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Computation and Analysis of theN -Layer Scalable
Rate-Distortion Function
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Abstract—Methods for determining and computing the rate-
distortion (RD) bound for -layer scalable source coding of a fi-
nite memoryless source are considered. Optimality conditions were
previously derived for two layers in terms of the reproduction dis-
tributions and . However, the ignored and seemingly in-
significant boundary cases, where = 0 and is unde-
fined, have major implications on the solution and its practical ap-
plication. We demonstrate that, once the gap is filled and the re-
sult is extended to -layers, it is, in general, impractical to vali-
date a tentative solution, as one has to verify the conditions forall
conceivable ... ... at each( 1 . . . ) such that

... = 0.
As an alternative computational approach, we propose an iter-

ative algorithm that converges to the optimal joint reproduction
distribution ... , if initialized with ... 0 every-
where. For nonscalable coding( = 1), the algorithm special-
izes to the Blahut–Arimoto algorithm. The algorithm may be used
to directly compute the RD bound, or as an optimality testing pro-
cedure by applying it to a perturbed tentative solution . We ad-
dress two additional difficulties due to the higher dimensionality of
the RD surface in the scalable( 1) case, namely, identifying
the sufficient set of Lagrangian parameters to span the entire RD
bound; and the problem of efficient navigation on the RD surface
to compute a particular RD point.

Index Terms—Alternating minimization, Kuhn–Tucker opti-
mality conditions, rate distortion (RD), scalable source coding,
successive refinement.

I. INTRODUCTION

SCALABLE source coding has received much attention in
the last decade, especially after the advances in heteroge-

neous networks such as the Internet, because it enables serving
a diverse set of users with differing bandwidth constraints. In
scalable source coding, descriptions, ranging from coarse to
fine, are embedded into a single bit stream. Hence, users with a
low-bandwidth connection can reproduce the signal at reason-
able quality, although they only access a subset of the bit stream,
while high bandwidth users can achieve high-quality reproduc-
tion of the source.

The early treatment of the problem of scalable coding within
rate-distortion (RD) theory is due to Koshelev [10], [11], and
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Equitz and Cover [8]. These papers were concerned with the
conditions under which scalable coding is possible without
compromising the RD performance. Koshelev used the term
divisibility, and Equitz and Cover coined the termsuccessive
refinability. Here, we follow [12] and employ the term “succes-
sive refinement without rate loss” to distinguish from “plain”
successive refinement. Rimoldi [14] addressed the more general
question and discovered necessary and sufficient conditions for
the achievability of any sequence of rates and distortions. Later,
Effros [7] extended these results for stationary ergodic and
nonergodic sources. In an interesting recent work, Lastras and
Berger [12] proved that for continuous reproduction alphabets
and difference distortion measures, it is possible touniversally
bound the rate loss (the extra rate penalty paid for using a
scalable coding scheme). Specifically, they showed that for the
squared error distortion measure, the rate loss is bounded by
half a bit at each layer, i.e., for an arbitrary source, there exists
a scalable source coder achieving distortions and rates

, where denotes the nonscalable RD
function. This important result leaves open a few questions. It
is unknown whether similar bounds exist for other cases (e.g.,
finite-alphabet sources with finite reproduction alphabets).
Another concern is that the rate loss may become significant at
low-resolution applications, i.e., where the rate is comparable
to, or is lower than, 1/2 bits.

