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1) Pick a subinterval C; (e.g., C; = [79, 86]) simple to implement, has been implemented, and completes its task
2) Let (cly, cly, cl3) run through the interval C,. For in less than 5 min.
each frame j = 1,...,m calculate Finally, the presented attack also enlightens new interesting design
) weaknesses in A5/1 that should be considered when constructing new
Plets cla cls) = ZP((Clu cla, cl3) in v:th pos.) stream ciphers.
v=T
J —
Oty et et o100 = O] REFERENCES
+ 1/2 . (1 — z P((ch cly Clg) in v:th pos.)) [1] E. Biham and O. Dunkelman, “Cryptanalysis of the A5/1 GSM stream
— e cipher,” in Indocrypt 2000 (Lecture Notes in Computer Scienge).
v=1 1977, 2000, pp. 43-51.
Calculate the log-likelihood ratio of the weighted [2] A. Biryukov, A. Shamir, and D. Wagner, “Real time cryptanalysis of
probability over all frames A5/1 on a PC,” inFSE’2000 (Lecture Notes in Computer Scienee).
‘ 1978, 2001, pp. 1-18.
m pﬂ [3] M. Briceno, I. Goldberg, and D. Wagner. (1999, May) A pedagogical
A(cl1 claycl) = Z In __(_c_ll_*fl?_’ﬁfi)__ implementation of A5/1. [Online]. Available: http://scard.org
e p— 1- pgcl clacls) [4] J. Golic, “Cryptanalysis of alleged A5 stream cipher,"Barocrypt'97
penes (Lecture Notes in Computer Sciencedl. 1233, 1997, pp. 239-255.
Estimate the linear combination [5] T. Johansson and F. Jonsson, “Improved fast correlation attacks on
1 9 3 stream ciphers via convolutional codes,” Eurocrypt'99 (Lecture
Sey + e, + Sy = HD(A(ey el els)) Notes in Computer Sciencejpl. 1592, 1999, pp. 347-362.

. . [6] M. Krause, “BDD-based cryptanalysis of keystream generators,”
using a hard decision (HD) on the value of presented at the EUROCRYPT 2002, [Online] Available: http://www.
A(ctl,clz,cls)- [7] {/?/Cklloer'gér and O. Staffelbach, “Fast correlation attacks on certain stream

3) Decode the generated linear code V. Vel : : ! !
) g ciphers,”J. Cryptol, vol. 1, pp. 159-176, 1989.
Sitl + 8312 + sgla — HD(A(Ch’dz’da)) [8] A. Menezes, P. van Oorschot, and S. Vanstdf@ndbook of Applied

Cryptography Boca Raton, FL: CRC, 1997.
for (cly, clo, cl3) in interval C; using a ML decod-
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sequences are recovered. Error Exponents in Scalable Source Coding
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tion values for scalable source coding is extended to additionally account
for error exponents, namely, the negative normalized asymptotic log like-
lihood of error events at different layers. The “error” at each layer is de-
fined as the event that the source block is not reproduced within the pre-
specified fidelity at the corresponding decoder. We consider separate error
events at each layer so as to allow a tradeoff analysis for the error expo-

We have proposed a new attack on the A5/1 stream cipher, bagedts when the rate and distortion values are fixed. For two-step coding of
on an identified correlation. In contrast to previous attacks, this is n@igcrete memoryless sources, we derive a single-letter characterization of
a time—memory tradeoff attack, but uses completely different prop(%ﬁl‘SE region of all achievable6-tuples (R, Rz, Ei, Ez, Dy, D), i.€.,

. . T . e rate, error exponent, and distortion levels at each layer. We also ana-
ties of the cipher. It explores the weak key initialization which allow&,Ze the special case of successive refinability, whete,, E+, D1) and

to separate the session key from the frame number in binary ling&,, E,, D.) individually achieve the nonscalable bounds. A surprising
expressions. outcome of the analysis is that for anyD., D, and E,, there exists a fi-

The complexity of the attack is only linear in the length of the shiffite threshold B, > E. such that successive refinability is ensured for all
registers and depends instead on the number of irregular clockings bé- = ~*
fore the keystream is produced. The implemented attack needs the 40dex Terms—Error exponents, large deviations, reliability, scalable
first bits from abou®'® (possible nonconsecutive) frames, which corsource coding, successive refinement.
responds to about 5 min of GSM conversation. Our implementation of
the attack shows that we have a high success rate; more than 70%. This
can be improved by using larger list size and/or larger interval size. Thevianuscript received March 20, 2001; revised May 30, 2002. This work
complexity of the attack using the parameters presented here is quiés supported in part by the National Science Foundation under Grants

low and the attack can be carried out on a modern PC in less than 5 'Em_9986037|banﬁ bE'A'tOO_8013I4r thf U”ti"irsnhy Cl’f _Califlornia M'\_/“dCRO §
. . . . rogram, Dolby Laboratories, Inc., Lucent Technologies, Inc., Mindspee
using very little precomputation time and memory. Technologies, Inc., and Qualcomm, Inc. The material in this correspondence

The improvements compared to previous work are the followingsas presented in part at the Canadian Workshop on Information Theory,
All previous attacks have a complexity exponential in the shift-regist¥ancouver, BC, Canada, June 2001.
length. The complexity of the attack presented in this correspondencéhe authors are with the Department of Electrical and Computer Engi-
is roughly linear in the shift-register lengths. neering, University of California, Santa Barbara, CA 93106-9560 USA (e-mail:
. I . ertem@ece.ucsh.edu; rose@ece.ucsb.edu).
Previous attacks also need either much precomputation and/otommunicated by P. Narayan, Associate Editor for Shannon Theory.
memory or they have a high time complexity. The proposed attack isDigital Object Identifier 10.1109/TIT.2002.806142

