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Computation and Analysis of thi¥-Layer Scalable
Rate-Distortion Function

Ertem Tuncel Student Member, IEEEBNnd Kenneth Rosdellow, IEEE

Abstract—Methods for determining and computing the rate-
distortion (RD) bound for N-layer scalable source coding of a fi-
nite memoryless source are considered. Optimality conditions were
previously derived for two layers in terms of the reproduction dis-
tributions q,, and gy, |y, - However, the ignored and seemingly in-
significant boundary cases, wheraz,, = 0 and g,,|y, is unde-
fined, have major implications on the solution and its practical ap-
plication. We demonstrate that, once the gap is filled and the re-
sult is extended toN-layers, it is, in general, impractical to vali-
date a tentative solution, as one has to verify the conditions faall
conceivablegy, , ,,...,ynlys, ..., at €ach(yi, ..., y;) such that
Qyy,...,y; — Y-

As an alternative computational approach, we propose an iter-
ative algorithm that converges to the optimal joint reproduction
distribution qy, , ...,y if initialized with gy, ..., 4, > O every-
where. For nonscalable coding N = 1), the algorithm special-
izes to the Blahut—Arimoto algorithm. The algorithm may be used
to directly compute the RD bound, or as an optimality testing pro-
cedure by applying it to a perturbed tentative solutionq. We ad-
dress two additional difficulties due to the higher dimensionality of
the RD surface in the scalablg IV > 1) case, namely, identifying
the sufficient set of Lagrangian parameters to span the entire RD
bound; and the problem of efficient navigation on the RD surface
to compute a particular RD point.

Index Terms—Alternating minimization, Kuhn—Tucker opti-
mality conditions, rate distortion (RD), scalable source coding,
successive refinement.

. INTRODUCTION

Equitz and Cover [8]. These papers were concerned with the
conditions under which scalable coding is possible without
compromising the RD performance. Koshelev used the term
divisibility, and Equitz and Cover coined the tesuccessive
refinability. Here, we follow [12] and employ the term “succes-
sive refinement without rate loss” to distinguish from “plain”
successive refinement. Rimoldi [14] addressed the more general
guestion and discovered necessary and sufficient conditions for
the achievability of any sequence of rates and distortions. Later,
Effros [7] extended these results for stationary ergodic and
nonergodic sources. In an interesting recent work, Lastras and
Berger [12] proved that for continuous reproduction alphabets
and difference distortion measures, it is possiblaritversally
bound the rate loss (the extra rate penalty paid for using a
scalable coding scheme). Specifically, they showed that for the
squared error distortion measure, the rate loss is bounded by
half a bit at each layer, i.e., for an arbitrary source, there exists
a scalable source coder achieving distortipfs}Y ; and rates
{R(D;) + 1/2}X_,, whereR(D) denotes the nonscalable RD
function. This important result leaves open a few questions. It
is unknown whether similar bounds exist for other cases (e.g.,
finite-alphabet sources with finite reproduction alphabets).
Another concern is that the rate loss may become significant at
low-resolution applications, i.e., where the rate is comparable
to, or is lower than, 1/2 bits.

In this paper, we consider exact computation of Mdayer

CALABLE source coding has received much attention iacalable RD surface for finite-alphabet sources. This problem is
he last decade, especially after the advances in heterofifst analyzed in [7, Sec. V] for the case 6f = 2, where, a
neous networks such as the Internet, because it enables sera@iglinear system of equations and inequalities in terms of the

a diverse set of users with differing bandwidth constraints.

pptimal reproduction distributiog;, ,, is formed. This system

» Y2

scalable source coding] descriptions, ranging from coarse tgoarallels the nonscalable RD optimality conditions, and is typ-
fine, are embedded into a single bit stream. Hence, users witi¢ally employed to find the optimum by the trial of “tentative
low-bandwidth connection can reproduce the signal at reas@®lutions” that satisfy a subset of the inequalities with equality,
able quality, although they only access a subset of the bit streasmtiil the one also satisfying the remaining inequalities is found.
while high bandwidth users can achieve high-quality reproduSee [2, Sec. 2.6] for a detailed description of such an approach

tion of the source.

