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Abstract—The problem of separatezero-errorcoding of corre-
lated sources is considered. Inner and outer single-letter bounds
are established for the achievable rate region, and conditions for
their coincidence are investigated. It is shown that successive en-
coding combined with time sharing is not always an optimal coding
strategy. Conditions for its optimality are derived.

The inner bound to the achievable rate region follows as a spe-
cial case of the single-letter characterization of a generalized zero-
error multiterminal rate-distortion problem. The applications of
this characterization to a problem of remote computing are also
explored. Other results include i) a product-space characterization
of the achievable rates, ii) bounds for finite block length, and iii)
asymptotic fixed-length rates.

Index Terms—Graph coloring, graph entropy, separate coding
of correlated sources, Slepian–Wolf, zero-error information
theory.

I. INTRODUCTION

CONSIDER the multiterminal system shown in Fig. 1,
where two correlated sources are encoded separately

and decoded jointly while no communication is permitted
between the encoders. We study the rates of transmission
when the receiver is required to reproduce the source signals
without any error(i.e., with zero error). We derive single-letter
bounds for the asymptotically achievable rate region for both
fixed- and variable-length codes. While the outer bound for
variable-length coding is based on the results of Slepian and
Wolf in [22], the inner bound follows from the exact character-
ization of a generalized zero-error multiterminal rate-distortion
problem. We also derive bounds for achievable rates for a finite
block length.

The problem of determining the asymptotically achievable
rate region when the receiver is required to reproduce the
sourceswith a vanishingly small probability of errorwas
completely solved by Slepian and Wolf in their classic paper
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Fig. 1. Separate coding of correlated sources.

[22]. On the other hand, for the zero-error version of the
problem, a computable characterization is currently not known
even for the special point-to-point case, where the receiver has
correlated side information unknown to the sender (i.e., the
“unknown side information problem”). In fact, we have shown
in [17] that a formula for the minimum rate of transmission in
the latter problem would easily yield a solution for the famous
open problem of determination of the zero-error capacity [20]
of an arbitrary discrete memoryless channel.1

Our inner bound is defined as a functional on a graph associ-
ated with the problem, and represents an extension of the con-
cept ofgraph entropy, an information-theoretic functional on
graphs introduced by Körner in [12]. Graph entropy was used
in [1] to give an upper bound to the minimum asymptotic rate
for the unknown side information problem. This functional has
also been applied in purely graph-theoretic problems, such as
characterization of normal graphs and perfect graphs, and to de-
rive lower bounds for perfect hashing and Boolean circuit sizes.
(See [21] for a survey of some of these applications.) The inner
bound derived in this paper also seems to be of independent in-
terest; we use its generalization to determine the achievable rate
region for a problem of remote computing, thus, partially ex-
tending the results of [19].

The practical aspects of the coding of correlated sources have
recently received attention in the context of the spread of mul-
titerminal networks. For example, consider remote low-power
sensors which sense correlated versions of the same physical
phenomenon, and separately convey their measurements to a
central processor. In low-delay applications, the remote sensors
may need to use zero-error codes rather than codes with asymp-
totically vanishing error (in the sense of Slepian–Wolf [22]).
Motivated by such applications, the design of zero-error codes
was previously considered in [11], [24], [25]. For a survey of
results on restricted versions of the problem, and on variants
where interaction is allowed, see [16]. Also see [10] for an ear-
lier approach.

1It was known from [18] that a formula for thecomplementary graph entropy
of an arbitrary graph immediately yields a formula for the zero-error capacity.
We have shown in [17] that the minimum achievable rate in the unknown side
information problem is in fact given by the complementary graph entropy.
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This paper is organized as follows. In the next section, we for-
mally define different classes of zero-error codes, and demon-
strate the differences on a running example, and provide re-
lated definitions. In Section III, we analyze the asymptotically
achievable rate region for variable-length coding. After deriving
a product-space characterization, we provide single-letter inner
and outer bounds. We also show that our derivations specialize
to known results for the unknown side information problem.
Section IV is devoted to the derivation of conditions for the
tightness of the inner and outer bounds. In Sections V and VI,
bounds are obtained for the achievable rate regions for vari-
able-length coding with finite block length, and for fixed-length
coding with infinite block length, respectively. We conclude
with a short section summarizing the results.

II. PRELIMINARIES AND NOTATION

Let the pair of memoryless correlated sources
produce, at each instant, a pair of letters from the product
set according to the joint probability distribution

. Let and denote the corresponding
marginal distributions over and , respectively. We may
assume without loss of generality that ,
and . Let
and , for . Since

is memoryless, the probability of occurrence of the
pair for is

Similarly

and

are the marginal probabilities of and , respectively.
Suppose that Alice has access to the source, while Bob

has access to , and they wish to convey their respective values
to Merlin without any error. Both Alice and Bob know the un-
derlying distribution , but no communication is per-
mitted between them. Suppose Alice and Bob use thefixed-
lengthencoding functions

respectively. Correspondingly, Merlin uses the decoding func-
tion

In order for the triplet to constitute a valid code,
for each encoder output pair

Fig. 2. The joint distributionP (x; y) (top) and a valid fixed-length coding
triplet (� ; � ;  ) (middle and bottom). The symbol� stands for a “don’t
care” output.

at most onesource pair must satisfy
. If such a source pair exists, then

obviously

and if no such pair exists, then the encoder output pair can
never occur, and the value of is irrelevant. In Fig. 2, a
valid fixed-length scalar code is shown for an example
distribution over .

A rate pair is achievable by a fixed-length zero-
error code if for any , there exists large enoughsuch that

where here, and in the sequel, logarithms are taken to base.
Hence, for the example in Fig. 2, the achievable rate region con-
tains .

