X]))+1) —log e} (9) characterization to obtain the outer bound
n
ROUt(G7P)(7 PY) 2 RVI(G7P)(7 PY)-

and similarly
LT We will demonstrate in Section IlI-F that these bounds can be
Ry > —|H(¢y (Y{"))—log (H(¢y (Y{"))+1) —log e} (10) tight at certain rates, and that successive encoding followed by
ni time sharing can be a suboptimal zero-error coding strategy, in

Combining (9), (10), and (6) with the trivial observation thagontrast with the Slepian—-Wolf setup.
H(¢px(XT)) < nlog|X|and H(¢y (Y7")) < nlog|Y|, we

obtain A. A Generalized Multiterminal Rate-Distortion Problem

. Let Z be a finite set, and: X x Y x Z — [0,00) be a
aRx + (1 —a)Ry > —H,(G", P, P}, a) —r(n) (11) single-letter distortion measure. Extend the definition/ab
n vectors by setting, far™ € X",y € Y, andz" € Z»
forall0 < o < 1, where

no,n _ny _ 1 -
T( )dﬁfl d(l’ Y 2 )_ Ezld(xhyllzt) (12)

n)=_ alog (nlog|X| +1)

Let P(z,y) be an arbitrary distribution oA x ) with

+(1 - a)log (nlog| Y] +1) + loge|. P(z,y)>0,  forall(z,y) € X x ¥
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and such that the corresponding marginals Bke and Py,

respectively. Let the independent and identically distributed

(i.i.d.) random variables(X;,Y7),(X2,Y3),..., be drawn

from P(z,y). We are interested in the rate region for sep-

arate encoding ofX;, X,,... and Y7,Y5,... such that a
joint decoder can estimate every realizatioN;,Y;) with
zero distortion. More precisely, for the triplétx, ¢y, ¥)
with ¢x : &A™ — {0,1}*, ¢y : Y* — {0,1}*, and

o : {0,1}* x {0,1}* — Z™, where the codewords assigned

by ¢x (and¢y) do not prefix each other, we require

(@, y1', Y(dx (21), dy (31))) = 0 (13)

for every finite sequencéz?,y}). We denote the region
of achievable rate pairs aR,(Px,Py), since the set of
(¢x, Py, ) satisfying (13) is fully captured byl, and the
achieved expected rates

1 n n n
= Z Py (27)|¢x (27
zrexn
and
1 n n n
" Z Py (y1)ley (u1)]
yizeyn

are functionals of only the respective marginBls and Py-. In
other words, there is no further dependence’gn, y).

Special cases of this multiterminal scenario were introducéd-
earlier. For example, the multiterminal rate-distortion problem 1

of [5] corresponds t&2 = X x Y with d(z,y,z) = 0 if and

only if dy(z,%) = 0 anddx(y, y) = 0. Another special case is

introduced in [6] where agaif = X x ), andd(z,y,z) = 0
if and only if z = # anddx(y,9) = 0. Note that the condi-
tion (13) of exact reproduction faevery (z7,y7) is stronger
than requiring exact reproduction only for thdsé, ') which
are contained in some high-probability subsetAgf x Y™.

The latter requirement leads to the multiterminal rate-distortion such that for evervs > there is a subsate of
problem of [5], which remains unresolved at present. On tﬁél(e) yr = mo(€) =
[

other hand, we derive below an exact single-letter charact
zation of R4( Py, Py) by showing that a relatively simple en-*
coding strategy is already optimal for the stricter condition (1

Theorem 2:(Rx, Ry) € Rq4(Px, Py) if and only if there
exist: i) random variables, T", and( jointly distributed withX

andY asp(z,y,q,0,7) = p(q)p(olz, )p(v|y, ¢) Px (z) Py (y)
such that

Ry > I(X;%|Q) and Ry > I(YV;T|Q)  (14)
and ii) functionsz, (o, v) taking values inZ such that
Zp > Px(x)Py(y)

T,Y,0,Y

plolz, )p(V1y, )d(z,y, z4(0,7)) = 0. (15)
Remarks:

1) The sum in (15) consists of nonnegative terms, Whlchn

must therefore all vanish. Sindex (z)Py(y) > 0 for
every pair(z, y), we obtain that (15) requires

=0, Vr,y,0,7

(16)

plolz, q)p(vly, @)d(z, y, z4(0,7))

for everyq such thap(q) > 0.
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2) R4(Px, Py) is convex, with@ playing the role of
the time-sharing random variable. It is known from
Carathéodory’s theorem [7, Theorem 14.3.4] that any
point in the convex closure of a connected compact set in
a k-dimensional Euclidean space can be represented as a
convex combination of + 1 or fewer points in the same
set. Therefore, for the computation Bf;(Px, Py), we
may assume tha takes values if1, 2,3}.

Proof:
Direct: Let the distributionsp(o|z),

z(o,~y) satisfying

Z Px(z)Py(y

x,Y,0,Y
be given. We will construct a sequence of prefix-free codes
satisfying (13) whose corresponding rate pairs converge to
(I(X;X),1(Y;T)). The forward part of the theorem will then
follow from standard time-sharing arguments.

We will denote by Pxs and Py the joint distributions
of X and X, and of Y and T, respectively, and byPs (o)
and Pr(v) the marginal distribution$ " Px(z)p(o|z) and
>, Pr(y)p(vly), respectively. Fixe > 0. Following the
notatlon of [8], we denote b)T” the set of sequences
z} € X" such thatV (a|z7), the number of occurences @fin
satisfies

N(alzy)

and noa € Xwith Px(a) = 0 occurs inz}

p(v]y), and function

p(alz)p(vly)d(w,y, 2(0,7)) =0 (17)

— Px(a)| < eforeverya € X
(18)

and call its membergPx, ¢)-typical sequences. These may be
simply referred to as-typical sequences when the underlying
distribution is clear from the context. Other typical sets and se-
guences in the subsequent are similarly defined.

By the type-covering lemma [8, Lemma 2.4.1], there exists

Pelajx, with the following property: associated with every
T € T[ is acl € Cx such that(yz:1 o) € Tipy o
|m|IarIy, there exists a subséf of T; [P Jaly wh|ch satisfies
he corresponding property with respec y]( Further, the
cardinalities of’s; andCr are not more than
onI(X;2)4né(e)  gng onI(YiD)+né(e)

respectively (wheré(e) — 0 ase — 0).

The encoding strategy is simpledf € T[" g , Alice sends
the index ofo? € Cy such that(z7,07) € T7p . This
step requires a rate of no more thapX;X) + 6( ) bits. If
¢ TP .’ she directly encodes it, expending no more than
log |X|+ 2 bits. Bob S|m|larly handleg} . Now, for anye > 0,
the probabllltythajz:" ¢ 1T, [P 1. (correspondinglyy? 9ZT Pyl )
approache$ asn — oo, and it is easy to see that the rates
(I(X; %), I(Y;T)) are then achieved.