for the nonscalable RD analysis.) However, unless symmetry

The early treatment of the problem of scalable coding withier other properties of the problem help in reducing the space
rate-distortion (RD) theory is due to Koshelev [10], [11], angf possible tentative solutions, this approach becomes impracti-

cally complex as the size of the reproduction alphabet grows.
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conditions for an arbitrary,,|,, . While in most problems in- d;(z, y;) = d(z, y;) forall = 1, ..., N. However, such
volving joint distributions this would merely be a formal objecrestrictions are not necessary and are not assumed so as not
tion, we shall see that in this case it has not only theoretical ot obscure the fact that all the results in this work (with the
also major practical consequences. These two observations mxaeption of the result in Section I1I-C) are valid for the general

tivate our work. case of possibly different reproduction alphabets and distortion
In Sections Ill and 1V, we temporarily fiXV" = 2, and de- measures.
rive the main results for two-layer scalable source coding. ThisAn N-layer scalable block cod@, ..., ¢n, 1, ..., ¥N)

choice is made in order to minimize the notational burden amdnsists of encoding functions
simplify the presentation. It is easy to see that the main tools "

used in the proofs of theorems and lemmas in those sections are P X" — M,

by no means restrictive ¥ = 2, i.e., they are easily generaliz-yyhjch maps the source to index set;, and decoding functions
able toN > 2. In Section V, we present extensionsclayer

scalable source coding, accompanied by brief proof sketches it My X - X My — Y7

where appropriate.

In Section lll, we present and prove convergence and o
mality of an approach based on an iterative algorithm for t
computation of the RD bound. Not surprisingly, the algorithm i
a geaeralization of the well-known Blghut—i)r/imoto glgorith 1, .-, én, Y1, -, Yiv) such that
[3], [1], which was introduced for the nonscalalflyy = 1 1
RD computation problem. The proposed algorithtr(ﬁ is initia)lized " log M-+ M| < R; +6
with an arbitrary reproduction distribution witg,, . ,, >0 and
forall (1117_. ey ?/N)_’ and monotonicallyapprogchesthe optimal Ed;(X™, i(¢1(X™), ..., p:(X™"))} < D; + 6.
reproduction distribution,,, . We also discuss two rele- _ . _ _
vant problems in Section Ill, namely, the sufficient set of Lalhe region of scalably achievable rates and distortions, as char-
grangian parameters to compute the entire RD bound, and @éerized by Rimoldi [14], consists of &R, D) such that there
problem of efficient navigation on the RD surface to compute®ists a conditional distributio@,, ., . satisfying
particular point. _ _ _ Edi(X,Y;)) < D .

In Section IV, we fill the above mentioned gap in the I(X; Y, Y) < R i=1,....,N. (1)

. . e . y 11, s L = )
optimality conditions by carefully handling the cases where
¢, .., = 0.The revised optimality conditions surpris-WQ are inter.ested in computing the boundary of this region,
ingly require us to tryall conceivableq,,.,  yxiu. ..y which is easily shown to be convex (see, e.g., [7]). Therefore,
for eachgy, ., = 0, in order to ensure optimality of a by performing the Lagrangian minimization
tentative solution. In most cases, this requirement represents * o= inf L g(Q) 2)
an impractical computational burden. Alternatively, beside its @B Qupy o P
obvious use to directly compute the RD bound, the propose
iterative algorithm may be used to test tentative solutions whifg'€"e
_circumventin_g this problem._To test whether a givgn .. La p(Q) = Z o I(X; Yy, ..., V) + B Edi(X, Y;)
is nearly optimal, one can simply pertugh, .. ,, (to ensure i1
positivity everywhere) and run the iterative algorithm. This fact .
suggests that falV > 1, the proposed algorithm is more usefu?Or all posmvea_ = {ai}/Ly, andB = {6} 1L, we completely
than the optimality conditions themselves, as even checki gverse th_e points on_the_bou_ndary of m_dayerscalable RD
the optimality of aguessedsolution would normally require stirface. Slnc_e the m|n|m|zat|on gbove IS over a compact set
the utilization of an iterative algorithm. More importantly, théandL"-ﬂ(Q) Is a continuous function ap,, .., |« the min-

algorithm is, to the best of our knowledge, the only existing??um is achieved pyf”‘d'Str'bUt'd@;h,..,ler’ and we may for-
tool to find the global optimurg* ., in general. ally replace the infimum by a minimum. For a givém, 3),
Yo UN let(R, D)a, g denote the point corresponding®j, .. It

then follows that the vectdir, 8) may be interpreted [7] as the

normal of the hyperplane supporting the achievability region at
Let {X;};2, be a sequence of independent and identicallyy. D)o p.