The most natural and suitable setting for the problem of de-
termining achievable rate pairs is, as will soon be clear, that
of graph theory. Therefore, we proceed by providing neces-
sary graph-theoretic definitions. Construct the bipartite graph

by setting, for and

We call the characteristic graphof the correlated sources
. Fig. 3(a) shows the characteristic graph corre-

sponding to the joint distribution in Fig. 2. This
particular graph is known as the Shannon typewriter channel.
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(a) (b)

Fig. 3. The characteristic graph (a) and the bipartite coloring (b) corresponding toP and(� ; � ), respectively, in Fig. 2.

For , define the -fold AND power of as the bipartite
graph , with

for all (1)

for . Thus if and only
if . The subgraphinducedin by a subset
of nodes and is the graph
with if and only if . A bipartite graph

is said to becompleteif for all
.

Definition 1: Assignments and of “colors” (or
labels), respectively, to the - and -nodes of the bipartite
graph is called abipartite coloringof if, for
each color pair , the subgraph induced by
has at most one edge.

Observe the one-to-one correspondence between fixed-length
zero-error codes and bipartite colorings of the graph.
Fig. 3(b) shows the bipartite coloring corresponding to the
encoder pair in Fig. 2. Note that the set of valid
fixed-length codes, and hence, the set of rates achievable by
such codes, are completely captured byand do not further
depend on ( is completely determined by whether or
not ). We therefore denote the achievable rate
region by .

It is more efficient in terms of expended rates to usevari-
able-lengthcoding, where Alice and Bob, respectively, use the
encoding functions

and

The encoded bitstream produced by Alice (Bob) is the concate-
nation of the consecutive outputs of , i.e., Alice and
Bob send

and

respectively. Correspondingly, Merlin’s decoding function,,
operates on the two encoded bitstreams and is required to output
both source sequences without error. A rate pair is

Fig. 4. A prefix-free code for the bipartite coloring in Fig. 3(b).

achievable by a variable-length zero-error code if for any ,
there exists large enoughsuch that

The simplest variable-length coder is obtained by designing a
bipartite coloring of , followed by encoding the two
sets of colors (outputs of and ) separately in a prefix-free
fashion. The decoder first resolves the corresponding colors by
separately parsing the bitstreams, and then decodes the unique
edge of determined by the decoded colors. We refer to this
scheme asprefix-free coding. Fig. 4 shows a prefix-free code
corresponding to the bipartite coloring in Fig. 3(b). As in the
case of fixed-length codes, the set of valid prefix-free codes is
completely determined by. The expected rates are functionals
of only the marginals and , and do not require any fur-
ther information provided by . Hence, the set of achievable
rates is completely determined by, , and , and will be
denoted by .

More complicated variable-length coding schemes can be
constructed. Let us first consider theinstantaneous codes
defined in [24].

Definition 2: The triplet is an instantaneous
zero-error code if the decoderreconstructs without
any error by reading only the first and bits
from the two encoded bitstreams, respectively.

Note that the decoder does not know or
in advance. It was shown in [25] that is an
instantaneous code if and only if, for every distinct pair

(2)
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Fig. 5. An instantaneous code which is not prefix free. It is easy to check that
(2) is indeed satisfied.

Here, , when and are binary strings,
means that either is not a prefix of , or is not a prefix
of , or both these conditions are satisfied. We show in Fig. 5
an instantaneous code for our running example, which isnot
prefix free (because bothand are codewords assigned by

). Observe that prefix-free codes automatically satisfy (2),
and therefore, form a subclass of instantaneous codes. Also, the
set of achievable rates is completely determined (cf.(2)) by,

, and , and will be denoted by .
The most general class of variable-length zero-error corre-

lated source codes is that ofuniquely decodable codes, which
we define below. A uniquely decodable coding scheme which
is not instantaneous has a high decoding complexity, as the de-
coder may have to buffer the entire pair of bitstreams before
starting the decoding process.

Definition 3: The triplet is a uniquely decod-
able zero-error code if for any , and for every finite se-
quence with

(3)

Fig. 6 shows a uniquely decodable code which isnot instan-
taneous, as the pairs and are, respectively, assigned
codewords and , i.e., (2) is violated. Yet, the
code is uniquely decodable because the-bitstream can it-
self be uniquely parsed (as it is a concatenation of codewords

and ), and once is recovered, the code-
words of all possible form a prefix-free code, thus allowing

also to be recovered. Then it is easy to recover ,
because and induce a bipartite coloring of .

Since the condition in Definition 3 may
be recast as

for all (4)

the region of achievable rates is a function of only, , and
, and will be denoted as .

From the foregoing, it is clear that

for all , , and . One might expect each of the above
achievability regions to be strictly contained by the next. How-

Fig. 6. A uniquely decodable code which is not instantaneous.

ever, one of our main results in this paper is the following the-
orem.

Theorem 1:

(5)

that is, the larger class of uniquely decodable codes offer no
asymptoticadvantage over the simple prefix-free codes.

Therefore, for the purpose of characterizing the asymptotic
rate region, we can treat prefix-free codes as the entire vari-
able-length coding class. After proving this fact, we will de-
rive an inner bound to by constructing actual
prefix-free codes for large. The derivation utilizes the concept
of bipartite covers, i.e., a generalization of bipartite coloring.

Definition 4: Let , where and are (pos-
sibly overlapping) collections of subsets of and , respec-
tively. We will call a bipartite cover of if

1) every is contained in some
and

2) for every and , the set induces a
subgraph in with at most one edge(from ).

Note that each pair , with and , identify
a unique edge of . Also, the color classes in any bipartite col-
oring for induce a bipartite cover, where color classes play
the role of subsets in and . The only difference is that the
subsets in (or ) of a bipartite cover can be overlapping in
general.