In this paper, we consider exact computation of the-layer
scalable RD surface for finite-alphabet sources. This problem is
first analyzed in [7, Sec. V] for the case of , where, a
nonlinear system of equations and inequalities in terms of the
optimal reproduction distribution is formed. This system
parallels the nonscalable RD optimality conditions, and is typ-
ically employed to find the optimum by the trial of “tentative
solutions” that satisfy a subset of the inequalities with equality,
until the one also satisfying the remaining inequalities is found.
(See [2, Sec. 2.6] for a detailed description of such an approach
for the nonscalable RD analysis.) However, unless symmetry
or other properties of the problem help in reducing the space
of possible tentative solutions, this approach becomes impracti-
cally complex as the size of the reproduction alphabet grows.
For an extreme example, if the source and the reproduction
alphabets are continuous, one has to finely discretize the re-
production space, and the number of tentative solutions to test
grows beyond reasonable computational means. Moreover, the
optimality conditions of [7] contain a small but crucial gap. In
fact, they are correct only if one assumes that for all

. These optimality conditions are ambiguous for a test
such that for some , and do not specify whether such
values of can be omitted, or whether it suffices to satisfy the
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conditions for an arbitrary . While in most problems in-
volving joint distributions this would merely be a formal objec-
tion, we shall see that in this case it has not only theoretical but
also major practical consequences. These two observations mo-
tivate our work.

In Sections III and IV, we temporarily fix , and de-
rive the main results for two-layer scalable source coding. This
choice is made in order to minimize the notational burden and
simplify the presentation. It is easy to see that the main tools
used in the proofs of theorems and lemmas in those sections are
by no means restrictive to , i.e., they are easily generaliz-
able to . In Section V, we present extensions to-layer
scalable source coding, accompanied by brief proof sketches
where appropriate.

In Section III, we present and prove convergence and opti-
mality of an approach based on an iterative algorithm for the
computation of the RD bound. Not surprisingly, the algorithm is
a generalization of the well-known Blahut–Arimoto algorithm
[3], [1], which was introduced for the nonscalable
RD computation problem. The proposed algorithm is initialized
with an arbitrary reproduction distribution with
for all , and monotonically approaches the optimal
reproduction distribution . We also discuss two rele-
vant problems in Section III, namely, the sufficient set of La-
grangian parameters to compute the entire RD bound, and the
problem of efficient navigation on the RD surface to compute a
particular point.

In Section IV, we fill the above mentioned gap in the
optimality conditions by carefully handling the cases where

. The revised optimality conditions surpris-
ingly require us to tryall conceivable
for each , in order to ensure optimality of a
tentative solution. In most cases, this requirement represents
an impractical computational burden. Alternatively, beside its
obvious use to directly compute the RD bound, the proposed
iterative algorithm may be used to test tentative solutions while
circumventing this problem. To test whether a given
is nearly optimal, one can simply perturb (to ensure
positivity everywhere) and run the iterative algorithm. This fact
suggests that for , the proposed algorithm is more useful
than the optimality conditions themselves, as even checking
the optimality of aguessedsolution would normally require
the utilization of an iterative algorithm. More importantly, the
algorithm is, to the best of our knowledge, the only existing
tool to find the global optimum , in general.

II. PRELIMINARIES AND NOTATION

Let be a sequence of independent and identically
distributed (i.i.d.) random variables with marginal distribution

. Throughout this work, we assume the source alphabet,
and the reproduction alphabets, , are finite. Let

denote theth-layer distortion
measure, which extends to blocks of lengthas

Typically, the same reproduction alphabets and distortion
measures are used throughout the layers, i.e., , and

for all . However, such
restrictions are not necessary and are not assumed so as not
to obscure the fact that all the results in this work (with the
exception of the result in Section III-C) are valid for the general
case of possibly different reproduction alphabets and distortion
measures.

An -layer scalable block code
consists of encoding functions

which maps the source to index set , and decoding functions

A -tuple of rates and distortions, and
, is called scalably achievableif for every

and sufficiently large , there exists a block code
such that

and

The region of scalably achievable rates and distortions, as char-
acterized by Rimoldi [14], consists of all such that there
exists a conditional distribution satisfying

(1)

We are interested in computing the boundary of this region,
which is easily shown to be convex (see, e.g., [7]). Therefore,
by performing the Lagrangian minimization

(2)

where

for all positive , and , we completely
traverse the points on the boundary of the-layer scalable RD
surface. Since the minimization above is over a compact set
and is a continuous function of , the min-
imum is achieved by a distribution , and we may for-
mally replace the infimum by a minimum. For a given ,
let denote the point corresponding to . It
then follows that the vector may be interpreted [7] as the
normal of the hyperplane supporting the achievability region at

.
As an aside, we note that in many cases of interest, we do

not have the freedom to choose bothand . The following
examples of standard practical considerations illustrate how
or may in fact be fixed by the scenario.