p.- Throughout this work, we assume the source alphabet not have the freedom to choose baitand 3. The following
and the reproduction alphabgfs i = 1, ..., N, arefinite. Let examples of standard practical considerations illustrate daow

di(z, y;): X x Vi — [0, oo) denote theith-layer distortion or 8 may in fact be fixed by the scenario.
measure, which extends to blocks of lengths

_2N-tuple of rates and distortionsd® = {R;}Y, and
= {D;}Y,, is calledscalably achievablef for every
0 and sufficiently largen, there exists a block code

Il. PRELIMINARIES AND NOTATION

L « There areN channels operating at a fixed rate vector
di(x"™, yl') = — Z di(e, Yit)- where theith channel carries the incremental description

ni of the ith layer. We defineR; = Z;Zl r;, and denote
Typically, the same reproduction alphabets and distortion by p; the probability that the user accesses only the first
measures are used throughout the layers, JJe.= ), and 1 layers (due to limitations of the connection). Here, it is
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reasonable to minimize the expected distortion observedLet D(p.||¢q.) denote the standard divergence (or the Kull-

by the user, i.e., back—Leibler distance) between distributions, i.e.,
A .
Davg(B) = | min  Dag(Q) D(p:|lg:) = Z p- 1og— 7
Yl yN |
N . « H
- min Z piEdy(X, V) 3) Motivated by the form of (6), we also define the “weighted scal-
vy le S able” divergence between distributiong , .. ,, andgy, . 4,
as
where the minimization is ovep,, . .. such that
A
I(X; Yy, ..., V) <R, fori=1,..., N. Da(Pys, ooy yw 10y, oy yn )= Z o D(py,, ...,y ys, ... y:) (8)

i=1
We can computeD,..(R) by solving (2) at(a, 8)

. . / and between distributio and yxn @S
such that3; = p;. For a givena, the resulting optimal M8, y1,...un Qz,y1, ..., yn

point (Ry, Davs(Rq)) is a point whose normal to the Da (px TN | /|
region of all achievabl¢R, D.,.,) is in the direction of
(ah .., anN, 1)_ = D[Oa](pw,n,-- YN ”qw,yl, ---7yN)
« N successive descriptions of the source with a prespeci- = Z @i D(Pe.y,. .. ) 9)

fied distortion vectotD are needed. We denote pythe
probability that by transmitting only the firstlayers, the

. i i S Note from the foregoing that for a general distribution
user is satisfied. In this case, to minimize the expected Io}a)\d (or p ), We usep (or p ) to
of the channel, one must solve L YN y, . ynlen Y Vi uL, - vil

denote the corresponding distribution obtained by summing
Rug(D)=  min  Ray(Q) OVeIyit1, - s YN-

N I1l. M INIMIZATION OF THE RD LAGRANGIAN

o, Z pl(Xs Va0, Ya) o (4) In this section and in Section IV, we temporarily fix = 2,

and derive the main results for two-layer scalable source coding.

where the minimization is oveQ,,,...yylo SUch that |n section V, we present extensionsXblayer scalable source
Edi(X,Y;) < D;fori = 1,..., N. The solution is ¢qding.

obtalned by solving (2) &, ﬂ) such thatw; = p;. For
a givenp, the resulting optimal pointR..;(Dg), Dg) A. Alternating Minimization Lemmas
is a point whose normal to the region of all achievable

(Ruve, D) is in the direction o1, By, ..., fx). We begin by applying a technique introduced by Blahut [3],

to recast the problem as a double minimization.
We return to the Lagrangian of (2) and expand the expressmq_emm al:
for L, g(Q) to obtain
N :';7 g = min min Lo p(Q, q). (20)

Z Z pIQh YNz Z . - .Qy%yz\f qyy .y
T ’

= Proof: It is straightforward to show from (6) that

. {ozi log QC;] """ vilr Bi di(z, yl)} 5) La,p(Q, 4) = La, 8(Q) + Da(Qy,, o |2y, 42)-
Y15l

_ . ) ence,Ly g(Q, q) > La, p(Q) with equality if and only if
whereQy, ., is the marginal distribution corresponding tothm = Q,,.,,. Therefore,
Qyi,.yyiler 1€, @0 @ -
min Lo g(Q, q) = La, g(Q).
le, oY — Z prle, e YilTe Tu1ow2

Since the inner minimization in (10) is always finite, we may

We will also find useful the functionala, 5(Q, ¢) defined as reverse the order of minimization to obtain the following corol-