We will call the bipartite cover an exact bi-
partite coverif, for every and , the set
induces a subgraph in with exactly one edge(from ). Note
that every bipartite graph has a bipartite cover:
Take and . But
not every bipartite graph has an exact bipartite cover. We shall
need this important fact in the sequel. For example, consider the
“Z-shaped” graph

The only bipartite cover for this graph is
and , which is not exact.

Often of interest is the minimum achievable rate in a re-
stricted correlated source coding scenario, which is commonly
referred to as the “unknown side information problem.” In this
scheme, Bob directly encodes his informationwithout any
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Fig. 7. The characteristic graphG for successive coding of the source in
Fig. 3(a).

error, expending asymptotic rate . Merlin then recovers
and Alice encodes while treating as the unknown side

information available to Merlin. The following graphical con-
struction was introduced by Witsenhausen in [23] to tackle this
scheme which we callsuccessive encoding: Form the bipartite
graph and define the graph
on the vertex set by connecting distinct and if there
exists such that and . See
Fig. 7 for the graph corresponding to in Fig. 3(a). The

-fold AND power is defined in a manner
analogous to (1): for distinct

either or for

One can change the roles ofand , and define
and similarly. A valid coloring of is a mapping from
nodes to colors such that no two nodes connected with an edge
are assigned the same color. Now, there is a one-to-one corre-
spondence between fixed-length codes that Alice can use and
colorings of graph . Classes of variable-length codes are de-
fined similarly to the general case. We proved in [17] using a
result of Alon and Orlitsky [1] that for the determination of the
minimum asymptotic rate Alice can achieve, it suffices to focus
on the variable-length codes which simply encode a valid graph
coloring in a prefix-free manner. That result, in fact, follows
easily from Theorem 1.

Let us conclude this section by outlining some notations and
constructions defined on the graphs, , and that will
be needed in the sequel.

Let be an arbitrary graph with no loops or
multiple edges. Two vertices are connected in—the comple-
ment of —if they are not connected in. A subgraph induced
by the vertex set is said to becompleteif
for every distinct pair . A complete subgraph is also
said to bemaximalif it is not induced in any other complete sub-
graph in . Denote by the collection of all maximal com-
plete subgraphs of . Note that the corresponding collection of
all maximal complete subgraphs in is the -fold Cartesian
power . (See [3, Ch. 16, Proposition 8] for a proof of this
fact.) Thus, denoting by the size of the largest maximal
complete subgraph of , we have that . Also
denote by the minimum number of colors needed in a valid
coloring of . It immediately follows that .

Given a bipartite cover of , we will often
define the random variablesand via the collections of con-
ditional probability distributions and of the fol-
lowing form.

1) and take values in and , respectively.

2) For each , only if . Similarly,
only if .

We will succinctly represent these conditions by employing the
streamlined notation and .

We will also need random variables and jointly
distributed according to (not necessarily equal to

) on , where satisfies, for all :
only if , and

We will indicate such random variables by writing
and , . When we consider a random

variable with conditional distribution taking values
such that only if , we will

denote it as . A random variable with
is interpreted similarly.

Sometimes we fix and consider the class of all marginals
on and obtained via joint distributions on whose
characteristic graph is . If the distributions may
be obtained as marginals of some joint distribution
whose characteristic graph is(i.e., if and only if

), we will say that “ and are marginals on ”.

III. A SYMPTOTICBOUNDS FORVARIABLE-LENGTH CODING

We begin by proving Theorem 1. Toward this end, we first
observe using standard time-sharing arguments that the rate
region achievable by prefix-free codes is
convex. Therefore, its boundary can be characterized by the
Lagrangian

evaluated for all . Motivated by this Lagrangian
formulation, we define thebipartite chromatic entropyof ,
which is an extension of thechromatic entropydefined in [1].
We then use this functional for a product-space characterization
of .

Definition 5: The bipartite chromatic entropy of is given
by

(6)

where the minimization is with respect to all bipartite colorings
of .

Lemma 1:

(7)
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Proof: The limit in (7) exists, since the chromatic entropy
is subadditive with respect to, i.e.,

(8)

To see this, let and be the bipar-
tite colorings of and , achieving
and , respectively. Define the functions

on , and on , by

Then (8) holds since is a bipartite coloring
of achieving the right-hand side of (8).

Now, since every prefix-free code is obtained by combining
a bipartite coloring with separate prefix-free coding of- and

-colors, it is clear that

for any . The result follows by letting .

Proof (Theorem 1): Consider a uniquely decodable code
, operating with block length , and achieving

. Set . It follows from (3) and (4) that

since otherwise the decodercannot distinguish and
. This, in turn, implies that induces a bipar-

tite coloring, or in other words, and are “one-to-one”
codes for the - and the -colors, respectively, in a bipartite
coloring of . Therefore, using Alon and Orlitsky’s result on
one-to-one codes [2], we can write

(9)

and similarly

(10)

Combining (9), (10), and (6) with the trivial observation that
and , we

obtain

(11)

for all , where

Taking the limit in (11), we obtain

The proof is completed by observing the reversed inequality,
which is implied by the fact that

Corollary 1:

i.e., (7) is a product-space characterization for the entire class
of variable-length codes.

Although the characterization (7) is complete, it is not
computable in general. As mentioned earlier, the task of Alice
and Bob is to inform Merlin, without error, of the edges
occuring in . By (1), an edge occurs in if and only
if edges in occur in all the corresponding successive
coordinates. Roughly speaking, the inability to construct
codes which optimally exploit this interdependence between
the coordinates is the crux of the difficulty in evaluating the
achievable rate region . A natural approach
to bounding this region, which sidesteps consideration of the
interdependence, is to require Merlin to recover every edge in

without error even when such edges occur inany of the
successive coordinates. In Sections III-B–III-D, we will present
a step-by-step development of theexactachievable rate region
for this stronger requirement, thus obtaining the inner bound

Recall that the Slepian–Wolf result [22] is a single-letter
characterization of the entire region of achievable rates for
the weaker requirement of vanishingly small probability of
error (instead of zero error). In Section III-E, we exploit that
characterization to obtain the outer bound

We will demonstrate in Section III-F that these bounds can be
tight at certain rates, and that successive encoding followed by
time sharing can be a suboptimal zero-error coding strategy, in
contrast with the Slepian–Wolf setup.