Let us now turn to the decoder. Whery € 77 , and

yi € Tip,. Merlin receives the indexes of! and~7}', and

reproduces
(o7 1) E (201, m); - 200, ) -

But («%,07) and (y7',~7") are 2e-typical. This implies, from

the definition of typicality, thatPx(x;)p(o;|z;) > 0 and
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Py (y;)p(vily:) > 0foralli = 1,...,n. It follows from (17) The treatment in the previous section can be directly applied
that to this problem upon defining the distortion measdfe A" x
4 2 (A = = 3 d i, 2(oi7) = 0 by |
n = Ay (.1, 2) = { 1, if f(z,y) defined, andf(z,y) # =z
for z} € Tip. andy} € Tp, ot Next, supposet ¢ T/p 7 0, else

andyy € Tjp , - Then, accordlng to the encoding strategy outnd extending this definition to vectofs?, v}, 2}*) as in (12).

lined above a,l is directly conveyed to Merlin. On knowing Therefore, the achievable rate region is given by

x} he choosesny o} such thatPx (z;)p(o;|z;) > 0 for all le

i =1,...,n, and reproduces™ (o7, v1). Again, (17) implies Ry(Px. Py) € Rdf (Px, Py).

thatd (z7,y7, 2" (o7,~%)) = 0. The other cases are handledVe will now provide a more intuitive reformulation of the char-

similarly. Thus, condition (13) is satisfied. acterization ofR s (Px, Py ), which brings out its dependence
Converselet(¢x, ¢y, 1) be any prefix-free code satisfyingon f explicitly.

(13) for somen > 1. Let (Rx, Ry) be the corresponding rate Definition 6: Letcf_(cf Cf) wherecf andcf are col-

pair. Define new random variablés = ¢x(X{) andl' = lections of subsets ot and), respectwelycf is an f-cover
oy (Y7"). Then

of ¥ x Yif
Ry > H(X) I(Xl’ > Z[ X;; %) 1) everyx € X (y € Y) is contained in some € ij(
n (t € ¢)and
and similarly forRy-. Now 2) associated with every € C4 and¢ e ¢/, is a unique
PriX; ==Y, =y, Y =0,1'=1] value z,; such thatf(z,y) = z for all pairs(z,y) €
=P(z,y) Pr[2 = 0| X; = 2] Pr[l’ = 4]Y; = y]. s x t for which f(z,y) is defined.
Since P(x,y) > 0 for all (z,y) € X x ¥, and(¢x,¢y,%)  Theorem 3:Let R’ be the closure of the set of rate pairs
satisfies (13), we have (Rx, Ry), where
d(‘T? Y, 'l/}i(ov 7)) =0 o RX > I(Xa S|Q) (19)
whenevePr[X = o|X; = ] Pr[Flz v]Y; = y] > 0. Defining Ry >1(Y;T|Q) (20)
the random variabl€) by p(q) = - forq € {1,2,...,n}, and ) L
setting for some choice of the joint distribution
p(z|q) = Px(z) p(a)p(slz, @)p(tly, @) Px (z) Py (y)
p(o|z,q) = Pr[¥ = 0| X, = 1] which satis;ies tr}e following conditions. For each vatpe- g,
p(ylq) = Py (y) I;t C{ |: (C)X’WCOY’(I)lbgfanf—cover gff/’\,’ X ?; Fo; (levera/a: €
Pril Y — .,psx,q > Onyla:Es'G .X’..p Y,q) IS chosen
. Pl a) = Pri 1l Y] similarly. (We may assume thét is dlstr?buted ovef1,2,3}.)
we obtain . ThenR! = Rf(P\ Py)
I(X;%)Q) = 1 ZI(X’“ %) < Ry Proof: For eachy, LetC/ = (Cf C{, ) be anf-cover,
n B and let(p(s|z, q), p(tly, q)) be a pair of distributions such that
1(V;T|Q) —12 I(YiiT) < Ry plsir.q) >0 =z €seCx,
ni3 and
,(Also by s)ettmg z4(o,v) = y(o,7v), we have for any ptly,q) >0=yete C{,’q.
r,Y,0,7,4
Then (I(X; S Y;T € R'. For any pair(s,t) €
plolz, q)p(Vly, 9)d(z,y, 2(a,7)) = 0 ol X( C(f SIéQt) 13 T1Q)) Y pair(s, )
and, therefore, (16), or equivalently (15), follows. o
f(z,y), if f(x,y) is defined
B. Coding for Remote Computing (s,t) = for some (z,y) € s x t
Let P(x,y) be an arbitrary distribution ot x ) with undefined  else.

P(z,y) > 0forall (z,y) € X x ), and such that the since, by definition of arf-cover, f(z, y) takes a unique value
corresponding marginals are’y and Py respectively. for every(z,y) € s x t for which it is defined,z, is a well-

Let the iid. random variable$X;,Y1),(X2,Y2)...., be defined (partial) function. Further, for arfy, v, s, t, q)
drawn from P(z,y). Suppose that instead of the |nd|V|duaI

values of (X1,Y1), (X2, Y2),..., Merlin wishes to evaluate p(slz, p(tly,q) > 0= (z,y) € s x ¢
(X1, Y1), f(X2,Y2),..., wheref X xY — Zisan = ds(z,y,24(s,t)) =0

arbitrary partial functlon (Thus, we alloy to be undefined
for some argumentéz, y).) We require that Merlin evaluate
f(z,y) correctly for every realizatiofiz,y) € X x ) where

f is defined, but we do not care about Merlin’s reconstructio
when f is not defined. (I(X;S81Q), I(Y;T1Q)) € Ra, (Px, Py) = Rs(Px, Py).

by the definition ofds. Thus,p(s|z, q), p(tly, q), andz,(s,t)
playing the roles op(o|x, q), p(v]y, ¢), andz,(o, ), respec-
t|ver, (16) is satisfied. Thus,
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Conversely, lep(c|z, q), p(v|y, ¢), andz, (o, ) satisfy (16), forall (z,y)€ X x Y. Theorem 3 then provides a characteriza-

so that(1(X; X|Q),I(Y;IQ)) € Rf(Px, Py). Also, let tion for the regionR.(Px, Py). Note that, for the functiom,
def e-covers ofX x ) are the same as bipartite covergf
Xy(o) = {z : p(o]z,q) > 0} Thus, we have proved that
def
Vi) = 1y 20y, ) > 0} R™(G, Px, Py) «f Re(Px,Py) C RN G, Px,Py). (25)
Then

ds(z,y, 2g(0,7)) = 0, for all (z,y) € Xy(c) x Vy(7). D. A Single-Letter Outer Bound f® (G, Px, Py)
(21) The result of Slepian and Wolf [22] will be relevant to us

Observe that for all pairéz,y) € X,(0) x Vy(v), f(z,y) ei- here, so we begin by briefly summarizing it. Let, B) be a
ther assumes a constant value whenever defined, or is not pigi of finite random variables distributed ovérx B according
fined at all. (Otherwise, it is impossible to satisfy (21) with ao P(a,b). Fixe > 0. There exists a codg 4, /5, g), with f4 :
uniquez,(o,v).) Thus, it X, (o) = X,(c’) then for ally, either . A™ — {0,1}*, fg : B® — {0,1}*,andg : {0,1}*x{0,1}* —
2q(0,77) = z4(0’,7), or bothz,(o,v) andz,(c’,v) can be left A" x B", of rates

undefined. Similarly whed), () = Y, (v).