VII. CONCLUSION

0018-9448/03$17.00 © 2003 IEEE



290 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003

|. INTRODUCTION a necessary and sufficient condition for successive refinability, which

Successive refinement of information, or scalable source coding,ﬁ%sfundamenta“y different from the condition provided in [5]. In

received increasing attention in recent years, mainly due to the grow%%mcu'ar’ it implies that for even., D, and £y, there exists an

o 5 > FE5 such that successive refinability is ensured fodall> Es.
prevalence of heterogeneous communication networks such as the F{/_Ve beain with some preliminaries in the following section. In Sec
ternet. This setting involves the embedding of descriptions, rangin 9 P ) 9 '

n lll, we employ the type covering lemmas [3], [6], to construct a

from coarse to fine, into a single bit stream so that the signal can betrI -

produced at higher quality as a larger portion of the bit stream is beirciﬁdmg strategy and in Sgctlon IV we prove, by.exten(.jmg thg approach
accessed. of [9], that no better coding strategy exists. Finally, in Section V, we

The early results on rate-distortion theoretic analysis of scalaba}galyze the special case of successive refinability.

coding is due to Koshelev [7], [8], and later to Equitz and Cover [4].
Most early work was mainly concerned with successive refinability IIl. PRELIMINARIES

of the source, i.e., the conditions under which it is possible to et {X,152, be a sequence of independent and identically dis-
perform scalable coding without compromising the rate-distortiagibuted (i.i.d.) random variables taking values from the finite source
performance. The set of all achievable rates and distortions in scalafiighabet.v’, with probability mass function (pmfP. We assume,
coding has been derived independently by Koshelev [7] and Rimolgithout loss of generality, thaP(:) > 0 for all = € X'. Let ), and
[10]. Work by Kanlis and Narayan [6] and Haroutunian and Haruy, denote the first- and the second-layer finite reproduction alphabets,
tyunyan [5] offered extensions to account for rate, distortion, angspectively. We assume, for both layers= 1, 2, single-letter
error exponen(or reliability as referred to in [5]). However, an exactgistortion measured:: X' x Vi — [0, o), i.e., d; extends ton
characterization of the entire region of achievable rates, distortioggmensions as
and error exponents has not been fully derived so far and is the subject .
of this correspondence. di(z", y") = 1 Z di (e, yo).

The rate-distortion functio®»(D) for the memoryless sourcg n i
indicates the minimum rate required to (asymptotically) achiewvevan
eragedistortion D. A more demanding rate-distortion problem arises N nonscalable source coding, a palt:, D) is achievableif for
from statistical consideration of therror event i.e., the event that a €verye > 0,6 > 0, there exist a sequence of block-encoding functions
source vector is compressed at distortion exceeingvhile the rate f": X" — M{" and a sequence of block-decoding functions
Rp(D) is sufficient to ensure that the error probability vanishes as tl M MM — i, such that
block lengthn tends to infinity, a major concern is with its asymptotic

rate of decay. The asymptotic decay is typically quantified by the error l log MS“) <Ri+56
exponentE = — < log Prlerrof. Thus, the rate-distortion problem and "

may be generalized to ask one of the two questions: i) What is the min- o (n) [ #(n) )

imum rate required to achieve an error exponent at or above a given Pr [dl ()‘ c (fl (X ))) < Dl] 21l-e

level? ii) What is the maximum error exponent achievable at or below . Th -k te-distortion functioR »( D
a given coding rate? The standard rate-distortion problem correspomféar%e enougle. The well-known rate-distortion functioR > (D1),
to the special case of i) with required error exponBnt— 0. given by
The maximum error exponent for nonscalable source coding was _ . -

first characterized by Marton [9]. Given a discrete memoryless source Rp(Di) = WeWn(Dy) Tew (X: V1), (1)
(DMS) with distribution?, and given distortion and rate levalsand

R, respectively, the best error exponent, denotedFby D, R), is where
characterized in terms of the information divergefit&)|| P) and the ) N .
rate-distortion functiond (D), for all sourcesy). Considering the Wre(D) = {W(yle): Bpw{di (X, Y1)} < Di}

best error exponent as function of rate, Marton also discussed the gx- .- +oizes the minimum achievable rate for distorfign Here . E

istence of (possibly infinite but countable number of) discontinuitieg‘mdI respectively, denote expectation and mutual information, and
Sufficient conditions for continuity of the maximum error exponent foij(’l, yi) = P(:E)’Wr(yl 1) is the joint pm for random variable)s"

all rates were derived in [9] and [1]. andY;.