A. A Generalized Multiterminal Rate-Distortion Problem

Let be a finite set, and be a
single-letter distortion measure. Extend the definition ofto
vectors by setting, for , , and

(12)

Let be an arbitrary distribution on with

for all
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and such that the corresponding marginals are and ,
respectively. Let the independent and identically distributed
(i.i.d.) random variables be drawn
from . We are interested in the rate region for sep-
arate encoding of and such that a
joint decoder can estimate every realization with
zero distortion. More precisely, for the triplet
with , , and

, where the codewords assigned
by (and ) do not prefix each other, we require

(13)

for every finite sequence . We denote the region
of achievable rate pairs as , since the set of

satisfying (13) is fully captured by , and the
achieved expected rates

and

are functionals of only the respective marginals and . In
other words, there is no further dependence on .

Special cases of this multiterminal scenario were introduced
earlier. For example, the multiterminal rate-distortion problem
of [5] corresponds to with if and
only if and . Another special case is
introduced in [6] where again , and
if and only if and . Note that the condi-
tion (13) of exact reproduction forevery is stronger
than requiring exact reproduction only for those which
are contained in some high-probability subset of .
The latter requirement leads to the multiterminal rate-distortion
problem of [5], which remains unresolved at present. On the
other hand, we derive below an exact single-letter characteri-
zation of by showing that a relatively simple en-
coding strategy is already optimal for the stricter condition (13).

Theorem 2: if and only if there
exist: i) random variables, , and jointly distributed with
and as
such that

and (14)

and ii) functions taking values in such that

(15)

Remarks:

1) The sum in (15) consists of nonnegative terms, which
must therefore all vanish. Since for
every pair , we obtain that (15) requires

(16)
for every such that .

2) is convex, with playing the role of
the time-sharing random variable. It is known from
Carathéodory’s theorem [7, Theorem 14.3.4] that any
point in the convex closure of a connected compact set in
a -dimensional Euclidean space can be represented as a
convex combination of or fewer points in the same
set. Therefore, for the computation of , we
may assume that takes values in .

Proof:
Direct: Let the distributions , , and function

satisfying

(17)

be given. We will construct a sequence of prefix-free codes
satisfying (13) whose corresponding rate pairs converge to

. The forward part of the theorem will then
follow from standard time-sharing arguments.

We will denote by and the joint distributions
of and , and of and , respectively, and by
and the marginal distributions and

, respectively. Fix . Following the
notation of [8], we denote by the set of sequences

such that , the number of occurences ofin
, satisfies

for every

and no with occurs in (18)

and call its members -typical sequences. These may be
simply referred to as-typical sequences when the underlying
distribution is clear from the context. Other typical sets and se-
quences in the subsequent are similarly defined.

By the type-covering lemma [8, Lemma 2.4.1], there exists
such that for every there is a subset of

with the following property: associated with every
is a such that .

Similarly, there exists a subset of which satisfies
the corresponding property with respect to . Further, the
cardinalities of and are not more than

and

respectively (where as ).
The encoding strategy is simple. If , Alice sends

the index of such that . This
step requires a rate of no more than bits. If

, she directly encodes it, expending no more than
bits. Bob similarly handles . Now, for any ,

the probability that (correspondingly, )
approaches as , and it is easy to see that the rates

are then achieved.
Let us now turn to the decoder. When and

, Merlin receives the indexes of and , and
reproduces

But and are -typical. This implies, from
the definition of typicality, that and
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for all . It follows from (17)
that

for and . Next, suppose
and . Then, according to the encoding strategy out-
lined above, is directly conveyed to Merlin. On knowing

he choosesany such that for all
, and reproduces . Again, (17) implies

that . The other cases are handled
similarly. Thus, condition (13) is satisfied.

Converse:Let be any prefix-free code satisfying
(13) for some . Let be the corresponding rate
pair. Define new random variables and

. Then

and similarly for . Now

Since for all , and
satisfies (13), we have

whenever . Defining
the random variable by for , and
setting

we obtain

Also, by setting , we have for any

and, therefore, (16), or equivalently (15), follows.

B. Coding for Remote Computing

Let be an arbitrary distribution on with
for all , and such that the

corresponding marginals are and respectively.
Let the i.i.d. random variables be
drawn from . Suppose that instead of the individual
values of Merlin wishes to evaluate

where is an
arbitrary partial function. (Thus, we allow to be undefined
for some arguments .) We require that Merlin evaluate

correctly for every realization where
is defined, but we do not care about Merlin’s reconstruction

when is not defined.

The treatment in the previous section can be directly applied
to this problem upon defining the distortion measure

by

if defined, and
else

and extending this definition to vectors as in (12).
Therefore, the achievable rate region is given by

We will now provide a more intuitive reformulation of the char-
acterization of , which brings out its dependence
on explicitly.

Definition 6: Let , where and are col-
lections of subsets of and , respectively. is an -cover
of if

1) every is contained in some
and

2) associated with every and is a unique
value such that for all pairs

for which is defined.

Theorem 3: Let be the closure of the set of rate pairs
, where

(19)

(20)

for some choice of the joint distribution

which satisfies the following conditions. For each value
let be an -cover of . For every

, only if . is chosen
similarly. (We may assume that is distributed over .)
Then .

Proof: For each , Let be an -cover,
and let be a pair of distributions such that

and

Then . For any pair
, set

if is defined
for

undefined else.