1
Now merge alb- with identicalX,, (o) and ally with identical Ra=— > Pr(at, b)) falal)]
y}(y). Setp(s|z,q) = p(o|z,q), wheres = X,(o0), and let 1
C%, be the collection of set&, (o). Similarly, define sets, Rp = > Pt b} fe(bD)]

istributi iorc/
distributionsp(t|y, q), a_nd the collectiorCy. . We have then such that
proved tha(Cf(_q,C{,q) is an f-cover, and

(I(X;21Q), 1(Y;I|Q)) € R'. o Pri{ef o) e An x B

g(falal), fB(bY)) = (af,bY)}| > 1 —€ (26)
C. A Single-Letter Inner Bound f®"!(G, Px, Py) A IE b

Define the partial functior : X x Y — E by if and only if
e(:v, y) — {:177 y}_7 if {$7 y} EL (22) RA Z H(A|B)
undefined else. Rp >H(B|A)
Then{z,y} and{z’,y'} are distinct edges i if and only if Rs+ Rp >H(A,B).

e(z,y) ande(z’,y') are both defined, andx, y) # e(a’,y’). . _
Thus, forn = 1, there exists a one-to-one correspondence b§ Consider any prefix-free zero-error cofx, 4y, ¢) for G.

= . . _ / / .
tween zero-error prefix-free codes f@rand prefix-free codes uch a code satisfies (26) fod, B) = (X, Y"), with
which gnable Merlin to compute the functier(in the sense of (fa, fB.9) = (bx, by, 1)
(13) withd = d..) Forn > 1, on the other hand, the triplet I
(¢x. ¢y, 1) constitutes a valid zero-error code f6ronly if, ~forany distribution”(z, y) suchtha{ X', Y’} € E, X' ~ Px,
for distinct («7, y}) and(z7, /") andY’ ~ Py.Thus, if(Rx, Ry) € R"(G, Px, Py), then
s T i - > LY.
{zi,y;} €E and{z;,y;} € E forall 1 S/L <n , Rx + Ry > o e S vy HX"Y". (27)
= P(ox(21), by (47)) # Y(dx (21"), dyv (41"))- (23)
However, for a valid codd¢x, ¢y, 1) which evaluates the . "
function e, if e(x;,y;) and e(z/,y!) are both defined and px(21) # dx(27")
e(zi,yi) # ez, y;) for somel < i < n, then for every distinctz?, 27" € X" such that{z}, 27"} € E%.

P(px (1), by () # P (@), by (")) More generally

In other words(¢x, ¢y, ) satisfies the necessary condition ox (27) # dx(27")

Next, note that

{z;,y:} €B, {2}, 9!} € E, and(z;, ;) # (2}, ) if 27,27" € s% for somes% € T(Gx)", so that any} €
X™ can be recovered without error from knowledge of the pair
(px(x), s%)withz} € s% € T(Gx)™. Thus,if(A, B)is any
n n m m

:>1/}(¢X(11)7 ¢Y(Z'J1 )) # T/’(‘f’X(ﬂﬁ )7 ‘f’Y(yl )) (24) random paiI(X, Sx) such thatY € Sy € ’T(GX), thenf, =
But (24) is a stricter requirement than (23). Thus, we hayex . together withfp conveyingSx directly in a point-to-point
that every codd ¢y, ¢y, 1) satisfying (13) withd = d. is lossless encoding sense, constitute a valid encoder pair satis-
also a zero-error code fof. Since the rate region for theYing (26). This shows that ifRx, Ry) € R(G, Px, Py),
codes satisfying (13) depends only on the margingls then
and Py, we may assume for computation purposes that )
Pxy (z,y) = Px(z)Py(y), thus guaranteein@xy (z,y) > 0 Rx 2 Xes}j?}(((;x) H(X]Sx). (28)

for some 1 <i<n
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1/6 71 @ Y1 1/3
1/3 o/: v2  1/6
1/6 3 @ ys  1/3
1/3 24 /: ya  1/6

Fig. 8.
are marked next to the corresponding node labels.

Ry

log3+ 1

Rx

Fig. 9. R°" (G, Px, Py) andR™(G, Px, Py ) for (G, Px, Py') in Fig. 8.
Rew(G, Py, Py) = Ry U Ry URs, andR, URs C Rin(G, Px, Py).

Similarly

Ry > max

> H(Y|Ty).
YeTy €T (Gy)

(29)
We have thus derived an outer bound

R°(G, Px, Py) 2 R™(G, Px, Py)
in (27)-(29).

E. Computation of the Bounds for an Example
Let us calculateR°™(G, Px, Py) and R®(G, Px, Py)

for a particular example, shown in Fig. 8. Consider first

R (G, Px, Py). Clearly

max
{X"Y'}ER,X'~Px,Y ~Py

H(X',Y') =1log6

(G, Px, Py) for the example of Section IlI-F. Marginal probabilities
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By symmetry

max

H(Y|Ty) =log3 —2/3
YEeTy €T (Gy) (YTy) = log /

as well. Thus,
2
ROUt(G,Px,Py) = {(Rx,Ry) : RX Z 10g3 — g,

2
Ry >log3 — §7RX + Ry > logG}
(30)

i.e., itis the r_egiorRl U R UR3inFig. 9.
Now for R™(G, Px, Py ). Note thatC = (Cx,Cy ), where

CX = {{1171./1173}, {$2}7 {14}}

and
Cy = {{y1, v}, {y2,y3}}

is a bipartite cover of7. Choose, forr € X andy € Y, the
distributionsp(s|z) = 1if = € s, andp(tly) = 1 if y € ¢, over
s € Cx andt € Cy, respectively. (This makes sense, since each
z (y) belongs to a unique € Cx (t € Cy).) This shows that

(I(X;8),I(Y;T)) = (log3,1) € R™(G, Px, Py).

By symmetry,(1,log 3) € R®(G, Px, Py) as well.

Consider, next, the “corner” points &%(G, Py, Py ). Alice
directly encodesX, incurring the rate (X) = 1/3 + log3.
Since Merlin can decod& without any error, Bob only needs
to distinguish betweep; andys, and betweems andy,. Bob
can do this by assigning the same codeworg;tandys, and
12 andy,, and this entails a rate of

~(1/6 + 1/6) log(1/6 + 1/6)
—(1/3+1/3)log(1/3 + 1/3) = log 3 — 2/3.
Thus,(log 3+1/3,1og 3—2/3) € R™™(G, Px, Py). The achiev-

ability of this point can also be seen by choosing

C= ({{371}7 {132}, {x?)}v {$4}} ) {{ylvy3}7 {y27y4}})

and setting(s|z) = 1if z € s, andp(t|y) = 1if y € ¢.
By time-sharing the above points, we see thak, Ry) €
R™(G, Px, Py) if it can be expressed in the form
a(l,log3) + (1 — a)(log3,1)
or a(log3,1) 4+ (1 — a)(log 3+ 1/3,1log 3 — 2/3)
ora(log3 —2/3,log3+1/3) + (1 — a)(1,log 3)

for some0 < a < 1. Thus,R; U R3 C R™(G, Px, Py) in

Fig. 9.
Let us point out a couple of noteworthy features of the bounds

with the maximum being achieved by the distribution which A% iculated above

signs probabilityl /6 to each edge. We also obtain

max

H(X|Sx) =1log3—2/3
XeSxeT(Gx) (X5x) = log /

by settingP(sx|z) = 1 for

T € sx € T(GX) = {{x17x2},{$3,x4}} .