• There are channels operating at a fixed rate vector,
where the th channel carries the incremental description
of the th layer. We define , and denote
by the probability that the user accesses only the first

layers (due to limitations of the connection). Here, it is
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reasonable to minimize the expected distortion observed
by the user, i.e.,

(3)

where the minimization is over such that

for

We can compute by solving (2) at
such that . For a given , the resulting optimal
point is a point whose normal to the
region of all achievable is in the direction of

.

• successive descriptions of the source with a prespeci-
fied distortion vector are needed. We denote bythe
probability that by transmitting only the firstlayers, the
user is satisfied. In this case, to minimize the expected load
of the channel, one must solve

(4)

where the minimization is over such that
for . The solution is

obtained by solving (2) at such that . For
a given , the resulting optimal point
is a point whose normal to the region of all achievable

is in the direction of .

We return to the Lagrangian of (2) and expand the expression
for to obtain

(5)

where is the marginal distribution corresponding to
, i.e.,

We will also find useful the functional defined as

(6)

where is a free distribution, i.e., not necessarily
equal to the true marginal . However, the equality

obviously yields

Let denote the standard divergence (or the Kull-
back–Leibler distance) between distributions, i.e.,

(7)

Motivated by the form of (6), we also define the “weighted scal-
able” divergence between distributions and
as

(8)

and between distributions and as

(9)

Note from the foregoing that for a general distribution
(or ), we use (or ) to

denote the corresponding distribution obtained by summing
over .

III. M INIMIZATION OF THE RD LAGRANGIAN

In this section and in Section IV, we temporarily fix ,
and derive the main results for two-layer scalable source coding.
In Section V, we present extensions to-layer scalable source
coding.

A. Alternating Minimization Lemmas

We begin by applying a technique introduced by Blahut [3],
to recast the problem as a double minimization.

Lemma 1:

(10)

Proof: It is straightforward to show from (6) that

Hence, with equality if and only if
. Therefore,

Since the inner minimization in (10) is always finite, we may
reverse the order of minimization to obtain the following corol-
lary.

Corollary 1:

(11)

In the following lemma, we determine the optimal conditional
distribution for the inner minimization in (11), i.e.,
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Lemma 2: is given by

(12)
where

(13)

(14)

and

(15)

Note that can be simplified further

(16)

Also, observe that the corresponding distribution is
given by the formula

(17)

Now we proceed with the proof of Lemma 2.

Proof: The claim will follow immediately once we show

because then , with equality
if and only if . Toward this end, we first expand

where the last equality is justified by observing the identities

(18)

(19)

(20)

We also use the identities (18) –(20) to simplify the following
expansion:

which yields the desired result.

Corollary 2:

(21)

B. An Iterative Algorithm

An immediate algorithm motivated by the alternating mini-
mization lemmas above is the following.

1) Initialize with for all . Set
.

2) Compute

(22)

where and are computed by
substituting into (13) and (14), respectively.

3) Compute

(23)

4) . Go to 2) if not converged.

The construction by alternating minimization ensures that

and given the bound , the above sequence
must converge. We next show that it converges to . In
fact, this algorithm is a generalization of the well-known
Blahut–Arimoto algorithm [3], [1] which computes the RD
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curve for the case of nonscalable coding. Convergence of the
Blahut–Arimoto algorithm to the minimum Lagrangian was
proven by Csiszár [5], and his proof is extended here to scalable
RD.