Since, by definition of an -cover, takes a unique value
for every for which it is defined, is a well-
defined (partial) function. Further, for any

by the definition of . Thus, , , and
playing the roles of , , and , respec-
tively, (16) is satisfied. Thus,
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Conversely, let , , and satisfy (16),
so that . Also, let

Then

for all
(21)

Observe that for all pairs , ei-
ther assumes a constant value whenever defined, or is not de-
fined at all. (Otherwise, it is impossible to satisfy (21) with a
unique .) Thus, if then for all , either

, or both and can be left
undefined. Similarly when .

Now merge all with identical and all with identical
. Set , where , and let
be the collection of sets . Similarly, define sets,

distributions , and the collection . We have then

proved that is an -cover, and

C. A Single-Letter Inner Bound for

Define the partial function by

if
undefined else.

(22)

Then and are distinct edges in if and only if
and are both defined, and .

Thus, for , there exists a one-to-one correspondence be-
tween zero-error prefix-free codes forand prefix-free codes
which enable Merlin to compute the function(in the sense of
(13) with .) For , on the other hand, the triplet

constitutes a valid zero-error code foronly if,
for distinct and

and for all

(23)

However, for a valid code which evaluates the
function , if and are both defined and

for some , then

In other words, satisfies the necessary condition

and

for some

(24)

But (24) is a stricter requirement than (23). Thus, we have
that every code satisfying (13) with is
also a zero-error code for . Since the rate region for the
codes satisfying (13) depends only on the marginals
and , we may assume for computation purposes that

, thus guaranteeing

for all . Theorem 3 then provides a characteriza-
tion for the region . Note that, for the function,
-covers of are the same as bipartite covers of.
Thus, we have proved that

(25)

D. A Single-Letter Outer Bound for

The result of Slepian and Wolf [22] will be relevant to us
here, so we begin by briefly summarizing it. Let be a
pair of finite random variables distributed over according
to . Fix . There exists a code , with

, , and
, of rates

such that

(26)

if and only if

Consider any prefix-free zero-error code for .
Such a code satisfies (26) for , with

for any distribution such that , ,
and . Thus, if , then

(27)

Next, note that

for every distinct such that .
More generally

if for some , so that any
can be recovered without error from knowledge of the pair

with . Thus, if is any
random pair such that , then

, together with conveying directly in a point-to-point
lossless encoding sense, constitute a valid encoder pair satis-
fying (26). This shows that if ,
then

(28)
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Fig. 8. (G; P ; P ) for the example of Section III-F. Marginal probabilities
are marked next to the corresponding node labels.

Fig. 9. R (G;P ; P ) andR (G;P ; P ) for (G;P ; P ) in Fig. 8.
R (G;P ; P ) = R [R [R , andR [R � R (G;P ; P ).

Similarly

(29)

We have thus derived an outer bound

in (27)–(29).

E. Computation of the Bounds for an Example

Let us calculate and
for a particular example, shown in Fig. 8. Consider first

. Clearly

with the maximum being achieved by the distribution which as-
signs probability to each edge. We also obtain

by setting for

By symmetry

as well. Thus,

(30)

i.e., it is the region in Fig. 9.
Now for . Note that , where

and

is a bipartite cover of . Choose, for and , the
distributions if , and if , over

and , respectively. (This makes sense, since each
belongs to a unique .) This shows that

By symmetry, as well.
Consider, next, the “corner” points of . Alice

directly encodes , incurring the rate .
Since Merlin can decode without any error, Bob only needs
to distinguish between and , and between and . Bob
can do this by assigning the same codeword toand , and

and , and this entails a rate of

Thus, . The achiev-
ability of this point can also be seen by choosing

and setting if , and if .
By time-sharing the above points, we see that

if it can be expressed in the form

or

or

for some . Thus, in
Fig. 9.

Let us point out a couple of noteworthy features of the bounds
calculated above.

1) and coincide in the
range . Thus, the bounds
yield a tight characterization of in this
range. Also, the corner points

and
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are on the boundary of . The characteri-
zation of in the remaining ranges

and

continues to be unknown.

2) The rate region achievable by time-sharing the corner
points

and

i.e., the region , is strictly contained in
. Thus, successive encoding combined

with time sharing is not an optimal encoding strategy for
this example (except for the trivial cases corresponding
to no time sharing.) This may be contrasted with the
results of Slepian and Wolf [22], which show that
successive encoding combined with time sharing yields
all points on the achievable rate region for any correlated
source when the zero-error constraint is relaxed to
requiring a vanishingly small probability of error.

F. Implications on the Unknown Side Information Problem

Define

(31)

which indicates the minimum rate achieved by successive en-
coding. It follows from Corollary 1, (6), and (7) that

where the minimization above is over all bipartite colorings of
. Here, a key observation is that if is a bipartite

coloring of , then is also a coloring of , as no pair
of -nodes in a color class can be connected to the
same -node in , and hence to each other in . Conversely,
if is a coloring of then , where the identity
coloring assigns a different color to each, is a bipartite
coloring of . Therefore,

(32)

where the minimization is over all colorings of . Note
that we emphasize in (32) the fact that the dependence of

on is fully captured by , and further,
it does not depend on at all. In [1], the minimum of
(32) was defined as the chromatic entropy of , denoted

, and (32) was proven for prefix-free codes. The
result was later generalized to the whole variable-length coding
class in [17, Lemma 2].