1) R™"(G, Py, Py) and R°"(G, Py, Py) coincidein the
rangel < Rx <log 3,1 < Ry <log3. Thus, the bounds
yield a tight characterization ®"'(G, Px, Py-) in this
range. Also, the corner points

(log3—2/3,log3+1/3) and (log3+1/3,log3—-2/3)
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are on the boundary ®!(G, Px, Py). The characteri- It immediately follows that

zation of R¥Y(@G, Px, Py') in the remaining ranges .
(@ Px, Py) grang R2(G, Py, Py) > R(G, Px, Py) > RY(G, Px, Py).

log3—2/3<Rx <1 and log3< Rx <log3+1/3 (35)
_ A similar argument as the above for bipartite colorings can
continues to be unknown. be repeated for bipartite covers. Specifically(Gfy,Cy ) is a

2) The rate region achievable by time-sharing the cornBiPartite cover ofG;, thenCy is also a covering oty with
points sets from7 (G x ). Note that7 (G x ) is a collection of maximal

subgraphs of+x which do not contain any edges. Conversely,
(log 3—2/3,1og3+1/3) and (log3+1/3,log3—2/3) any covering of7x with members off (G'x) can be combined
with the identity coverindZy- to form a bipartite cover ofy.

i.e., the region R,, is strictly contained in Therefore, the discussion in Section IlI-D implies
R™(G, Px, Py). Thus, successive encoding combined

with time sharing is not an optimal encoding strategy for RY(G, Px, Py) = R{(Gx, Px)
this example (except for the trivial cases corresponding = min _ I(X;Sx). (36)
to no time sharing.) This may be contrasted with the XeSxeT(Gx)

results of Slepian and Wolf [22], which show thatThe right-hand side of (36) was defined by Kérner [12] as the
successive encoding combined with time sharing yieldgaph entropydenotedd (G x, Px ), and was already shown to
all points on the achievable rate region for any correlategk an upper bound 8% (Gx, Px) in [1]. It was also shown in
source when the zero-error constraint is relaxed {@]that graph entropy characterizes theactminimum achiev-
requiring a vanishingly small probability of error. able rate in a constrained variable-length coding scheme for the
unknown side information problem.
F. Implications on the Unknown Side Information Problem Finally, the results of Section IlI-E imply that

Define N N
RA\'t(G7PA\'7PY) :Rl\'t(c;t\'7 PX)
def

RY(G, Py, Py )= i R 31 = H(X|Sy 37
x(G, Px, Py) (Rx,Ry)GI7r21‘1'1n(G,PX,Py) X (31) Xesglea}((ax) (X]8x) @7

which indicates the minimum rate achieved by successive evhich was obtained as a lower boundRg! (G x, Px) in [17,

coding. It follows from Corollary 1, (6), and (7) that Lemma 3]. The maximization in (37) was defined in [1] as the
y clique entropyof the graphG x. SinceH (X |Sx) = H(X) —
RY(G, Px, Py) = L(G, Fl’)m Py,1) I(X;Sx), (37) can alternatively be written as
= fim 2 pmip H(@x(X™) R$'(Gx, Px) = H(X) - H(Gx, Px).  (38)

where the minimization above is over all bipartite colorings of From (35), (36), and (38), it follows that

G". Here, a key observation is that(i® v, ?y-) is a bipartite H(Gx, Px) > H(X) — H(Gx, Px). (39)
coloring of G", then®x is also a coloring o, as no pair T T

of X-nodes in a color clas®y'(i) can be connected to theNow, let us fix the grapl@ x, and allow the distributiody to
same)-node inG™, and hence to each otherdi.. Conversely, vary. In [14], Kérner and Longo initiated the study of the fol-

if ®x is a coloring of G’ then(®x, YTy ), where the identity lowing questions. They were motivated by a different, appar-
coloring Yy assigns a different color to eagli, is a bipartite ently unrelated, two-step source-coding problem, but the rele-
coloring of G™. Therefore, vance of the questions to the successive encoding problem is

i I clear.
RX(G, Px, Py) = RX(Gx, Px) y .
1) What condition o7 x guarantees that there exists a non-

R S n
= lim — min H(®x(X")) (32 vanishing distributionPy on the vertex set ofix (i.e.,
Px(z) > 0forall z € X) such that equality is achieved
where the minimization is over all colorings &% . Note in (39)?

that we emphasize in (32) the fact that the dependence of . o
RY(G, Px, Py) on G is fully captured byGy, and further, 2) What condition oty x guarantees equality in (39) fatfl

it does not depend oy at all. In [1], the minimum of distributions ont'?

(32) was defined as the chromatic entropy @%, denoted sybsequentinvestigations revealed a surprisingly deep interplay
H\(G%, Py), and (32) was proven for prefix-free codes. Th@etween purely combinatorial properties@f; and the infor-
result was later generalized to the whole variable-length codifghtion-theoretic question of equality in (39). The answer to
class in [17, Lemma 2]. Question 1 is affirmative if and only iy is anormal graph
Let us also define [15]. On the other hand, Question 2 has an affirmative answer
in ) def if and only if Gx is perfect[9]. The graphG x is normal if its
Rx(G, Px, Py) = Bx (33)  yertex set can be covered by a collection of sets ffof@ x ) as
out def . well as a collection fron¥ (G'x ), such that any pair of sets, one
RGPy, Py) = (R Ry )eR (G Py Py Fx- (34 fomeach collection, share a common vertex [14]: is said to

min
(Rx,Ry)ER™(G,Px,Py)
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be perfect if for every subgrapty of Gx, x(G%) = w(G’) and

is satisfied [3, Ch. 16]. Having its origins in information theory,

the important class of perfect graphs attracted many researchers {(p(s|a:),p(t|y)) :XeSelx,YeTe CY}
mainly due to Berge’s long-standirstrong perfect graph con-

jecture[4]. It follows from the answers to Questions 1 and 2 thaire compact, and the functiond(X’,Y’) and I(X;S) +
all perfect graphs are normal. This fact was also directly provg(iy’; T') are continuous in their respective argumeR{s:, )
in [13]. and (p(s|z), p(ty))- .

In the next section, in search for answers to information-the-The fact thatR°“(G, Px, Py) 2 R™(G, Px, Py ) trivially
oretic questions similar to the above regarding bipartite grapinsplies thatRi? (G, Px, Py) > R$*(G, Px, Py), and hence
and zero-error correlated source coding, we will derive pureflyat
combinatorial conditions of¥, thus extending the results of [9], . .

min min I(X;9)+ I(Y;T)
[15]. C XeSeCx,YeTeCy

Another interesting result regarding the bounds for the > max
unknown side information problem was shown in [1]: T {X'Y'}€EX'~Px ,Y/~Py
R¥(Gx, Px) can be significantly larger thaR3* (Gx, Px).  However, if we ignore the “coding interpretation,” then the va-
Namely, there are graplsx with arbitrarily large number of |igity of inequality (44) is not obvious. In the following lemma,
nodes, such that we give a direct proof of (44) without recourse to the coding in-
terpretation?i? (G, Px, Py) > R$“ (G, Px, Py). The lemma
also yields conditions for equality in (44), which we will later
use to demonstrate the fact that the combinatorial structute of
alone provides extensive information about the coincidence of
Rin(G, R\', Py) andR"“t(G, Px, Py).

Lemma 2: Let G, Px, andPy be given. LeC = (Cx,Cy)
IV. TIGHTNESS OF THEASYMPTOTIC BOUNDS be a bipartite cover af/, and random variableX, Y, S, andT’

In this section, we d(_arive conditions for the coincidence &e jointly distributed according to
ROUt<G7 Px, PY) _andRm(Gv Px, PY) based on purely com- PXYST(737 Y,S, t) = p(8|$)p(t|y)P($7 f‘/) (45)
binatorial properties ofy.