Theorem 1: The sequence , as
generated by the iterative algorithm, converges to

Proof: Let us fix

throughout the proof. (Note that normally,is treated as a free
distribution anywhere else in the paper.) It is convenient to con-
sider the posterior (backward) probabilities

(24)

Similarly, define as

(25)

We will now show that

(26)

Toward that end, let us expand first

We similarly expand as

After noting from (21) that

the claim (26) follows. This implies, in particular, that

(27)

and, hence,

(28)

Since we select everywhere, and the reproduction
space is finite, the right-hand side is bounded from
above, i.e., . Therefore, as ,
we have an infinite series of positive terms on the left-hand side,
which is guaranteed to be convergent. This, in turn, implies that
the argument of the series converges to, i.e.,

(29)

Remark: In fact, the inequality

can be recast as

where . Since

and also is minimized by ,
this in turn implies

(30)

for arbitrary and . The inequality (30) shows
that, for all , the distance function satisfies
the so-called “five points property,” which was introduced
in the classical paper of Csiszár and Tusnády [6]. Therefore
(cf. [6, Theorem 2 and subsequent remarks]), convergence to

is guaranteed by (30). Further, convergence of the pair
to some for which

follows from [6, Theorem 3].

Corollary 3: From (27), it follows that

(31)
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To see that (31) indeed holds, observe that

where the last is a well-known inequality for strictly positive
numbers.

The significance of this corollary is that we can use (31) as
a stopping criterion for the algorithm. Even though, in general,
we do not know the optimal distributions and , we can
always calculate the right-hand side in (31), and use it as an
upper bound on the distance of the achieved Lagrangian from
its optimal value .

C. Sufficient Set of Lagrangian Parameters

It is clear from construction that the degree of freedom for
the general scenario of (2) is, instead of (or , instead
of , in general). That is because if we multiply by a
constant , that would not change the direction of the normal
vector to the supporting hyperplane, and hence,

. So, as discussed in [7], it is possible to constrain
by or by , etc. In

this subsection, we show that in most interesting cases, we can
further reduce the set of which suffices to compute the
entire RD surface.

Let be defined as

(32)

where is the first “critical slope” for the computation of the
nonscalable RD function (see [2] and [15]), i.e., the most
negative slope where

Here, denotes the supremum of all distortion values sat-
isfying , or in other words, the minimum of all values
satisfying .

Theorem 2: Let and

Then, for each quadruple on the RD surface
with and , there exists a
normal vector for which .

Proof: If is achievable by a two-lay-
ered scalable coder, then so are the quadruples

Let the minimization (2) with Lagrangian parameters
yield . Hence,

Let us define and as the values of the Lagrangians
corresponding to parameters and quadruples

and

respectively. Then, by definition

(33)

(34)

and, therefore,

which implies .
Similarly, let correspond to the Lagrangian for the point

. Then

which implies

where the last inequality is from the definition of and from
convexity of . The result follows.

We conclude that by solving (2) for , we traverse
every nontrivial point (i.e., points such that and

) on the RD surface.

D. An Example Scenario

We consider a scalable coder that consists of only two layers:
a base layer and an enhancement layer. The base layer is to op-
erate at rate and the enhancement layer at rate, where

. We assume that, with probability, the receiver only
receives the base-layer information. The objective is to deter-
mine the minimum achievable average distortion for
all values . To attack this problem, we consider
(2), , , and run the proposed iterative algo-
rithm for all and such that . For each choice
of and , we get the point on the surface of whose
normal is parallel to .

In Fig. 1, we present the function for a discrete
memoryless source (DMS) with source and reproduction al-
phabet and . The distortion mea-
sure is given by . This configuration is known
as the Gerrish example [9]. (It appeared in previous discus-
sions of successive refinement, e.g., [7], [8].) We have chosen

, in which case there exists a nonempty subset of distor-
tion values where it is not possible to achieve successive refine-
ment without rate loss (see [8]). We also have chosen .
Note that, for , the function specializes to the standard
nonscalable distortion-rate curve.