In this correspondence, we derive a single-letter characterization oqn scalable source coding, achievability of a quadruple
Ep(D1. D2, Bi. R», E), the best error exponent achievable in th Ry, R2.D1,D5) is consideredi Adopting a slightly modified
second layer given the distortion and rate constraints for both lay gréior;’ of7 Rimoldi's definition [10], we say that quadruple
and the error exponent constraint for the first layer. We also provi %1.R2,D1.D2) with R. > R, is successively achievablé for
an equivalent characterization in terms of the minimum second Iayé?/refye >0, (’5> 0. there exist a sequence of block-encoding functions
rart]e as a function of the oth?r pk?rameté?sl,(lz)ll, Dé’ Ey, Es, le)' (0 xm — M fori=1, 2, and a sequence of block-decoding
which is an extension of the rate-reliability-distortion functiori' . (), 5 4(n) noo(n), oy g () g () n
Rp(Dy, Ey) of [5]. Kanlis and Narayan [6] previously considered ar}unctmns,q] PMGT — T andgy M X My — )7, such
extension of the nonscalable error exponent result of Marton, however,

they mainly analyzed the case where the error exponent at the first 1 log MM <Ry + 68
layer coincides withEp (D1, R1), precluding a possible tradeoff Ilt R

analysis between the error exponents at separate Iayers. ngoqtgnian ~log A/lg") <Ry —Ri+6
and Harutyunyan [5] analyzed the special “successive refinability” n

case, i.e., the conditions under which and

Rp (D4, Do, Ev, Eo, Rp(D1, E1)) = Rp(D>, E n (n "), n
P(D1 2, Ev, Es, Rp(Dy, Ey)) p(D2, E2) Pr[dl (X 795)(f1( )(X )))SDL,
is satisfied. We further use our characterization of the function

. n (n) n n n -1
Rp(D1, Do, Ei, E>, Ry) to analyze the above equality, and prove dy (’f 93 ( . B ))) < Dz] >1l-e¢
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for large enough:.l A single-letter characterization of the set of {0: RQ(D1)>RI}
achievable quadruples has been provided independently by Koshelev RN

[7] and Rimoldi [10]. Kanlis and Narayan [6] stated as a corollary to / D
Rimoldi's theorem thatR., R», D., D) is achievable if and only ! s
if Ry > Rp(Dy)andR: > Rp(Dy, D2, Ri), wheré \ N

’

Rp(D1, D2, Ry) Kullback-Leibler N

= max {Rl, min Ipw(X; Y1, V5 )} (2) ball" of radius El "l
WeWp(D1,D2,R1) \

’
’
’
’
’

with Ep(Dy, Ry) ...~
Wep (D1, D2, Ri) ={W(y1, y2|z):
Epw{d((X, Y1)} < Dy,

Epw{d2(X, Y2)} < Do,

Ir(X:Y)) < . Fig. 1. If (R,, E,, D,) is achievable, i.e.E, < FEp(D,, R,),
Pw(X; Y1) < Bi} then the Kullback-Leibler bal{Q: D(Q||P) < E.} and the set

It obviously follows from (2) thatRp(D:, D2, Ri) is nonin- {Q: Ro(Dy) > R} are disjoint.

creasing in the distortion arguments. Moreover, siheg (X; Y1),
Irw(X: Y1, Y2), Epw{di(X,Y1)}, and Epw{d2(X, Ys2)},
are all convex functions ofW(yi, y2|x), it also follows that
Rp(D1, D2, Ry) is a convex (and hence continuous) function in a
its arguments. (The standard proof in, e.g., [2, Lemma 13.4.1], caf
easily be extended fdk» (D1, D2, R;).) We will need this important
fact in the proof of Lemma 3 in Section IV.

More demanding rate-distortion problems arise from the consider- . . . . -
ation of the asymp%otic behavior ofﬁhe probability of the error everf%n |IIustrat|or_1 of (4) is provnde_d n Fig. 1. . .
The asymptotic decay of the probability of the error event is typically. 2) An equivalent characterization of achievalile:, E1, D1) is

fs is immediately seen by settidgg= P in (3). More generally, the
hievability of( R1, F1, D1) implies that

D(QIIP) < By = Ry > Ro(D1), VQ. 4)

quantified by theerror exponentEl — — L log Pr[errof. This quan- via the rate—reliability—distortion functioR» (D1, E+), which is de-
= —1log . B s . .
tity is also referred to as theliability, and we shall use these termginedin [5] as the minimund?, such tha(R:, E1, D) is achievable
interchangeably. ,
Rp(Dy, Ey) = sup. Ry(Dy). (5)
Definition 1: (R, Ey, Dy) with E > 0 is anachievableate—re- Q:D(QIIP)<Ey

liability—distortion triple if for any givere > 0 andé > 0 there exist
a sequence of block-encoding functiof{é”: X" — ME”) and a
sequence of block-decoding functioyﬁé”: ME”) — Y, such that

3) As the error exponent becomes arbitrarily small, i.eEas~ 0,
the minimum achievabld?; tends toRp (D) from above. Another
extreme case is wheli, — oc. By inspection of (3), or equivalently

1o (5), it follows thatR; > R°(D;) must be satisfied to ensure that
o log M| < Ri+d (R:1, oo, D7) is achievable, where
and
1 -n (n) n -n 0 —
——log Pr [dl (x , gt™ (f{ (X ))) > Dl] >E —e R'(Dy) = max Ro(D) (6)
for large enoughn. is the “zero-error” rate-distortion function [3, Theorem 2.4.2].

The maximum error exponent for given rate and distortion values4) It should be noted that the coding strategy that achieves

were characterized by Marton [9] (cf. also Csiszar and Kérner [3]). (R1, Ep(Dy, Ry), Dy) is universalin that the same construction
achievesEr (D1, Ry ), with the given rate budgeR; and the dis-

Theorem 1—Marton [9]: (R:, E, D) is achievable ifand only if tortion constraintD;, for all sourcesP. Thus, the coding method
0 < By < Ep(D1, R1), where does not make use of prior knowledge abdut (See [9] and [3,
Theorem 2.4.5].)