Let Ri?(Gy, Py') and RY"(Gy, Py) be defined similarly whereX € S € Cx,Y € T € Gy, {X.Y} € E, X ~ Px,
to R2(Gx, Px) and R (Gx, Px) of (33) and (34), respec- andY" ~ Py. Then

tively. Also define I(X;8)+ I[(Y;T) > H(X,Y). (46)

H(X'Y'). (44)

1 . .
RY"(Gx, Px) < S BR(Gx, Px) + o(BR (Gx, Px))-
This result implies that there are bipartite grajghsvhere the

gap betweerR°" (G, Py, Py) and R™(G, Px, Py) is arbi-
trarily large.

def

RX(G, Px,Py)= min Rx + Ry (40) Equality holds if and only if the distributions are such that
(Rx,Ry)ER"(G,Px,Py)
and > plsla)p(tly) P(x,y)
def rEs,yet
R$™(G, Px, Py)= min Rx + Ry (41)
' (I eRe (@i = { ZP(8|$)PX(=’U)} { Zp(ﬂy)my)} (47)
res y€et

as the minimum total rates in R™(G,Px,Py) and
ROU(G, Px, Py), respectively. From (19), (20), (27),forall s € Cx,t € Cy. Thus, equality holds in (44) if and only
(28), and (29), we obtain if there exists a bipartite cov€rand a joint distributiorPxy s
. ] ) as in (45) satisfying (47).
Ry (G, Px, Py) T xesec Y erecy I(X:8) + I(Y:T) Proof: For afixed(s,t), P(x,y) > 0 for at most one pair
' (42) (z,y) € s x t, since any pai(s, t) induces at most one edge
in G. Thus, whenevePsr(s,t) > 0, Pxy|sr(w,yls,t) takes

R$M(G, Pvai’)ZIHaX{ H(X".Y’), only the values) and1, andH (X, Y|S,T) = 0. Further

{X’,Y’}GE,H)l(z’lfPX,Y’NPy
Pstixy (s, t|z,y) = p(s|z)p(ty)
which implies
H(S,T\X,Y)=H(S|X)+ H(T|Y).

Rgélt(GX-/ PX)+R§)/Ut(Gy./ Py)} .
(43)

where the outer minimization in (42) is over the bipartite covers _ o
of G.. Note that both the maximum of (43) and the minimum d¢'sing these relations and the trivial inequalify S) + H (7") >
(42) exist, since the respective constraint sets H(S,T), we have

{Plan: Pl =01t (o) ¢ .

H(S,T) — H(S,T|X,Y)
S Plaaf) = Pxla). 3 PG0) = Prio) | -

)— H(X,Y|S,T)
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and (46) is proved. Equality is achieved if and only#fS) + Pxysr(z,y, s,t). The claim follows from Lemma 2 once we
H(T) = H(S,T), and the obvious necessary and sufficienterify that, for all (z, y, s, t)
condition is statistical independence

PX)’ST($7y737t) :P(l/y)p(8|1})p(t|y) (51)

Pst(s,t) = Ps(s)Pr(t) for all (s,t) € C P(z,y) >0onlyif {z,y} € E (52)

which is, in fact, the condition specified in (47). O p(s|z),p(tly) >0onlyifz €s, yet (53)
Theorem 4 below investigates a question analogous to Ques- Psr(s,t) = Ps(s)Pr(t). (54)

tion 1 of Section llI-F. Namely, it states necessary and SUﬁiCieEbuations (52) and (54) follow easily from (50) and (49), re-
conditions on whether or not there exist nonvanishing margi”%‘ﬁectively. Now, using (54) and (50), we get

(i.e., Px(z) > 0, Py (y) > 0 for all (,y)) onG such that (44)
is satisfied with equality. Building on the result of Theorem 4Pxy s7(,y, s,t)
Theorem 5 provides sufficient conditions for the existence of B {PS(S)PT(t)7 if {z,y} € Eand(z,y) € s xt

nonvanishing marginal®x and Py such that 0, else.
R°(G, Px, Py) = R™(G, Px, Py). and
Finally, Theorem 6 specifies conditions Ghto ensure equality > Ps(s) X Pr(t), if{z,ytek
: ) . P(z,y) =< sdz 3y (55)
in (44) for all marginalsPx and Py, thus answering a ques- 0 else.

tion analogous to Question 2 of Section IlI-F. Throughout, we ) . .
hold the bipartite grapli fixed, and consider the class of allvhere the summations are owetontainingz, andt containing
marginalsPy and Py on G. Recall that these are obtained by respectively. So fofx, y} € E

marginalization of joint distribution®’(z,y) on X x ) such Pxysr(z,y,5,t) Ps(s)Pr(t)
atrte.) > Qony o) € 7 Ploy) % Bs() % Pre)
Theorem 4:Let G = (X U Y, E) be an arbitrary bipartite REY: 15y

graph. There exists some joint distributi®z, y) with nonva- if (z,y) € s x t, and

nishing marginals such th&t is the characteristic graph &f,
g g grap Pxysr(z,y,s,t)

and =0
. . P(z,y)
1" xesechverecy (X 8) + (Y3 T) otherwise. Summing both sides ovemwe see thap(s|z,y) =
- max H(X',Y') (48) p(s|z)forallysuchthafz,y} € E, and
{X",Y'}€E,X'~Px,Y'~Py Ps(a)
S\s 1
if and only if G has an exact bipartite cover. p(s]z) = ST Ps()’ ifzes
Proof: Suppose that (48) holds.jf s|z) andp(t|y), such 6’3” clse

thatX € S € Cx andY € T € Cy for the bipartite cover
C = (Cx,Cy), andP(z,y), are the distributions which achieveThus, the first part of (53) is verified, and this is trivially com-
the minimum and the maximum of (48), respectively, then (4pjeted by repeating the above analysisg#tiy). Now, (51) is
holds by Lemma 2. We claim thétis an exact bipartite cover of easily verified by substitution. O
G.To shpw this by contradiction, suppoSes not exapt. Then We next discuss the coincidence &"(G, Py, Py) and
there exists some € Cy andty € Cy such thas, Ut, induces R (G, Px, Py). We will provide sufficient conditions in

no edges irG. For this(so, to ), the expression on the Ieft'h"’mdterms of the graplG for this coincidence for some nonvan-

side in (47) vanishes, sind€(z,y) > 0 only if {,y} € E. ishing pair of marginal®y and Py-. Toward that end, we first
But the expression on the right-hand side does not vanish, S"b‘?Sve the following lemma

p(solz) > 0 andp(toly) > 0 for somez € so andy € to, .

respectively, and’x (z) > 0, Py (y) > 0 for all (z,y). Lemma 3: For all tripletsG, Px, and Py,
Conversely, suppose is an exact bipartite cover a@¥. Let out

Ps(s) and Pr(t) be any nonvanishing distributions ere Cx HY) + R (G, Py)

andt € Cy, respectively. Define the joint distribution > ner e v, H(X,Y')  (56)
Pxyst(z,y,s,t) = p(z,yls,t)Ps(s)Pr(t)  (49) H(X)+ BS™(Gy, Py)
onX x Y x Cx x Cy by setting z (X1 Y1} EB X Py ¥/~ Py HXLY)  (57)
_f1, if{z,y} € Eand(z,y) € s x t Proof: We only prove (56) and the proof of (57) similarly
Pl yls;t) = {0, else. (50) follows. Using (38), we can write