E. Navigation Over the RD Surface

In the two-layer example given earlier, we have demonstrated
how to determine for all . However, if
the objective is to determine for a specificpair

, it would be clearly inefficient to simply run the algo-
rithm for all . In the nonscalable case, this task is rel-
atively easy: run the Blahut–Arimoto algorithm for some initial
slope parameter for , and if the resulting rate is greater or
less than the desired rate, decrease or increase the slope param-
eter, respectively, until the attained rate converges to the desired
rate. Typically, such practical search should involve an interval
partitioning technique. However, in the scalable case, we have
to control a “normal vector” instead of a slope parameter, and
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Fig. 1. Visualization ofD (RRR).

hence we have a continuum of possible “directions” to update
. We propose the following method.

• Start with an arbitrary and . Let
be the target rate vector.

• Repeat until convergence:
— run the iterative algorithm to determine ;
— update , where ;
— .

The following theorem is concerned with the convergence of the
method.

Theorem 3: If is a strictly convex function in the
set , then in the preceding method, can
be chosen properly so as to satisfy

Before we present the proof, we give the following lemma,
which is a simple application of the duality principle in opti-
mization theory [13].

Lemma 3:

(35)

for all . The maximum is achieved by , where
is the normal to . Moreover, is a

concave function of , and hence (35) is a convex optimization
problem.

Proof: Follows from the convexity of . For elab-
oration, see [4].

Proof of Theorem 3:Since is a strictly convex
function in the set , it follows that for each ,
there is a unique , and that is differentiable with respect
to (w.r.t.) everywhere. It further can be shown by algebraic
manipulation that

Hence, the update is the up-
date for a gradient-ascent algorithm to maximize (35).can be
chosen as in any line-search method (e.g., see [13]).

Remark: If is not strictly convex at the target rate
vector , then it must be planar, and there are infinitely many
solutions for the corresponding. Under that circumstance,
the above algorithm breaks down. However, in nonscalable RD
analysis, this phenomenon is seen only when the size of the
reproduction alphabet is larger than that of the source (see [2,
Example 2.7.3]), and this fact is most likely to be generalizable
to scalable RD. On the other hand, the most interesting cases of
RD analysis typically involve identical source and reproduction
alphabets.

As a final note, it should be emphasized that by replacing
with , with , and with in the above discussion
we obtain the equivalent results for “targetnavigation.”
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IV. NECESSARY ANDSUFFICIENT CONDITIONS FOR

OPTIMALITY

In this section, we investigate analytical evaluation of the
scalable RD function. The first attempt toward this direction was
made in [7, Sec. V]. There, the solution to minimization of (2) is
presented as the solution for a system of equations and inequal-
ities in . The conditions for optimality are embedded in
the system. (See [7, inequalities (25) and (26)]) However, those
conditions are ambiguous for a test such that at
some . It is not clear if one should ignore those values of,
or whether satisfaction of the conditions for an arbitrary
indicates optimality of .

This motivates us to derive the optimality conditions by care-
fully handling the cases where . The optimality condi-
tions presented in this section are indeed identical to the those
derived in [7] for the case where the distribution under test sat-
isfies for all . However, the revised optimality con-
ditions surprisingly require us to tryall conceivable for
each . As we show by an example later in this section, if
we ignore those such that , or rely on the conditions
of [7] after trial of an arbitrary , then a suboptimal tenta-
tive solution will be declared optimal.