Ep(D1, Ry) = inf  D(Q|P) ®) o S _
Q:Ro(P1)>TF The generalization of the rate—reliability—distortion analysis to
and whereD(Q|| P) is the Kullback—Leibler (information) divergencesc"’l_lable coding was first addressed by Kanlis and Narayan [6]. They
between and P. mainly analyzed the case where the error exponent at the first layer
coincides withEpr (D1, R;), precluding a possible tradeoff analysis
Remarks: between the error exponents at separate layers. Haroutehiah

1) An obvious necessary condition for the achievability of5], on the other hand, only considered the conditions for successive
(Ri,E1,D1)is R > Rp(D1), because otherwisEr (D1, R1) =0 refinability, i.e., whether or not a scalable coder can achieve Marton’s

. o - ) error exponent functiorE»(D;, R;) at both layersi = 1, 2. In
1Rimoldi’s original definition does not enforcR, > R,, and requires

: = this work, we characterize the entire set of successively achievable
1] (m (I < R, + 6, instead of! 1 M <R, — ’
B 0 M| IM.T] S R + 8,1 v log | M7 < Re 6-tuples(R1, Rs, E1, Es, D1, D3).

1+ 6.

2The reason for adding the external maximization to the original version of pefinition 2: (R1, Ry, E1, Eo, Dy, Dy) with Ey, E; > 0 and
[6] isthat R, > R, must be satisfied. Observe thati®, > R;(D.), . Py T e s T .
the minimum in (2) isR » (D-), which makesR; greater than the achieved By 2 _Rl IS a syccesswely achlevablmte—rellablIlty—dlstortlon
minimum. On the other hand, R, < R, (D), then the minimum in (2)is 6-tuple if for any givene > 0 andé > 0, there exist a sequence of

always greater than or equal B, (D). block-encoding functions"i("): X" — /\AE'L) fori = 1,2, and
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a sequence of block-decoding functiogis’: M{" — Y7 and
g5 M) x MUY — Y3 such that

MM <R +6

— log
n

1 n
- M| <Ry =Ry +6

log

and

—%log Pr [dl (x" g™ (fl(")(X”))) > Dl] >E —¢

1 n n (7 n (7 s
——logPr[ds (X", g (F(X"). £7(X™)) > Do
2 E2 — €

for large enoughe.

Remark: The special caseF;,E, —
Rimoldi’'s successive refinement characterization [10],
(Ri,R2,E1,E2,D1,D5) with Ey, Es 0 is successively

achievable ifand only iR, > Rp(D;) andRs > Rp(D1, D2, Ry).

0 corresponds to

—
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Finally, we will also need the scalable extension of the type covering
lemma& proved in [6].

Lemma 1—Kanlis and Narayan [6]For distortion measure& on
X x Y, andd; on X x Vs, type@ on X', and number®,, D, > 0,
Ry > Rq(Dy), 61, 62 > 0, there exist set, € Vi andB2(y7) €

)y for yi' € BBy satisfying

1
510g|81| SBI +61

1 n c n
—log[Ba(yi)| S Ro(Dy, Dy, B) = Ba+ 62, Vyi €5y
and
Va" €Ty,  F{yl €Bi,ys €B2(y1)} st
di(2", 1) < Dy
da(x", y3) < Ds.

ie.,

I1l. SUFFICIENT CONDITIONS FORSUCCESSIVEACHIEVABILITY

In this section, we derive sufficient conditions for successive

As in the case of nonscalable coding, functions that characterize %ievability by constructing an actual scalable source coder that

set of all successively achievall®,, R, E1, E>, D1, D>) can be
defined in two equivalent ways:

Definition 3: Given E;, E> > 0, and rate R, >
Rp(Dy,E,), the scalable rate—reliability—distortion function
Rp(Dy, D+, Ey, E2, Ry) is defined as the minimurR, such that the
6-tuple(R:, Rs, E1, E>, Dy, D-) is successively achievable.

Definition 4: Similarly, the scalable error
tion Ep(D., D2, R, Ro, Ei), defined under the condi-
ton Ry > Rp(D1, Ev), is the maximum E, such that
(R, Rs, Ev, Es, D1, D) is successively achievable.

exponent func-

satisfies the given constraintd., D», E\, E», R,). The coder's
second layer ratd?; is obviously an upper bound for the scalable
rate—reliability—distortion functio®r (D1, D2, Ei, E>, Ry).

The coding strategy consists of separate construction of encoding
and decoding functions for each type. Thus, initially, the type of the
source vector is losslessly transmitted to ensure that the decoders utilize
the correct lookup tables for reconstruction. Since, according to the
type counting lemma, there are at most polynomially many distinct
types, lossless transmission of the source type has an asymptotically
negligible impact on the overall coding rate.

To prove the existence of encoding and decoding functions that op-

We make heavy use of the method of types in the next section wh&féte atgiveriDi. D>, Ry ), we employ the nonscalable and scalable

we construct codes that achielte: (D1, D2, R1, R», E1). The few

type covering lemmas. According to (7), for each type clgswe can

properties of types that we provide in the remainder of this sectiord the possibility of having an error event at the first and the second
are sufficient to follow the sequel. The reader is referred to [3] for dayers ifD(Q[|P) > Ei andD(Q||P) > Ex, respectively. We utilize

extensive discussion.
The type of a vector™ € X" is the empirical distribution given by
, 1
P(a) = = N(a|z"
(a) = = N(ale")
whereN (a|z™) denotes the number of occurrences af =" . We de-
note byI¢, the type clasg), i.e., the set of all source vectar$ having

type 2. A most fundamental property of types is the type counting
lemma which states that the number of distinct types for sequences

of lengthn grows at most polynomially with. [3, Lemma 1.2.2].