N lary.
La,p(Q, q) Z Z PzQy,, ----ywlmz Corollary 1:
T Yl Y =1
'{auongi(x? w} © Lap=min guin Las@a- ()
Yi,5--Yi

where g, .. 4, is a free distribution, i.e., not necessarily Inthe following lemma, we determine the optimal conditional
equal to the true marginap,,, ..., . However, the equality distribution@, . .(q) for the inner minimization in (11), i.e.,
Q1. yn = Qur, ... yy Obviously yields

Sy A
L 5(Q. 4) = La. 5(Q). Q"(q) = arg jmin La p(Q: 0)-
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Lemma 2:Q; , .(q) is given by > peQ 1 (@)da(w, y2)
. Qyy s © —B1d1 (z,y1)—Bhda(z,y2)—a' log f1(z,y1) T, Y2
leuyZI‘z‘(q) - f()(ll?) (12) :_(Oél +052)sz IngO(x)
where where the last equality is justified by observing the identities
fO Z Qy1, y- e_ﬂldl( @, y1)—Bda(x, y2)—a] log f1(x, y1) ﬂi(al +a2) =/ (18)
Y1, Y2 /3§042 =5 (19)
(13)
Bda(eny) ar(l — o)) = azaf. (20)
Fi(@, 91) = ) gy e BB (14) e also use the identities (18) —(20) to simplify the following
Y2 expansion:
and _ .
/ /61 / /H_Q Oél _ (63} (15) Da(p$leyy2|$||pry1,y2|1‘(q))
artay P a Tt artar = (1 + @) Y pelog fo(x) + DalpeQy,, yalo IPry1, 42)
Note thatfy(z) can be simplified further ‘
—B1d1(z,y1)—Bhda(z, y2)—a log fi(z,y1) to Z p$Qy1|w
fo(‘r) = Z qy1,y26 o ’ R ! / T, Y1
Y1, Y2 A3 d (x. — (1 —=0a) 1o x,
L3 gy oo s ) {Brdr(; y1) — (1 = a1)log fi(z, y1)}
™ ! + a2 Z pIleyyﬂz
T, Y1,Y2
—,Bédg T, Yo
D gy e Bl (x, 1) + Bda, y2) + o log fi(, 1))
Y2
, , = (1 +a Pz log fo(z) + La, p(Q, q
v which yields the desired result. O
=D gy e i time e i), (18)  corollary 2:
Y1
Also, observe that the corresponding dlstnbut@h L) is Lap= qrflui ~(ota zm:p“" log fo()- (1)
given by the formula
QO () = “Ardi(@y)+(1-ay) log fi(@1) a7 B. An lterative Algorithm
vl fo(z) An immediate algorithm motivated by the alternating mini-
Now we proceed with the proof of Lemma 2. mization lemmas above is the following.
Proof: The claim will follow immediately once we show 1) nitialize with¢{"),,, > 0 for all (y1, y2) € Y1 x Vs. Set
La,ﬂ(Qa q) = La,ﬁ(Q*(q>7 q) 2 ,EL:: L. t
= * ompute
+Da(paQuole 1205, s (@) 2 COMP
because thetl, g(Q, q) > La, g(Q*(q), q), with equality Y1, y2le
if and only if @ = Q*(q). Toward this end, we first expand Qz(ff yl)e—ﬂldl(z,yl)—ﬁéde(z,yz)—a’l log f{" ™ (x,y1)
Lam(Q*(q), q) (n=1)
Jo (z)
La,p(Q" = > 1@ () (22)
EuL, Y2 where f{"~ 1)($) and f{"""(x, y1) are computed by
1 ‘le\x(Q) ‘Qy1 ,yQ\z(q) substltutlngqy1 yz) into (13) and (14), respectively.
- ¢ aglog ——— 4+ aglog ————— ;
Gy Ty o 3) Compute
V=D QL (23)
+01d1(w, y1) + Pada(z, y2) z
4) n — n + 1. Go to 2) if not converged.
—(a1 + @2) Y palog fo() The construction by alternating minimization ensures that
(1) 1,0
+ (a1 — a1 — a2af) La ﬂ(Q )>L ﬂ(Q = )
Z 298 yl\x log fl(x yl) 2 La,ﬂ (Q(2)7 q(l))
T, Y1 > e
/ /
+ (B = nfy — aafy) and given the bound.a, 5(Q, ¢) > L, 4, the above sequence
Z P2Qy, (@)1 (2, y1) must converge. We next show that it convergesLip 5.
z, Y1 fact, this algorithm is a generalization of the WeII known

+ (B2 — aa3h) Blahut—Arimoto algorithm [3], [1] which computes the RD
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curve for the case of nonscalable coding. Convergence of éier noting from (21) that
Blahut—-Arimoto algorithm to the minimum Lagrangian was

proven by Csiszar [5], and his proof is extended here to scalable

RD.