Recall that (21) provides us with an equivalent minimization
problem for , which is more compact and has fewer param-
eters to optimize. We refer to the expression to be minimized in
(21)

(36)

as theHelmholtz free energyof the system, in order to empha-
size relations with statistical physics. The analogy is direct and
simple in the nonscalable case (see [15] and [16]) where the
RD Lagrangian is, in fact, the Helmholtz free energy of a phys-
ical system whose energy is the distortion and whose inverse
temperature is the slope parameter. Thus, finding a point on the
RD curve is equivalent to reaching isothermal equilibrium in the
physical analogy. In the scalable case the description is similar,
albeit complicated by the existence of multiple temperatures and
the interaction between layers.

In this section, we apply calculus of variations on (21) to de-
rive the necessary and sufficient conditions for a given to
minimize the free energy.

For a better intuition about the interpretation of the functions
and , we observe that the optimal random en-

coding function in the first and second layers are given by

(37)

and

(38)

respectively. These forms, together with (16) and (14), give
and the interpretation of partition functions, in

the statistical physics analogy.

A necessary condition for the optimality of a given is
that all perturbations increase the free energy. We formalize an
-perturbation of as

where , and require

(39)

for all admissible reproduction distributions . Further, if
the free energy is a convex function of, then the “first-order”
condition (39) is sufficient as well. Therefore, we start by
proving the convexity of the free energy in Section IV-A; we
continue by deriving the optimality conditions in Section IV-B;
we then show in Section IV-C that a suboptimal tentative
solution could be declared optimal by the conditions of [7];
and end this section with a demonstration of the difficulty in
evaluation of the (Kuhn–Tucker) optimality conditions.

A. Convexity of the Free Energy

To prove the convexity of the free energy (36), it suffices to
show that is a concave function of . Toward this end,
we prove the following lemma.

Lemma 4: Let be a joint distribution, and let .
If is a strictly positive concave function, then the function

is concave in .
Proof: Let . Then

and

Now, if is concave, obviously so is with ,
and

We use this lemma to prove that is concave in as
follows. From the definition of in (16), we observe that
in order to apply the lemma it suffices to show the concavity of

in . Indeed, by (14), is a linear func-
tion of, and consequently concave in, the conditional distribu-
tion .
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B. Derivation of the Optimality Conditions

We proceed by expanding (39). First, observe that, we have
not yet clarified the definition of for values of such
that . In the iterative algorithm of Section III-B, this am-
biguity does not cause a problem, because we start with a distri-
bution everywhere, and the iterations never reach a
case where . Moreover, in the free energy formula (36),
it does not matter how, or even whether or not, is de-
fined for such that . We choose to leave it undefined
for those cases, and recast the formula of as

(40)

Now, denote by and the perturbed versions
of and , respectively. The domain of
is potentially larger than that of , due to the inclusion
of the possibly nonempty set

For all , note that , and, therefore,
. Hence, for , we have

(41)

Remark the independence of from .
We will also need the following limits:

(42)

and

(43)

We are finally ready to present the explicit conditions resulting
from (39) as a theorem.

Theorem 4—Kuhn–Tucker Optimality Conditions:A given
is optimal if and only if

with (44)

with and (45)

where

(46)

and

(47)

Proof: With the help of (41)–(43), we evaluate the deriva-
tives related to (39) as

and

where the last equality is for such that only. Com-
bining all these derivative evaluations, we expand (39) as

(48)

Therefore, is optimal if and only if (48) is satisfied for all
.

Now, if (44) and (45) are both satisfied, then so is (48) for any
. Conversely, if (48) is true for all , then by choosing

deterministic distributions for , i.e.,

otherwise

we can show that

(49)

for all with . Multiplying both sides by and
summing over , we get

On the other hand, since from (46),
we have equality above for all such that . Therefore,
from (49), (44) follows. Similarly, if we substitute in (48)

at some such that , we precisely obtain (45).

Remarks:
1) Condition (44) is equivalent to the optimality conditions

claimed in [7]. However, as we show in the next subsection,
satisfaction of (44) is not sufficient for optimality of .