Two other properties are crucial for error exponent analysis in source

coding:

Type Class Probabilities [3, Lemma 1.2.6]Fhe probability that
X" € T5 whenX™ is generated i.i.d. with pmP, decays exponen-
tially asn increases, with the exponeRt ()| P). More precisely

(n+1)" " exp{=nD(Q|IP)} < P"(T5)

< exp{—nD(Q[|P)}. @)

Type Covering Lemma [3, Lemma 2.4.1fFor any distortion mea-
sured; on X x Yy, type@ on X', and number®; > 0,6, > 0, there
exists a se3; € ;' satisfying

1 !
ﬁlogl&l < Rg(D1)+ 61,
and
va" e Ty,

Jyp € B stdi(2", y7) < Dy.

this fact when we decide on which type covering lemma to employ at
each type.

We separately analyze the two possible cases< E» andE; >
E,. Recall that (4) is by definition a necessary condition for achiev-
ablllty of (R1., Rz, El, Eg, Dy, Dz)

Case I: Ey < FE>. We adopt the following source-coding strategy
for each type clasg(;.

« If D(Q||P) < Ei: SinceD(Q||P) < E- is also implied, we
employ the scalable type covering lemma to prevent the error
event at both layers. Note that from (4}; > Rq(D;) fol-
lows. Thus, for any:, 62 > 0 and large enough, we gen-
erate2" #1111 balls of radiusD , and for eachD, -ball, generate
27D, D2y Bi)—FRi+o2] pa|is of radiusD,, such that for every
2" € T¢, there exists a pair ab - and D2 -balls containing:™ .

The encoder sends the correspondingball index in the first
layer, and theD,-ball index in the second layer, so that the ball
centergyy andy; can be recovered at the corresponding decoder
layers without error.

If B1 < D(Q|P) < E,;: We need to prevent only the
second-layer error event. Although we are in pursuit of con-
structing a scalable source coder, we utilize the nonscalable
type covering lemma for generatirg!l?e(P2)+%2] pals of
radius D2, such that for every” € Tg, there exists @.-ball

3This is, in fact, a weaker statement than (and implied by) the result of Kanlis
and Narayan.
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containingx". The encoder sends in the first layer the first R,
Ry bits out of the totalRg (D2) necessary for transmitting the A
correspondingD--ball index, and sends the remaining bits (if 02 )

any) in the second layer. The first-layer decoder reproduces an
arbitraryy?, and the second-layer decoder reproduces the center
of the D,-ball.

If E2 < D(Q||P): The encoder does not send any bits. The
decoders reproduce arbitragy andys .

..,

RP(DZ’ E2)

i sup  Ry(Dy,DyR)

Rp(Dy, Dy, Ry) 1 0: D(QIP)<E,

When the above strategy is applied, the achieved asymptotic rate at the Rp(D2)1
second layer is

‘E2

Ry = max sup Rg(Dy, D2, Ry), . ) . . . .
Q: D(Q||P)<E: Fig. 2. Indicated in bold is a typical curve &,,(D,, D-, E;, E>, R,)

as a function of E,, given fixed D,, D,, R,, and E,, where
sup Rg(Ds) ». R 2 Re(Di, By).
Q: 1 <D(QIP)<E>
second layer. The first-layer decoder reproduces the center of the
D, -ball without error, and the second-layer decoder reproduces

sup Rg(Dq, D2, Ry) > sup Ro(D2) (8) an arbitraryys .
QPRI @ PRl « If E/ < D(Q||P): The encoder does not send any bits. The

which follows from the fact thaR¢ (D:, D2, Ri) > Rq(D-) for all decoders reproduce arbitrayy andys .
Q (see (2)). Therefore,

To simplify the preceding expression, we first observe that

With the same logic as before, it is also clear that the achieved error

exponent at layeris atleastE;, fori = 1, 2. The achieved asymptotic
R> = max __sup Rq(D1. D2, Ry), rate at the second layer in this case is given by
Q:D(QIP)SF,
Ry = sup Ro(Dq, Do, Ry) (20)
sup Ro(Ds), sup R (D») Q:D(Q|IP)<L2
Q:D(QIIP)<Ey Q: B1<D(Q||P) <L

since we only expend bits at the second layer for the typesatis-

- max { sp Ro(D1, D, Ri), fying D(Q||P) < E-, and the required rate for those types is given by

Q: D(Q|IP)<Fy Rq(D1, D2, Ry).
Ro(D Remarks:
o: D(SﬁE)SEZ Q(D2) 1) Observe from (9) and (10) that the achieved second-layeRrate

in both cases is bounded below By (D-, E>), as expected.
— max sup Ro(D1, Do, R1), Rp(D2, Es) © 2)_ It should be noted the_it th(_e above scalable source coder construc-
Q: D(Q||P)<E, tion is source dependent (it relies on the knowledge of the source pmf

. P) in distinction with theuniversalconstructions employed in [9], [6].
where the last equality follows from (5). Moreover, the exponent of the Combining (9) and (10), we observe that if

error event; which is achieved by this strategy at layés at leastt;,
as can be shown by exploiting the type counting lemma and (7):  R: > Ry (D1, D2, Ev, Eo, Ry)