Theorem 1:The sequence;(?, Q). ¢ Q®
generated by the iterative algorithm, converges to

(QF, ¢*) = arg La,p(Q; q)-
Proof: Let us fix

:Qy17y2 =

min
vi,v2ler dy1,u2

meleyyzl-T
xr

th Y2

throughout the proof. (Note that normallyjs treated as a free
distribution anywhere else in the paper.) It is convenient to con-

sider the posterior (backward) probabilities
PeQuy, yo o

Talyi, 0 = — — (24)
qyl-,y2
Similarly, deflnerilg y, @S
()
(n) pZQ?ll Yo |z
Talyrye = () (25)
Qy1,y-
We will now show that
DO! (q?/17y2 qz(JT ylz)) Da (thyz qz(;;)yz)
= Lag (Q, ¢") = La,s(Q. 0
+Da (TZ\yl,quyl Y2 Tiﬁl v Y1, yz) - (26)
Toward that end, let us expafid(r,,, q,, ||r$|J1 qy, ) first

D (Tz\yl Gy, T.(T|331 le)

=-D (qm qy1 ) ZpTQyﬂrl og Q?(J:LI)I
T, Y1 Qy1|9”
=-D (qyl qu) + melelz
z, Y1
(n-1)
) log Qy1 |Tf ( )

gr V=B (@) +(1-a) log £ (w.y1)
qyf 1)) D((Iyl qyl )+Zp 10gf<" 1)( )

= D (qyl
QJ1|E / _
+ Zprlelw log ——— + ﬂ1d1(:17, yl)

z, Y1 Gy,

(1-a1)

og £ y1)} :

We similarly expand(7,)y, 4. 2y, v- || lehm Qy,, o) 8S

(n)
D (T”J\yl,yzthyz Tm|y1 yzq'yly?ﬂ)
1
=D (qm-yv qg(/l y>)) D (‘Jyl,yo
n—1
+me()

qz(/:l) Y2 )

Z p-TQleyQ‘z

T,Y1,Y2

Q7 Y2 |z
’ {log JI—JZ‘ + /Bidl(.’l?, yl) + ,8éd2(£l?/ y2)

qyl-,yz

Tl log £ (a, n} .

was g (Q("), q(n—l)) L

(Q(n) (n—l)) —(o1 + a2) Zpgclog (n 1)( )
the claim (26) follows. This implies, in part|cular, that
8(Q%, q%)

(n—1) *
Qyy1,y2 ) «@ (qyl,yz

< Da (45,4, ) @)

and, hence,

i [Lmﬁ (Q(")7 q("’l)) — La,p(Q", q*)}

0 *
q?(/1)7y2> — Da (thyz
0
< DO‘ (q;hyz q3(/1)7yz) !

Since we selec«{zz(,??y2 > 0 everywhere, and the reproduction
space); x ) is finite, the right-hand side is bounded from
above, i.e.Da(quhy2||q§??y2) < oo. Therefore, af{ — oo,

we have an infinite series of positive terms on the left-hand side,
which is guaranteed to be convergent. This, in turn, implies that
the argument of the series converges$ tae.,

< Da (q;1 ) Y2

K
a9, )

(28)

lim [LM, (Q<">, q<”*1>) — Lo s(Q", q*)} =0. (29)
d
Remark: In fact, the inequality
La.p (Q(n)7 q(n—1)> — e 5(Q, )
S Da (qylyy2 q3(/71]_ylz)) - Dﬂf (thyz q3(/71])y2>

can be recast as
Lo, p (Q("); q("_l)) + La.p (Q7 q(n))
< Laop (Q 0070) # Lan(@0)
= 2. P2Qy,, 1o~ SincCe
La g (Q(n)7 q(n)) < Lap (Q(n)7 q(n—l))

and alsdla, (@, ¢) is minimized byg,, y, = >, P2Qy,, yo|a>
this in turn implies

La.p (Q(m’ q(n>> + Lag (Q7 q<n>)
< Lo (Q 0" 7)) + Lap(Q.a) (30)

for arbitrary @, .| and gy, ,,. The inequality (30) shows
that, for all @, the distance functionL, g(Q, ¢) satisfies

the so-called “five points property,” which was introduced
in the classical paper of Csiszar and Tusnédy [6]. Therefore
(cf. [6, Theorem 2 and subsequent remarks]), convergence to
L;, g is guaranteed by (30). Further, convergence of the pair
(Q™, ¢(™) to some(Q*, ¢*) for which