Note thatp(z, y|s,t) is a valid distribution, since everis.t)  H(Y)+ R (Gx,Px)=H(X)+ H(Y) - H(Gx, Px)
induces exactly one edge. Lé¥(x,y) and Psr(s,t) denote =H(X)+ H(Y)
the respective marginals oti x ) andCx x Cy, andp(s|z),

p(s|z,y), p(tly), andp(t|z, y) denote conditionals derived from T XeSxeT(Gx) (X5 8x).
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Also, " \<: yl
H(X)Y
(X.Y}eEX Py YrPy (XY) e b2
=HX)+HY) - min I(X;Y).
{X,Y}EE,X~Px,Y~Py 3 P

Therefore, the result follows if Fig. 10. The bipartite cove€x = {{z1}, {22}, {zs}} andCy =
{{y1, y2}. {2, ys}} is exact, bulCx| - [Cy | = 6 > 4 = |E].

i min I(X;Y)>  min 1(X; Sx)
{X,Y}eB,X~Px,Y~Py XEeSxeT(Gx) Thus, (61) implies satisfaction of all inequalities above with

holds. LetP(z,y) = Px(z)p(y|z) attain the left-hand side Auality. In particular(Rx, Ry) € R™(G, Px, Py), where
minimum in (58). Form the sets Ry = RS (Gy-, Py)

__ pout
sx(v) = {w: Pa.y) > 0) B+ By =Rp™(G, P, )

A similar result for the other “corner” oR°"(G, Px, Py)
is guaranteed by the existence®f= (Cx o, {{y} :y € V}).
However, by (55) in the proof of Theorem 4, the margin@ls
p(sx(@)lw) = plyle) and Py on G achieving the two corner points may be different.

so that/(X:Y) = I(X: Sy). The result then follows by ob- We will shpw that such a situation cannot aris&if and C_z
L further satisfy|X| - |Cy1| = |E| = |Cx.2| - |)|. Note that, in

serving i) the setsx(y) are complete subgraphs 6fy, and . . ’ : )

N N . L this case, since every edde,y} € E may be indexed by a

i) the value of the minimum on the right-hand side in (58) doesair (5,4) € Cxa x Y (0F (#.8) € X x Cy1), clearly, for

not change when the collection of valid setsis extended from - Y X2 ' Y.L Y

distincts, s’ € Cx 2, we haves N s’ = (0 (and, for distinct
7T (Gx) to the set ofall complete subgraphs. O L€ Cyr tnt = D).

Theorem 5:Let G = (X U ), E) be an arbitrary bipartite ~ Now, in the proof of Theorem 4, choose the distributions
graph. There exists some joint distributi®z, ) with nonva-

for eachy € ), and let

nishing marginals such that is the characteristic graph df, Ps1(s) = € and Pri(t) = 1
and ’ | X ’ Cy,1]
RO(G, Py, Py) = R™(G, Py Py) (59) overs € X andt € Cy; for C; = (X,Cy,1), and
if G has two exact bipartite covers of the form Psa(s) = ICx.2| and Prs(t) = ﬁ
C = ({{z}: 2 € X},Cyy) overs € Cxp andt € Y for Cy; = (Cx2,Y). If Pi(z,y) and

(60) P5(z,y) are the distributions in (55) correspondingftg 1 (s)

C, = (Cx :
2= (Cxo {{y} iy eV} andPr 1 (t), andPs »(s) andPr »(t), respectively, then we have

and|X| - |Cy,1| = |E| = [Cx,2| - |V] is satisfied. Pi(z,y) = Psa(2) - Pra(t)
Remark:For a general exact bipartite covér= (Cx,Cy ), _ 1 1
the relation|Cx| - |Cy| = |E| holds if and only if the sets in T1X]-Cyval — |E|
Cx orCy do not overlap. See Fig. 10 for a demonstration of an 1
exact bipartite cover of the for = ({{z} : x € X'} ,Cy) for - ICx.2| - V]
which |X| . |Cy| > |E| :PS,Z(S) i PT72(Z/)
Proof: From Theorem 4, it follows that if an exact bipar- = Py(z,y)

tite cover of the fornC; = ({{z} : # € X} ,Cy 1) exists, then _
using independent random variabiandT’, nonvanishing?y ~ for {z,y} € E, andPi(z,y) = Pa(z,y)=01if {z,y} ¢E. [

andPy onG, with X' = 5, can be constructed such that Thus, Theorems 4 and 5 provide purely information-theoretic

o characterizations of purely combinatorial properties of bipartite
H(X"Y). graphs. Recalling the discussion in Section IlI-F about Question
(61) 1 of successive encoding, the concept of a bipartite graph with
Moreover,(H(X),I(Y;T)) € R™(G, Px, Py). Now, using an exact bipartite cover may be understood as an extension of

?

HX)+I1(Y;T) = max
{X',Y'}€E,X'~Px.,Y'~Py

Lemma 3, we have the concept of a normal graph.
As noted earlier, the question addressed in the following the-
H(X)+I(Y;T) > H(X) + R¥(Gy, Py) orem is analogous to Question 2 of the successive encoding
> H(X) + RS (Gy-, Py) case. In answering this questi_on in [9], Csisszéil.made use of
S H(X',Y") | results from polyhedral combinatorics, and discovered a charac-

{X,’Y,}GE%@EPXWYINPY terization of the important class of perfect graphs. But the next
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theorem shows that correspondingly requiring equality in (44nd definePy ;. similarly. As convenient, we will interchang-
for all marginalsPx andPy- on G is too restrictive: a relatively ingly denote entropy as function of its random variable or its
simple proof shows that such a requirement is equivalent to distribution, e.g. H(X) or H(Px).

stricting G to the rather uninteresting class of disjoint collec- Let us begin by calculating?*(G, Px, Py). Note that

tions of complete bipartite graphs. G has the exact bipartite cove? = (Cx,Cy), Where
) _ = {{y} : vy € Y}, and the collectiol€ x is composed of all

r;’hﬁorem 6:LetG = (X U Y, E) be an arbitrary blpart|te dIStInCt sets of the fornfz, xo, ..., xk }, wherez,, € X). Set
grap T =Y, and defineS by the distribution

i i I(X; ny;T
mCmXeSecgl,l)I}eTecy (X38) + I(V3T) p(s ={z1,22,..., 2K }T)

/ ! H " —
{XI Y/}GEI{&/LEP\ Y/~Py H(X Y ) (62) _ {jl;.[k P)Mj(zj)? if z =y,

for every pair of marginal®x andPy- on G if and only if G is 0, else.

a disjoint collection of complete bipartite graphs. The corresponding marginal can be calculated as
Proof: For the “only if” part, suppose that is not a col-

lection of disjoint complete bipartite graphs. Equivalenthhas

a connected component (i.e., a component wherein there is a
path between any two nodes), denotéd which is not com-
plete. The statement th&t is not complete is equivalent to the ThenZ(Y;T) = H(Y), andI(X;5) = H(S) — H(5|X),
statementG’ has an induced Z-shaped bipartite subgraph of tHehere

K
Ps(s = {z1,72,...,2x}) = [ Pxr(an) -

form K K
=H =Y H(P

GS:<XSU3}S;ES): g X,k .Z'k kZ:1 ( X,k)

{z1, w2,y 92 ) {r, v b {me,s yi by {2, 921}) - and
Let Px and Py be any marginals such th#ty (z) > 0 and K
Py(y) > 0if z € Xs,y € Vs, and0 otherwise. The only H(S|X) = Z <Z Px(z ) ZH(PX,]’)
bipartite cover ofGs is ({{z1}, {z2}}, {{w1}, {y2}}), so that k=1 \z€X} i#k