Pri&i] < Z exp{-nD(Q[ )} 2 max sup Rg(D1,D2, Ry), Rp (D32, Es)
Q:D(QIIP)>E; Q: D(Q||P)<min(F1,Fs)
< Z exp{—nE;} (11)
Q:D(QIP)>F; . .
then(Ry, Rz, E1, E», Dy, D»)isachievable. Forthe cagg < E,
< exp{-n[E; — ]} Ry(D,, Dy, Ey, E», R,) immediately reduces to (9). Fét, > E»,

wheree, — 0 asn —s oc. we use (8) withE, playing the role off, i.e.,
Case ll: E; > E->. We adopt the following source-coding strategy sup Ro(D1, Dsy, Ry) > sup Rqg(D2) (12)

for each type clas$;;. Q:D(QIIP)<E; Q:D(QIP)<E;

« I D(Q||P) < E2: We perform the same two-layer type coverind® conclude that?i,(D., D2, Ei, E», R,) is indeed equivalent to
as in Case |. (Note from (4) that, > Rq(Ds).) The encoder (10). A fairly general curve oR% (D1, Dy, Ei, Ez, Ri), as afunc-
sends the correspondir®, -ball index in the first layer, and the tion of E> only, is plotted in Fig. 2R} (D1, Ds., Ei, Ez, Ry) is in-
D--ball index in the second layer, so that the ball centers can gigated as the bold curve which traces the curve of (10EfoK E:.

recovered at the corresponding decoder layers without error. NOte that by_(lz)_R?’(Dlv D2, Ei, Ez, Ry) is above the curve of
Rp(D-, E,) inthis range ofE; values. On the other hand, &5 in-

If E2 < D(Q||P) < Er: We need to prevent only the first-layer creases beyons, , according to (9)R5 (D1, D2, E1, E», Ry) stays
error event. We employ the nonscalable type covering lemma fgf the constant value

generatin@” #1111 palls of radiusD; , such that for every™ €

T}, there exists @ -ball containingz™ . (Once again, note from __sup Rq(D1. D2, Ry)

(4) thatRRy > Rq(D1).) The encoder sends in the first layer the @ PRIPI=m

correspondingD; -ball index and does not send anything in theuntil it meets the curve oRp (D3, FE.), which it traces afterwards.
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For the purpose of the proof (in the next section) thatharacterized by encodingfunctiofis X" —mME”) fori=1, 2,and
Rp(Dy, Do, Ey, Es, Ry) actually specifies the entire achievabledecoding functiong,: M{™ — Y7 andg,: M{™ x M{™ — i,
region, it will be more convenient to work with infimum @¥(Q||P) satisfies
over certain sets. More specifically, we seek a dual characterization of

the same set of achievall®&:, R, E1, E», D, D>), in analogy to 1 log ) | < Ri+6
the nonscalable case wheke> (D, E1) andEp(D;, R,) constitute n L
the dual characterization. The corresponding sufficient condition for 1 log )J\/li")‘ <Ry—Ri+56
achievability is given by n ST
]‘ T
E; <E5(Dy, Dy, Ry, Ry, E1) —log P (Ui (fi. 91)) > Er —e 17
A inf D(Q||P), Ep(Ds, Ro) b (13) for anye > 0 andé > 0, and for large enough, only if

Q: D(Q||P)<ky,
raltn e )= e 1 L og P (U E5(D1, Do, Ri, Ro, E
imsup —— log P" (Us(f1, f2, g2)) < EF , Ds. R1, Ro, E7).
with the standard convention that infimum over an empty set yieldsmmp n 08 Ue(frs f2, 92)) S Ep(Da, Doy B, Ray Bn)

infinity. The best way to justify the duality between (18)
E(Dy. Do, Ry, Ro, E1) and Rp(Dy, Do, Ei, Eo, Ry) Itfolloyvsfrom thistheorem thatthe achievablg region con;tructedin
the previous section is the largest possible achievable region. In other
is perhaps through Fig. 2. Note that the equality words
Q:D(é\r\llg)gEl, DQIP) = Q:RQ(D1171g2lR1)>R2 D(Q||P) Ep(D1, Dy, Ri, Ry, E1) = Ep(D1, Do, Ry, Ro, Ey) (29)
Rg(Dy,Da,Ry)>Ry (14) Rp (D1, D2, By, Es, R1) = Rp(D1, Do, Ev, E2, Ri). (20)

holds whenever the right-hand side is lower than or equak'fo To prove the theorem we make use of two lemmas. Lemma 2 states
Otherwise, the left-hand side yields infinity. Another observation igat when the first-layer coding achieves the error expoiznthen
that when (14) holds, the resultant infimum is lower than or equal tfe probability of the “uncovered” subsét; (f1. ¢1) vanishes not
Ep(D2, R2). Therefore, the first infimum in (13) fits the first part of only for the actual distributior, but for all distributions() close
the bold curve in Fig. 2 where we potentially have enough toP, i.e., all Q that satisfyD(Q||P) < E;. On the other
- hand, according to Lemma 3, for any distributione Q, whereQ is

Bp(Dy, Do, B, Bz, Ba) > R (D2, Ba). the set on which the minimization @ (Q|| ) is performed in order
Obviously, the second component in the minimization of (13)p computeE5s(D:, D2, R1, R, E1), the probability of the subset
Er(D;, R-), corresponds to the second part of the curve in Fig. 2-(f1, f2, g2) is asymptotically bounded away frodn

i.e., wh
€., where Lemma 2: If a coding strategy satisfies (17), then for any> 0

R (Dn, D2, Ev, Ea, R1) = Rp(Ds, Es). and for any probability distributiop such thaD(Q||P) < E1 — 7,

o . it also satisfies
Characterization of achievable 6-tuples through

Er(D1, Do, Ry, Rs, E1) has the additional advantage that we Q" (Ui (fi, g1)) — 0
can now compare the result with the second-layer error exponent
obtained in [6], where the first layer is assumed to achieve thgn — ~c.

optimal exponentty, = FEp(Di, R;). In [6], the formula for the Proof: Let

best second-layer exponent was given as the right-hand side of (14). .