Let us also define

(33)

(34)

It immediately follows that

(35)
A similar argument as the above for bipartite colorings can

be repeated for bipartite covers. Specifically, if is a
bipartite cover of , then is also a covering of with
sets from . Note that is a collection of maximal
subgraphs of which do not contain any edges. Conversely,
any covering of with members of can be combined
with the identity covering to form a bipartite cover of .
Therefore, the discussion in Section III-D implies

(36)

The right-hand side of (36) was defined by Körner [12] as the
graph entropy, denoted , and was already shown to
be an upper bound to in [1]. It was also shown in
[1] that graph entropy characterizes theexactminimum achiev-
able rate in a constrained variable-length coding scheme for the
unknown side information problem.

Finally, the results of Section III-E imply that

(37)

which was obtained as a lower bound to in [17,
Lemma 3]. The maximization in (37) was defined in [1] as the
clique entropyof the graph . Since

, (37) can alternatively be written as

(38)

From (35), (36), and (38), it follows that

(39)

Now, let us fix the graph , and allow the distribution to
vary. In [14], Körner and Longo initiated the study of the fol-
lowing questions. They were motivated by a different, appar-
ently unrelated, two-step source-coding problem, but the rele-
vance of the questions to the successive encoding problem is
clear.

1) What condition on guarantees that there exists a non-
vanishing distribution on the vertex set of (i.e.,

for all ) such that equality is achieved
in (39)?

2) What condition on guarantees equality in (39) forall
distributions on ?

Subsequent investigations revealed a surprisingly deep interplay
between purely combinatorial properties of and the infor-
mation-theoretic question of equality in (39). The answer to
Question 1 is affirmative if and only if is a normal graph
[15]. On the other hand, Question 2 has an affirmative answer
if and only if is perfect[9]. The graph is normal if its
vertex set can be covered by a collection of sets from as
well as a collection from , such that any pair of sets, one
from each collection, share a common vertex [14]. is said to
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be perfect if for every subgraph of ,
is satisfied [3, Ch. 16]. Having its origins in information theory,
the important class of perfect graphs attracted many researchers
mainly due to Berge’s long-standingstrong perfect graph con-
jecture[4]. It follows from the answers to Questions 1 and 2 that
all perfect graphs are normal. This fact was also directly proven
in [13].

In the next section, in search for answers to information-the-
oretic questions similar to the above regarding bipartite graphs
and zero-error correlated source coding, we will derive purely
combinatorial conditions on , thus extending the results of [9],
[15].

Another interesting result regarding the bounds for the
unknown side information problem was shown in [1]:

can be significantly larger than .
Namely, there are graphs with arbitrarily large number of
nodes, such that

This result implies that there are bipartite graphswhere the
gap between and is arbi-
trarily large.

IV. TIGHTNESS OF THEASYMPTOTIC BOUNDS

In this section, we derive conditions for the coincidence of
and based on purely com-

binatorial properties of .
Let and be defined similarly

to and of (33) and (34), respec-
tively. Also define

(40)

and

(41)

as the minimum total rates in and
, respectively. From (19), (20), (27),

(28), and (29), we obtain

(42)

(43)

where the outer minimization in (42) is over the bipartite covers
of . Note that both the maximum of (43) and the minimum of
(42) exist, since the respective constraint sets

and

are compact, and the functions and
are continuous in their respective arguments

and .
The fact that trivially

implies that , and hence
that

(44)

However, if we ignore the “coding interpretation,” then the va-
lidity of inequality (44) is not obvious. In the following lemma,
we give a direct proof of (44) without recourse to the coding in-
terpretation The lemma
also yields conditions for equality in (44), which we will later
use to demonstrate the fact that the combinatorial structure of
alone provides extensive information about the coincidence of

and .

Lemma 2: Let , , and be given. Let
be a bipartite cover of , and random variables , , , and
be jointly distributed according to

(45)

where , , , ,
and . Then

(46)

Equality holds if and only if the distributions are such that

(47)

for all . Thus, equality holds in (44) if and only
if there exists a bipartite coverand a joint distribution
as in (45) satisfying (47).

Proof: For a fixed , for at most one pair
, since any pair induces at most one edge

in . Thus, whenever , takes
only the values and , and . Further

which implies

Using these relations and the trivial inequality
, we have
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and (46) is proved. Equality is achieved if and only if
, and the obvious necessary and sufficient

condition is statistical independence

which is, in fact, the condition specified in (47).

Theorem 4 below investigates a question analogous to Ques-
tion 1 of Section III-F. Namely, it states necessary and sufficient
conditions on whether or not there exist nonvanishing marginals
(i.e., , for all ) on such that (44)
is satisfied with equality. Building on the result of Theorem 4,
Theorem 5 provides sufficient conditions for the existence of
nonvanishing marginals and such that

Finally, Theorem 6 specifies conditions onto ensure equality
in (44) for all marginals and , thus answering a ques-
tion analogous to Question 2 of Section III-F. Throughout, we
hold the bipartite graph fixed, and consider the class of all
marginals and on . Recall that these are obtained by
marginalization of joint distributions on such
that only if .

Theorem 4: Let be an arbitrary bipartite
graph. There exists some joint distribution with nonva-
nishing marginals such that is the characteristic graph of,
and

(48)

if and only if has an exact bipartite cover.
Proof: Suppose that (48) holds. If and , such

that and for the bipartite cover
, and , are the distributions which achieve

the minimum and the maximum of (48), respectively, then (47)
holds by Lemma 2. We claim thatis an exact bipartite cover of

. To show this by contradiction, supposeis not exact. Then
there exists some and such that induces
no edges in . For this , the expression on the left-hand
side in (47) vanishes, since only if .
But the expression on the right-hand side does not vanish, since

and for some and ,
respectively, and , for all .

Conversely, suppose is an exact bipartite cover of . Let
and be any nonvanishing distributions on

and , respectively. Define the joint distribution

(49)

on by setting

if and
else.