. K

RING, Py, Py) = H(X)+ H(Y). =S (P (1 Py

Let X’ andY” be jointly distributed withP(z, ) which attains k=1

R$™(G, Px, Py). Thus,{X",Y"} € Es, andX’ ~ Px,Y' ~  so that

P, and RI(G, Px, Py) <I(X:8) + 1(Y;T)
: ’11le y X 4Y S 5 + 5
Ry(G,Px, Py) — R"(G, Px, Py) K
= H(X)+ H(Y) - H(X',Y") =H(Y)+ > H(Pxi)P.. (63)
=HX"Y+HY")-HX'Y" k=1
=I(X";Y"). We now turn toR$™ (G, Px, Py ). Choose the random variables

. . (X’,Y") according to the distribution
But I(X";Y') = 0 ifand only if P(z,y) = Px(x)Py(y) for
allz € Xs,y € Vs. Thisis impossible, sinc(z1,y2) = 0 by Pla.y) = W if {z,y} € Ej for somek
construction, whilePx (1) Py (y2) # 0. =0, " else.

Now for the “if” part. LetG = (X U ), E), with
Note that{ X', Y’} € E, andX’ ~ Px,Y’ ~ Py. Further, for

K . .
anyy € Vi, P(zly) = Px(z) if z € A%, and0 otherwise.
Xuy:kU(Xkuyk) Thus,
=1
XeNXy ==V NV
HX'|Y) = Py (y)H(X|Y =
for k # k', andE = |J,_, Ex, where | ;y;k v Y'=9)
Er = {{z,y} 12 € X,y € Vi} K
= P P .
be a collection ofK disjoint complete bipartite graphs, and kZ_lH( k)P
let (Px, Py-) be arbitrary marginals o&'. Note that any such -
marginals satisfy Since
S Px(x) =Y Pr(y) € R R$™(G, Px,Py) > H(X',Y') = HY')+ H(X'[Y")
TEX) YyEYVk = H(Y) + H(X/|YI)

for everyk. Define the auxiliary distributiox ;, by

Px (2) ifrec X
P o = P, Tz e k in ou
() {o, ' else R(G, Px, Py) = R™(G, Px, Py). 0

a comparison with (63) shows that
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It may be observed that the choices made in the proof forlt follows from the definition of prefix-free codes that
the bipartite covers and random variables correspond to the
following successive encoding strategy, which is intuitivelyggf(G7pX7pY) ) U <l |:H((I)X(X{l)) + 1]7
obvious: Bob directly encodes, expending a rate off (V). Dy @y \
Merlin now knowsG', to which (z, y) belongs; Alice identifies 1
X within Xy, expending an expected rateXof,_, H(Px i) P — [H((I)Y(Yln)) + 1D (64)

n

Examples: o ) ] ]
where the union is over all bipartite colorings 6f*. Also,

1) For the example in Section llI-E, we already know thakcall from the proof of Theorem 1 that ifRx,Ry) €
there exists a pair of nonvanishing marginalgtso that Ru(@, Px, Py), then (11) holds. Therefore,

(44) holds with equality. Therefor€& must have an exact
bipartite cover. In fact, the bipartite cover given by RM(@G, Px, Py) C ﬂ {(Rx, Ry):aRx + (1 — )Ry

Cx = {{z1, 23}, {w2}, {ws}} 0<a<1

1 n n n
and > LH(G PR Po) = )| (69

n

Cy = {{yr.ya} {v2, us}} Next, we turn our attention to the class of scalar instanta-

which was used for computation of the pofitg 3,1),is neous codes. Naturally, (65) also induces an outer bound for
exact. FurtherPy andPy in the example are induced by R (G, Px, Py). In the next theorem, we derive an alternate
P(x,y) as in (55) withPs(s) = 1 andPp(t) = 1. outer bound which is sometimes tighter.
Gao = ({0,1,...,2a — 1} U{0,1,...,2a — 1}, En,) RY™ (G, Px, Py) € R™(G, Px, Py). (66)

Proof: The proof is modeled on [1, proof of Theorem 4].

where Given a scalar instantaneous cdde;, ¢y, 1) for G with rates
By ={{z,y} :y=20ry=2+1mod 2a}. ) dcfZPX Vbx(2)]
(Thus,Gs, is the Shannon typewriter channel 2am let- z€X
ters.) Retain the notation of Theorem 5. Clearly i(¢3f)‘i§f Z Py (y)|py (v)] -
yey
€= ({{l’} 0< 2 < 20— 1}7 We will construct random variablesandT such thatX € S €

Cx andY e T e Cy for some bipartite cove = (Cx,Cy),
{{0./2./..../2a—2},{1,3,...,2(1—1}}> and

Co = 0,2 2 2},4{1,3 2 1 (9x) 21(X3 5)
2 = {7 yoeey 2 — }7{7 yeee s 2@ — } ) [((/))')ZI(Y,T)
{{y}: 0<y<2a— 1}) The theorem will then follow from (25).
T LetT?~ be the (binary) tree whose vertices are all the strings

are exact bipartite covers @f,, and they satisfyt| - in {¢x(z) : z € X} and their prefixes. Similarly defin&®> .
ICy1| = |E| = 4a = |Cx.»| - |Y|. Thus, equality holds We may assume that neith@’* nor T%v contains a vertex

in (’59) for everyGlaa, a > ’1, with Px and Py being the with a single descendar_lt. (Otherwise, the correspondingtree can

be pruned, thus reducing the rate sum.) Associate with every

vertexz of T?x the setp (%) = {z : ¢x(x) = &}. Similarly

definesy ' (7) for verticesj € T . Note thatpy' (#) is never

empty whent is a leaf, but may be empty for internal vertices
Bounds for achievable rates for a finite and fixed block lengiand similarly forg).

are of interest from the algorithmic perspective, as well as in theAssociate with each leafof 7¢x andi of 74 the respective

study of rates of convergence to the asymptotic limits discussgsis

in the previous sections.

corresponding uniform distributions.

V. BOUNDS FORFINITE BLOCK LENGTH

Let us denote byRP!(G, Py, Py), Ri®'(G, Px, Py), and s= U @
RUY(@G, Px, Py) the achievable rate regions for block length @ prefixes 3
n for the respective variable-length coding classes. From the t= U o (D) -
definition of those classes, it is clear that § prefixes i