E}(Dy, Da, Ry, Ro, Ey), on the other hand, promises a potentially G, 2 {wn; ‘llog Q") _ D(QHP)‘ < 7/} (21)
larger (and in fact optimal) second-layer exponent if the second-layer n pr(an)

rate R; is large enough. It is noteworthy that in order to achieve thgheren < 1 < E; ——D(Q||P). By the weak law of large numbers,
optimal result here we had recourse to a source-dependent strategy)» () —; 1 asn — oc. Next

IV. NECESSARYCONDITIONS FORSUCCESSIVEACHIEVABILITY Q" U (fi, )= Z (fi,91)Q" (2")

We derive necessary conditions for successive achievability of oGt
(R, R, E1, Es, D1, D2) by extending the approach of Marton [9]. < Z Q" (") + Z (fi,90)Q"(z").(22)
For anyn-block coding strategy, characterized by encoding and de- @G, e EG, NUY

coding functionsf, 2. g1 andgz, we introduce the notation The first term tends to zero by the weak law of large numbers
Un(frogr) = (&7 do(2”, gi(F1(2™)) > Da}  (15) - "
o o > Q") =1-Q"(Gn) — 0. 23)
for the set of points int™ that are not reproduced within distortion angdh,

D, atthe first layer. Similarly, the set of points that are not reproduc

within distortion D, at the second layer is denoted by el%e second term satisfies

Us(fr. fou g2) = (2" da(a". ga(fr("), fo(2"))) > Da}. (16) > (frg)Q "
znEG, NU;
Here, we dropped the superscript from f; andg; for the sake of no- .
tational simplicity. We proceed to state the main theorem of this section. = Z (fi,g1) P"(2") exp {100. % }
T J;VL
zm €, MU,

Theorem 2: Given a discrete memoryless soutéavith P(z) >0
forall z € X, let Ry > Rp(D1, Eq). An n-block coding strategy, < P"(Ur(f1, ;1)) exp {n[D(Q||P) + 1]}
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where the inequality follows from (21). We combine this with (17)On the other hand, we have

usinge < ~ and large enough to obtain Do(fr, for g2) < [L = Q" Us(frs for g2))] Do
> () Q"@") < exp{n[D(QIP)+n-Ei+ e} FQ"Ualfr, fo 92)) damax
T EeG, MUy whered, max = max, y, d2(x, y2) < oo. Therefore,
o 4y Qb o)z DS =Dy SBZ D
From (22)—(24), we conclude that" (s (f1, g1)) — 0 asn — OCD \év;ftei:](;the last two inequalities employ (29). The proof is completed by
Lemma 3: Fory > 0, letQ = Q, U Q3, where D; — Dy

W(Q, D1, D2, Ry, Ry) = ———.
- a(Q, D1, D2, Ry, Ry) d3mmax — D2
&

Qo

{Q: D(Q”P) < Er -7, RQ(D1T Do, R1) > Rz}
{Q: Ro(D2) > R»}.

e e

Note from (27) thatx depends o, D1, R;, and R, throughD3 .00

] We close this section with the proof of Theorem 2.
If @ € Q, then there exists a numbe(Q, D1, D2, R, R2) > 0

such that for sufficiently large Proof [Theorem 2]: Pick any@ € Q, where@ is as defined in
Lemma 3. LetG,. be defined as in Lemma 2 with unspecified. For
Q" (Us(f1, f2, g2)) > a(Q, D1, D2, Ri, R>) (25) sufficiently largen, the weak law of large numbers ensures that

for all coding strategiesf:, f2, g=) satisfying (17). Q"(Gn)>1— %“i(Qa Dy, Dy, By, Ry). (30)
Proof: If ) € Q, then the result follows immediately we next consider the error probability at the second layer

from [9, proof of Theorem 1]. Suppose ¢ Q., and letR, < N o

Ro(Dy, D2, Ry). Recall thatRg(Dy, D2, R,) is a continuous P (Us(fr for g2))

function in all of its arguments, and a nonincreasing functio®in > P"(Us(f1, f2, g2) N Gr)
andD,. Thus, we can pick small enough> 0 such that _ Z (Fiv f2rg2) N G P (™)
z" EUy
R2+26<RQ(D1,D2,R1+6). n(Tn)
= Z (fi, f2,92) N GuQ™ (2") exp {_IOg Pr(zn) }
There also exis{ > 0 andDj; > D, such that wmEUs ’
> Q" (Ua(frs f2, g2) O Grn) exp{—n[D(Q|P) + n]}
Ry +26 < Ro(D1+ ¢, D2, R1 +6) (26)
and > 50(Q, D1, D2, Ry, Ry)exp{—n[D(Q|P)+ n]}
Ry +26 =Ry (D1 + ¢, D5, Ry +6). (27) forsufficiently larger, where the last inequality follows from (25) and

(30). This implies that
Further, ifQ € Qi,i.e., if D(Q||P) < E; — ~ is also satisfied, then,