2) Checking condition (44) involves only substitution of
the candidate in (46), and hence, is straightforward.
However, checking (45) involves substitution of all conceiv-
able in (47) for every such that , which is
computationally catastrophic. Alternatively, one can think of
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maximizing over all and checking whether the
attained maximum is less than. Using (41) and (47), together
with Lemma 4, this is easily shown to be a convex optimization
problem, i.e., is a concave function of . Solving
this new problem, we get the optimality conditions

with equality whenever . Note that this condition is
not easy to check either. However, it leads us to an alternative
set of Kuhn–Tucker conditions, which we present below.

Lemma 5—Alternative Optimality Conditions:A given
is optimal if and only if there exists a for all
such that when the domain of is extended to

all , we obtain

(50)

for all , where is defined as in (46), and

(51)

Checking this version of the optimality conditions is not
easier than the original form in Theorem 4, as in order to verify
the optimality of , one has tofind some artificial
for all such that (50) is satisfied. Note that once the
domain of is assumed to be , definitions of

and become identical if in (41) is
replaced by .

Another alternative for checking optimality is to run an iter-
ative algorithm that is guaranteed to converge to , i.e., the
maximizer of . In Section III-B, we already provided an it-
erative algorithm which can be utilized for this purpose: perturb
the given to ensure that , run the proposed iter-
ative algorithm until convergence, and check if the free energy
of the solution is arbitrarily close to that of the original .

Although the most prominent application of the Kuhn–
Tucker conditions is to verify optimality of a given , the
alternative version given by (50) is also useful in dealing with
solutions for product sources and sum distortion measures [2,
Sec. 2.8]. Specifically, using Lemma 5, it is easy to prove that
the boundary point can be computed by summing
up the RD vectors which are computed for the
component problems for independently.

C. Distinction With Previous Results

In this subsection, we will demonstrate that the simpler con-
ditions of [7] are not sufficient for optimality. Let us recon-
sider the example of Section III-D. Now let

. Running the algorithm proposed in Sec-
tion III-B, we can obtain the correct solution for : see the
matrix at the bottom of the page, where columns and rows rep-
resent the first- and the second-layer symbols, respectively. Note
that the values of are numerically computed in finite pre-
cision, and are hence approximate. However, the error is negli-
gibly small since for all .
Also, using the stopping criterion (31), we ensure that the La-
grangian cost is at most
away from the true optimal .

Now consider a different tentative solution

This simple solution yields for all . How-
ever, testing (45) for the value with the choice of
conditional distribution , we obtain

. Hence, the Kuhn–Tucker conditions
are violated and this tentative solution issuboptimal. Also,
the Lagrangian cost is considerably larger
than the optimal cost . However, the conditional distri-
bution choice and yields

and , respectively.
Therefore, had we either ignored and or evaluated
them only for the latter choice of conditional distribution, we
would have considered this suboptimal solution to be optimal.

D. The Difficulty in Evaluating the Kuhn–Tucker Conditions

Let us reconsider the example of Section IV-C with the ten-
tative solution

When we test for and ,
we see that , and, hence, the first part of the
Kuhn–Tucker conditions (44) is not violated.1 However, to test
the second part (45), we have to evaluate for all . In
Fig. 2, we present as a function of and . (Note that
we made use of the fact that to draw the
figure in three dimensions.) We see that exceeds for a
region of conditional distributions , and, therefore,
is not optimal. Furthermore, since this region is very small, the
time complexity of checking (45) is in the same order as that of
an exhaustive search over the entire simplex of . One could

1Similarly, due to finite precision, we havev(y ; y ) � 1+2:2204�10
for y 2 f0; 1g and for ally .
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Fig. 2. Kuhn–Tucker conditionw(2) as a function ofr andr . The small region wherew(2) > 1 is filled in.

argue that we can use some iterative maximization algorithm
to find the region where . However, rather than em-
ploy an iterative algorithm for the evaluation of at asingle
tentative solution, we might as well use the iterative algorithm
proposed in Section III-B, whichdirectly produces the optimal
solution.