(50)

Note that is a valid distribution, since every
induces exactly one edge. Let and denote
the respective marginals on and , and ,

, , and denote conditionals derived from

. The claim follows from Lemma 2 once we
verify that, for all

(51)

only if (52)

only if (53)

(54)

Equations (52) and (54) follow easily from (50) and (49), re-
spectively. Now, using (54) and (50), we get

if and
else.

and

if

else.
(55)

where the summations are overcontaining , and containing
, respectively. So for

if , and

otherwise. Summing both sides over, we see that
for all such that , and

if

else.

Thus, the first part of (53) is verified, and this is trivially com-
pleted by repeating the above analysis for . Now, (51) is
easily verified by substitution.

We next discuss the coincidence of and
. We will provide sufficient conditions in

terms of the graph for this coincidence for some nonvan-
ishing pair of marginals and . Toward that end, we first
prove the following lemma.

Lemma 3: For all triplets , , and ,

(56)

(57)

Proof: We only prove (56) and the proof of (57) similarly
follows. Using (38), we can write
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Also,

Therefore, the result follows if

(58)
holds. Let attain the left-hand side
minimum in (58). Form the sets

for each , and let

so that . The result then follows by ob-
serving i) the sets are complete subgraphs of , and
ii) the value of the minimum on the right-hand side in (58) does
not change when the collection of valid setsis extended from

to the set ofall complete subgraphs.

Theorem 5: Let be an arbitrary bipartite
graph. There exists some joint distribution with nonva-
nishing marginals such that is the characteristic graph of,
and

(59)

if has two exact bipartite covers of the form

(60)

and is satisfied.

Remark:For a general exact bipartite cover ,
the relation holds if and only if the sets in

or do not overlap. See Fig. 10 for a demonstration of an
exact bipartite cover of the form for
which .

Proof: From Theorem 4, it follows that if an exact bipar-
tite cover of the form exists, then
using independent random variablesand , nonvanishing
and on , with , can be constructed such that

(61)
Moreover, . Now, using
Lemma 3, we have

Fig. 10. The bipartite coverC = ffx g; fx g; fx gg and C =

ffy ; y g; fy ; y gg is exact, butjC j � jC j = 6 > 4 = jEj.

Thus, (61) implies satisfaction of all inequalities above with
equality. In particular, , where

A similar result for the other “corner” of
is guaranteed by the existence of .
However, by (55) in the proof of Theorem 4, the marginals
and on achieving the two corner points may be different.
We will show that such a situation cannot arise if and
further satisfy . Note that, in
this case, since every edge may be indexed by a
pair (or ), clearly, for
distinct , we have (and, for distinct

).
Now, in the proof of Theorem 4, choose the distributions

and

over and for , and

and

over and for . If and
are the distributions in (55) corresponding to

and , and and , respectively, then we have

for , and if .

Thus, Theorems 4 and 5 provide purely information-theoretic
characterizations of purely combinatorial properties of bipartite
graphs. Recalling the discussion in Section III-F about Question
1 of successive encoding, the concept of a bipartite graph with
an exact bipartite cover may be understood as an extension of
the concept of a normal graph.

As noted earlier, the question addressed in the following the-
orem is analogous to Question 2 of the successive encoding
case. In answering this question in [9], Csiszáret al.made use of
results from polyhedral combinatorics, and discovered a charac-
terization of the important class of perfect graphs. But the next
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theorem shows that correspondingly requiring equality in (44)
for all marginals and on is too restrictive: a relatively
simple proof shows that such a requirement is equivalent to re-
stricting to the rather uninteresting class of disjoint collec-
tions of complete bipartite graphs.

Theorem 6: Let be an arbitrary bipartite
graph

(62)

for every pair of marginals and on if and only if is
a disjoint collection of complete bipartite graphs.

Proof: For the “only if” part, suppose that is not a col-
lection of disjoint complete bipartite graphs. Equivalently,has
a connected component (i.e., a component wherein there is a
path between any two nodes), denoted, which is not com-
plete. The statement that is not complete is equivalent to the
statement: has an induced Z-shaped bipartite subgraph of the
form

Let and be any marginals such that and
if , and otherwise. The only

bipartite cover of is , so that

Let and be jointly distributed with which attains
. Thus, , and ,

, and

But if and only if for
all . This is impossible, since by
construction, while .

Now for the “if” part. Let , with

for , and , where

be a collection of disjoint complete bipartite graphs, and
let be arbitrary marginals on . Note that any such
marginals satisfy

for every . Define the auxiliary distribution by

if
else

and define similarly. As convenient, we will interchang-
ingly denote entropy as function of its random variable or its
distribution, e.g., or .

Let us begin by calculating . Note that
has the exact bipartite cover , where

, and the collection is composed of all
distinct sets of the form , where . Set

, and define by the distribution

if

else.

The corresponding marginal can be calculated as

Then , and ,
where

and

so that

(63)

We now turn to . Choose the random variables
according to the distribution

if for some
else.

Note that , and , . Further, for
any , if , and otherwise.
Thus,

Since

a comparison with (63) shows that
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It may be observed that the choices made in the proof for
the bipartite covers and random variables correspond to the
following successive encoding strategy, which is intuitively
obvious: Bob directly encodes, expending a rate of .
Merlin now knows to which belongs; Alice identifies

within , expending an expected rate of .

Examples:

1) For the example in Section III-E, we already know that
there exists a pair of nonvanishing marginals onso that
(44) holds with equality. Therefore, must have an exact
bipartite cover. In fact, the bipartite cover given by

and

which was used for computation of the point , is
exact. Further, and in the example are induced by

as in (55) with and .

2) Suppose

where

or

(Thus, is the Shannon typewriter channel on let-
ters.) Retain the notation of Theorem 5. Clearly

are exact bipartite covers of , and they satisfy
. Thus, equality holds

in (59) for every , , with and being the
corresponding uniform distributions.