. 1 _pn )
from Lemma 2, for large enough, we have lim sup ——log I (Ua(f1, f2, 92)) SDQIP) + 1)

n—oo

A . . forall @ € Q and ally. The result follows after taking the infimum of
Di(f1, g1) =Eq@r{di(X", g1(f1(X™))} both sides over the s€}, and lettingy, 7 — 0. Note from (13) that
<[1=Q"(Ui(f1, 91))] D1+ Q" (Ui (f1, 91)) d1 max El*a(DhngRl,Rz, El)

S Dl + Cv
N = min {Qlélgl D(Q||P), Qlencfzg D(QHP)}
whered; max = max. y, di(x, y1) < oco. By arguments similar to — iuf DOIP -
the standard proof of the weak converse to the rate-distortion theorem - érelg (QIIP).
(e.g., [2, Theorem 13.2.1]), farlarge enough to satis®: (f1, g1) <
Dy + ¢ and (17), it follows that V. SUCCESSIVEREFINABILITY
Ry +26> Ro(D1+¢, Da(f1, f2, g2), Ri +6) (28) A very desirable feature of scalable source codingpiscessive re-
finability. The source is said to be successively refinable if there exists

where a scalable coding strategy which achieves the desired output quality by
expending only the rate needed in a nonscalable scenario, at each layer.
Dy(fi. fou g2) a Eon {da( X", g2 (f1(X"), f2(X™))}. In the rate-distortion sense, this notion was introduced in [7], [8], and

[4], which also provided the necessary and sufficient conditions to be
satisfied by the conditional distributio®; (y1|x) andW2(y2|x) that
achieveRr(D1) andRr(D3), respectively, in (1).
. -y Successive refinement in rate—reliability—distortion analysis was
Fo(Di+ ¢, Doy Ri+8) > Ro(Di+ ¢, Dy Ru+6) first discussed in [6]. The analysis in [6] was concerned with whether
> Ro(D1+ (. D2f1, f2, 92). B +6)  the nonscalable coding exponefts(D2, R2) coincides with the
exponent of the event that either the first layer or the second layer in-
which, in turn, implies from the monotonicity adRq (-, -, -) in the  troduces error, when the first-layer exponent is fixe&a{ D1, R, ).
second argument that Since we discuss the tradeoff between the separately defined error
exponentsE; and E>, we are naturally interested in the notion of
Dy < D3 < Da(f1, fo, g2)- (29) successive refinement defined below.

Hence we have
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Definition 5: The sourceP is successively refinable froD,, E;) Pictorially, Ry corresponds to the ordinate of the straight bold line seg-

to (D2, Es), if the 6-tuple ment in Fig. 2, ar](ﬁz is the abscissa of the right endpoint of the same
(Rp(D:, E1), Rp(D, Ex), E1, Es, D1, D») line segment. If R, > R°(D-), successive refinement is not possible
) ' T ; forany E, > E;.
with Rp (D2, E») > Re (D1, Ey) is successively achievable. Note that our successive refinability conditions are fundamentally

This definition, which is repeated here for convenience and notdiferent from those given in [5]. Our result is surprising in that for
tional adjustment, first appeared in [5], where the authors analyzed the = £2, successive refinability is granted without any further condi-

caseE, > E1. An equivalent definition in terms of Marton’s error ex-{10n, whereas the conditions in [S] fdr. > [\ are somewhat remi-
ponent function is as follows. niscent of those we derived for the case < E;.

A special case of the above discussion is whgn E2 — 0. Then
Definition 6: The source” is successively refinable froD., R1) Rp(D,, E;) = R(D;),fori = 1, 2. In that case, (33) reduces to
to (D-, R3) for R» > Ry, if the 6-tuple

(R, Rs, Ep(Dy, Ry), Ep(Ds, R»), Dy, Ds) Rp(D2) 2 Rp(D1, D2, Rp(D1))

is successively achievable. which can only be satisfied with equality. The necessary and sufficient

It is clear from our characterization of the achievableuples conditions for equality were provided in [8], [4].
(R, R2, E1, Es, D1, D2) that the source is successively refinable

in the rate—reliability—distortion sense if and only if VI. CONCLUSION
Rp(D2, E2) = Rp(D1, D2, Ev, Ea, Rp(D1, Ev)) (31) We characterized the region of all achievablé-tuples
or, equivalently, if and only if (R1, Ry, Er, Es, D1, D) for the scalable source coding sce-

) ) nario. Given sourceP’, the characterization is in terms of the
Ep(Dy, By) = Ep(Dy. Do, By, By, Ep(D1. Bv)). (32)  information divergenceD(Q|P) and the rate-distortion functions
In this section, we will present necessary and sufficient conditions f&g (D») and Ro (D1, D2, R:), with respect to all possible sources

(31) to hold. (. We specialized the necessary and sufficient achievability conditions

Comparing (31) and (11), one can state that the soBiriesucces- to the successive refinability case, and obtained the surprising result
sively refinable from( D+, E\) to (D2, E-) if and only if that it is possible to achieve the bounfls = Rp(Dy, E;) and
Ry (Ds, E) R, = .Bp(Dz, E») for all second-layer error exponents above a

specified thresholds.
2 sup RQ(D] N ng RP(D1 N E1 )) (33)
Q: D(Q|P)<min(Fy,F2)

If E; < E\, using the definition o » (D2, E-), the condition (33) ACKNOWLEDGMENT
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Q:D(Q||P)<Fy
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