V. GENERALIZATION TO -LAYERS

In this section, we demonstrate that the results generalize to
layers, where . Most proofs are fundamentally similar

to the case, except that they require cumbersome nota-
tion. We provide proof sketches when needed.

Lemma 1— -Layer:

(52)

Proof: Follows after observing

In Lemma 2, we determine the optimal conditional distribu-
tion for the outer minimization of Lemma 1.

Lemma 2— -Layer:

(53)

where , and

(54)

for . Also,

(55)

and

(56)

Proof: It suffices to show by substitution that

Corollary 2— -Layer:

(57)

Before proceeding further, let us rearrange (54) and (55) into
simpler recursive forms

(58)
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(59)

The above identities may be verified by substituting

in (54) and (55), respectively, and taking the summations over
and first. As in the case of ,

these alternative forms shed more light on the statistical physics
analogy by allowing the observation

(60)

for all .

Theorem 1— -Layer: The sequence

as generated by the iterative algorithm

• initialize with for all ;
• iterate until convergence:

— compute ;

— compute ;
converges to

The proof of this theorem is identical to that of Theorem 1,
and therefore is omitted. It suffices to show

which also yields the following stopping criterion as a corollary.

Corollary 3— -Layer:

To generalize the results of Section III-C, we redefineas

(61)

Theorem 2— -Layer: Let , and
, for . Then, for each RD vector pair
on the RD surface with

and

there exists a normal vector for which
.

Proof: If is achievable by an -layered scalable
coder, then so are

for all , and

The rest of the proof is identical to that of Theorem 2.

The discussion in Section III-E on the navigation on the RD
surface is, in fact, valid for general , and, therefore, we will
not repeat the arguments, theorems, and lemmas for .

Convexity of the free energy (57) is provable by arguments
similar to those of (21). From (58) and (59), it suffices to show
that is concave in , for which it suffices
to show that is concave in , and so
on. This sequence of reasoning leads to the concavity of
in , after observing that is a
linear (and hence a concave) function of .

Lemma 5– -Layer: A given is optimal if and
only if there exists a for all , such
that when the domain of is extended to all

, we obtain

(62)

for all , where is defined as

(63)

Proof: As in the proof of Theorem 4, we expand

by substituting the derivatives

and

where , , and are the
perturbed versions of, , and , respec-
tively. To proceed further, we need to introduce the functional

for such that , but

with as the recursion termination rule.
Also, let
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After some manipulation, the expansion becomes

from which, with similar arguments as in the proof of The-
orem 4, we conclude

with

(64)

with

and

(65)

Paralleling the remark after Theorem 4, the lemma follows after
maximizing in terms of .

VI. CONCLUSION

We proposed an iterative algorithm for the computation of
-layer scalable RD bound. The algorithm is guaranteed to con-

verge to a solution point on the RD surface, provided that it is
initialized with a reproduction distribution that is positive ev-
erywhere. We rigorously derived the optimality (Kuhn–Tucker)
conditions for the reproduction distribution. To our surprise, the
resultant conditions are, in general, computationally impractical
to check, in contrast to the case of nonscalable coding.
Alternatively, the proposed iterative algorithm may be utilized
as an optimality testing procedure by applying it to the perturbed
tentative reproduction distribution (perturbation is necessary to
ensure that the reproduction is positive everywhere). Hence, the
proposed algorithm is more useful than the optimality condi-

tions, in the sense that checking the optimality conditions nor-
mally requires an iterative algorithm to be used.

We also derived the sufficient set of Lagrangian parameters
to visit all the points on the RD surface, and devised an efficient
algorithm for navigating over the RD surface so as to reach a
target point. These two problems are relatively easy for non-
scalable coding, but complications occur due to the increased
dimensionality of the RD surface in the case of scalable coding.
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