RM (G, Px, Py) C R™Y(@G, Py, Py) C R™(G, Px, Py) Denote the collections of all sue_handt byCX a_dey, respec-
tively. Everyz € & (andy € ) is contained in some € Cx
for all G, Px, and Py-. Unlike their asymptotic counterparts,(somet € Cy). Further, sincé¢x, ¢y, 1) is an instantaneous
these regions do not necessarily coincide. code, by (2) there exists at most one edgey} € E in the set
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s x t, foranys € Cx andt € Cy. Thus,(Cx,Cy) is a bipartite each edgdz™,y"} € E,,. Thus,Nx Ny > |E,|. But, by defi-
cover ofG. nition of £,, in (1), |E.| = |E|", and we have
Let leaves (%) be the set of leaves which descend from a
R Ry > log|E 67
vertexs € T¢x. Similarly defineleaves (3) for verticesj € . x + By 2 log || (67)
T9v . SinceT?x andT?> have no vertices with single descenfor all fixed-length codeg¢x, ¢y, ). Also, even when Bob

dants directly sends his information expending raig |X'|, the min-
o imum rate Alice can achieve, by coloring the “side information”
> 2nlEmlED = graphGyx, is given byl log x(G%). Since there is no known
seleaves (z) single-letter formula for the limit of log x(G"% ), we further
Z o—(IEl-131) =1 lower-bound Alice’s rate using
ieleaves () 1 log x(G%) Zl logw(G)
n n
for everyi € T%x and everyj € 7% . Sop(3|z) = 2~ (5I=12D _1 log w(Gx )"
for 5 € leaves (), andp(t|j) = 2~ (IE1=191) for { € leaves (1), _i’L o
are probability distributions oreaves () and leaves (g), re- = logw(Gx) .
spectively. Thus,
Defln_e th(? ~rar.1dc~>m vahable~S EndT overCx and Cy_by Ry > logw(Gx) (68)
p(s|lz) = p(3|%) if § € leaves(z = ¢px(z)), andp(s|z) = 0
otherwise. Definep(t|y) similarly. ThenX € S € Cx and Ry > logw(Gy). (69)
Y € T € Cy. Furthermore, the maps+— s andt — ¢t are We define”/{ﬂs"“t(G) D ’Rﬂ(G) by bringing together (67), (68),

prefix-free codes fos andT’, respectively. Therefore, and (69).
Notice thatR™-cu*(G) can also be obtained by

H(S) < Px(z slz)|3|
SGZCY xezr\’ SGZL,\ Rﬂ;OUt(G) = m ROUt(Gv PX> PY)
~ ~ ~ Px,Pyon G
=Y Px(x) Y p(sle) {|&] + |3 - |2]} o .
Jopg seCx since fixed-length codes cannot outperform variable-length
i p ) codes designed for any pair of margindts and Py- on G.
=l(dx) - Z x( Z s|a) log p(s|z) Using the same argument, we now derive a single-letter formula
zeX seCx fl,in
_ for R%:M(@).
=1(px) + H(S|X)
- Theorem 8:
and hencd(¢x) > I(X;S). It can be similarly shown that fl,in _ in
I(¢y) > I(Y;T), and the theorem follows. a RUM(G) = (] RM(G Px.Pr). (70)

Px,Pyon G

We close this section with an example showing that (66) can  proof: Suppose Alice and Bob must design vari-
indeed be tighter than (65). Létbe a complete bipartite graph.aple-length codes satisfying (24) for unknown marginis
Then settingy = 1/2 andn = 1 in (65), we get and Py on a given characteristic graggh (e.g., the marginals

are chosen by an adversary). Clearly, the achieved rate pair
Rx + Ry > H(X)+ H(Y) —log(1 + log | X]|) (Rx,Ry) sati)éfies(RX, Ry)y)e 'Rin(g, Py, Py) for every P

— log(1 + log |Y]) — 2loge. pair of marginalsPy and Py on G. On the other hand, since a
possible coding strategy for Alice and Bob is to use fixed-length

On the other hand, (66) gives a tighter bound codes, we have

Rx+ Ry > HX)+ H(Y). RLM(G) C ﬂ R™@, Px, Py).
Px,Pyon G
Now for the reverse direction. Thgpeof =7 € &A™ is the
VI. ASYMPTOTICS OFFIXED-LENGTH CODING distribution Px on X defined by

In order to obtain an inner bound &R (G) we appeal to
the idea that yielded in Section IlI-C an inner bound for the
asymptotically achievable expected rate region. That is, we dRecall the definition of typical sets from (18). If the pair of
serve that fixed-length codes satisfy the necessary conditiypesPx and Py are marginals o, the proof of Theorem 2
(23). This condition is weaker than (24), which is necessarihows that, for anyRx, Ry-) € R""(G, Px, Py), and for large
satisfied by fixed-length codes which enable Merlin to evaluagoughn, there exists a codgbx, ¢y, ¥), wheregx : X" —
the functione of (22). Thus, ifR%"(G) denotes the asymp- {1,2,..., Nx} and¢y : Y —{1,2,..., Ny} such thatVy <
totically achievable rate region of such codes, we obtain tr2it?~ and N; < onhyv which satisfies (24) for anyz7, y7)
REn(G) € RY(G). and (1", y7") with a7, 27" € Tjp | andyi',yi" € Tjp, . A

Now for an outer bound. [f¢x, ¢y, ), with ¢x : X" —  fixed- Iength code for the entire spad& x )" is now obtained
{1,2,...,Nx} and¢y : Y* — {1,2,..., Ny} is a code sat- by choosing such a code for each pair of typasand Py, and
isfying (23), then(¢x (™), ¢y (y™)) takes a different value for preceding the codewords for each pair of types with a pair of

Px(a) = %N(akv") for everya € X.
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type-specifying indexes. The claim follows from the fact that the
number of distinct pairs of typedx, Py-) grows only polyno-
mially with n, and hence, the additional rate expended for sugla
indices vanishes as — oc.

Define

def .
= min
(RX ,Ry)ERfl““(G)

It then follows from (70) and (42) that

RI™@) Rx + Ry.

Rp™(G) |
= Py ,111};?“0(“ G Ry (G, Px, Py) [1]
= p B o xesedtWerce, I HITED
We next consider a simplel- ™ (G) calculation example. Lef ~ [3]
be asin Fig. 8, and fi€ = (Cx,Cy), where (4]
CX = {{$17$3}7{$2}7{$4}} [5]
and
Cy = {{y1,ya},{y2,y3}}- 6]
Then
fl,in < . . . ] [7]
RT (G) ~ Px H}f‘i(n G XGSGCI)I(l,liI’IGTGCy I(X7 S) + I(Y7 T) -
By an application of [20, Theorem 2], the expression on the
right-hand side is seen to beg 6; this is achieved by choosing €]
(Px, Py) as in Fig. 8, and choosing, for € Cx, ¢t € Cy,
p(slz) = p(tly) = Lifandonlyifz € s,y € t. Sincelog | E| = [10]
log 6 as well, we conclude from (67) thdt:™(G) = log6. "
Further, it is easily seen thatlog Nx + X log Ny = log6 is [11]
achieved by a scalar codé x, ¢y, 1) setting
[12]
dx(21) = dx(z3) # dx(22) # Px(24)
and [13]
¢y (y1) = ¢y (ya) # ¢y (y2) = Py (v3). 114]
VII. CONCLUSION (15]
We initiated the study of rates a&ro-errortransmission for  [16]

two senders who wish to convey correlated information from
their respective sources to a receiver, when no communicati(}rlln
is permitted between them. While a single-letter formula for
the asymptotically achievable rate pairs remains elusive, wg?8l
derived single-letter inner and outer bounds for both fixedy;g
and variable-length coding. These bounds specialize to known
results for the unknown side information problem, where ond20l
sender directly conveys his/her information expending full ratep;
Depending on circumstances, the inner/outer bounds can vary
from tight to involving an arbitrarily large gap. We analyzed [22]
conditions for tightness in terms of purely combinatorial prop-
erties of the underlying characteristic graph. We also showedz3]
via an example, that successive encoding combined with time
sharing does not span the entire achievable rate region, '154]
contrast with the Slepian—-Wolf setup, where an asymptotically
vanishing probability of error is tolerated. Finally, we derived
bounds for variable-length coding with a finite block length,
and for fixed-length coding with infinite block length.

[25]
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