V. BOUNDS FORFINITE BLOCK LENGTH

Bounds for achievable rates for a finite and fixed block length
are of interest from the algorithmic perspective, as well as in the
study of rates of convergence to the asymptotic limits discussed
in the previous sections.

Let us denote by , , and
the achievable rate regions for block length

for the respective variable-length coding classes. From the
definition of those classes, it is clear that

for all , , and . Unlike their asymptotic counterparts,
these regions do not necessarily coincide.

It follows from the definition of prefix-free codes that

(64)

where the union is over all bipartite colorings of . Also,
recall from the proof of Theorem 1 that if

, then (11) holds. Therefore,

(65)

Next, we turn our attention to the class of scalar instanta-
neous codes. Naturally, (65) also induces an outer bound for

. In the next theorem, we derive an alternate
outer bound which is sometimes tighter.

Theorem 7:

(66)

Proof: The proof is modeled on [1, proof of Theorem 4].
Given a scalar instantaneous code for with rates

We will construct random variablesand such that
and for some bipartite cover ,

and

The theorem will then follow from (25).
Let be the (binary) tree whose vertices are all the strings

in and their prefixes. Similarly define .
We may assume that neither nor contains a vertex
with a single descendant. (Otherwise, the corresponding tree can
be pruned, thus reducing the rate sum.) Associate with every
vertex of the set . Similarly
define for vertices . Note that is never
empty when is a leaf, but may be empty for internal vertices
(and similarly for ).

Associate with each leafof and of the respective
sets

Denote the collections of all suchand by and , respec-
tively. Every (and ) is contained in some
(some ). Further, since is an instantaneous
code, by (2) there exists at most one edge in the set
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, for any and . Thus, is a bipartite
cover of .

Let leaves be the set of leaves which descend from a
vertex . Similarly defineleaves for vertices

. Since and have no vertices with single descen-
dants

leaves

leaves

for every and every . So
for leaves , and for leaves ,
are probability distributions onleaves and leaves , re-
spectively.

Define the random variables and over and by
if leaves , and

otherwise. Define similarly. Then and
. Furthermore, the maps and are

prefix-free codes for and , respectively. Therefore,

and hence . It can be similarly shown that
, and the theorem follows.

We close this section with an example showing that (66) can
indeed be tighter than (65). Letbe a complete bipartite graph.
Then setting and in (65), we get

On the other hand, (66) gives a tighter bound

VI. A SYMPTOTICS OFFIXED-LENGTH CODING

In order to obtain an inner bound on we appeal to
the idea that yielded in Section III-C an inner bound for the
asymptotically achievable expected rate region. That is, we ob-
serve that fixed-length codes satisfy the necessary condition
(23). This condition is weaker than (24), which is necessarily
satisfied by fixed-length codes which enable Merlin to evaluate
the function of (22). Thus, if denotes the asymp-
totically achievable rate region of such codes, we obtain that

.
Now for an outer bound. If , with

and is a code sat-
isfying (23), then takes a different value for

each edge . Thus, . But, by defi-
nition of in (1), , and we have

(67)

for all fixed-length codes . Also, even when Bob
directly sends his information expending rate , the min-
imum rate Alice can achieve, by coloring the “side information”
graph , is given by . Since there is no known
single-letter formula for the limit of , we further
lower-bound Alice’s rate using

Thus,

(68)

(69)

We define by bringing together (67), (68),
and (69).

Notice that can also be obtained by

since fixed-length codes cannot outperform variable-length
codes designed for any pair of marginals and on .
Using the same argument, we now derive a single-letter formula
for .

Theorem 8:

(70)

Proof: Suppose Alice and Bob must design vari-
able-length codes satisfying (24) for unknown marginals
and on a given characteristic graph (e.g., the marginals
are chosen by an adversary). Clearly, the achieved rate pair

satisfies for every
pair of marginals and on . On the other hand, since a
possible coding strategy for Alice and Bob is to use fixed-length
codes, we have

Now for the reverse direction. Thetypeof is the
distribution on defined by

for every

Recall the definition of typical sets from (18). If the pair of
types and are marginals on , the proof of Theorem 2
shows that, for any , and for large
enough , there exists a code , where

and such that
and , which satisfies (24) for any

and with and . A
fixed-length code for the entire space is now obtained
by choosing such a code for each pair of typesand , and
preceding the codewords for each pair of types with a pair of
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type-specifying indexes. The claim follows from the fact that the
number of distinct pairs of types grows only polyno-
mially with , and hence, the additional rate expended for such
indices vanishes as .

Define

It then follows from (70) and (42) that

We next consider a simple calculation example. Let
be as in Fig. 8, and fix , where

and

Then

By an application of [20, Theorem 2], the expression on the
right-hand side is seen to be ; this is achieved by choosing

as in Fig. 8, and choosing, for , ,
if and only if . Since

as well, we conclude from (67) that .
Further, it is easily seen that is
achieved by a scalar code setting

and

VII. CONCLUSION

We initiated the study of rates ofzero-errortransmission for
two senders who wish to convey correlated information from
their respective sources to a receiver, when no communication
is permitted between them. While a single-letter formula for
the asymptotically achievable rate pairs remains elusive, we
derived single-letter inner and outer bounds for both fixed-
and variable-length coding. These bounds specialize to known
results for the unknown side information problem, where one
sender directly conveys his/her information expending full rate.
Depending on circumstances, the inner/outer bounds can vary
from tight to involving an arbitrarily large gap. We analyzed
conditions for tightness in terms of purely combinatorial prop-
erties of the underlying characteristic graph. We also showed,
via an example, that successive encoding combined with time
sharing does not span the entire achievable rate region, in
contrast with the Slepian–Wolf setup, where an asymptotically
vanishing probability of error is tolerated. Finally, we derived
bounds for variable-length coding with a finite block length,
and for fixed-length coding with infinite block length.
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