La,ﬂ(Q*v q*) =1L

follows from [6, Theorem 3].

wheregy, 4.,

Corollary 3: From (27), it follows that

La,p (Q("), q("_l)) — La,(Q", ")

(n)
Qy1 Y2 ] (31)

(n—1)

Ay, ,y>

< (a1 + az)log [max
Y1,Y2
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To see that (31) indeed holds, observe that and, therefore,
(n) > it (n) b (D1 =D3) > Ry — Ry > b (D1 — D»)
Qy:" Y2 Ay y2 a2 a1
(n—1) o S max —o hich implies22 > £t
o8 2 iy Y2y e which implies ;> = 27 _ ,
Y2 Similarly, IetLj;’J, correspond to the Lagrangian for the point

where the last is a well-known inequality for strictly positivg(, R, D,..., D). Then

numbers. Ly g—La g=01(Dmax — D1) — 1Ry >0
The significance of this corollary is that we can use (31) aghich implies

a stopping criterion for the algorithm. Even though, in general, 51 D DO SR

we do not know the optimal distribution@* and ¢*, we can 05_1( max — D1) 2 Ry

always calculate the right-hand side in (31), and use it as an > R(D,)

upper bound on the distance of the achieved Lagrangian from — R(D1) = R(Dua)

its optimal valueL}, 4.
8 Z"YO(Dmax_Dl)

C. Sufficient Set of Lagrangian Parameters where the last inequality is from the definition ¢f and from
: 3
It is clear from construction that the degree of freedom f&onvexity of R(D). The result?: >+, follows. U

the general scenario of (2)3sinstead oft (or2N — 1, instead  \\e conclude that by solving (2) fgr, B) € L, we traverse

of 2N, in general). That is because if we multigly, 8) by a  every nontrivial point (i.e., points such th& > R; > 0 and
constantc, that would not change the direction of the normap < p, > D,) on the RD surface.

vector to the supporting hyperplane, and he#e,D).q, .3 =

(R, D)a,p- So, as discussed in [7], it is possible to constraiy. An Example Scenario
a, B)bya; +as+ 01+ 0 = 1lorbya; = 1, etc. In . . ]
t(his s)ubsection we show that in most interesting cases, we ¢ e consider a scalable coder that consists of only two layers:

further reduce the set ¢fx, B) which suffices to compute the aabase layer and an enhancement layer. The base layer is to op-
entire RD surface ’ erate at ratg?; and the enhancement layer at rdte, where

Let £ be defined as Ry > R;. We assume that, with probabilipy the receiver only
By B receives the base-layer information. The objective is to deter-
L= {(a-/ p) : 0 a2 Wo} (32) mine the minimum achievable average distortiop,,(R) for

all valuesR = (R1, R»). To attack this problem, we consider
(2), /1 = p, B2 = 1 — p, and run the proposed iterative algo-
rithm for all «; andas such thate, 8) € L. For each choice
A of a; andas, we get the point on the surface bf.., (R) whose
Dy = Dimax = min > ped(z, ). normal is parallel td1, ay, as].

@ In Fig. 1, we present thé,,,(R) function for a discrete
emoryless source (DMS) with source and reproduction al-

where~, is the first “critical slope” for the computation of the
nonscalable RD functioR(D) (see [2] and [15]), i.e., the most
negative slopey where

Here,D,,.« denotes the supremum of all distortion values sq};ﬁ
|sfy_|ng_R(D) > 0, or in other words, the minimum of aIIvaIuesphabet{Q 1,2} andp, = {s, 1 — 2s, s}. The distortion mea-
safisfyingR(D) = 0. sure is given byl(z, y) = |z — y|. This configuration is known
Theorem 2:Let); = ), = ) and as the Gerrish example [9]. (It appeared in previous discus-
di(z, y) = do(z, y) = d(z, y). sions of successive refinement, e.g., [7], [8].) We have chosen
s = 0.45, in which case there exists a nonempty subset of distor-
tion values where it is not possible to achieve successive refine-
ment without rate loss (see [8]). We also have chgsen0.3.
Note that, forR; = Rs, the function specializes to the standard
nonscalable distortion-rate curve.

Then, for each quadruple?:, Rz, D1, D2) on the RD surface
with Ry > Ry > 0 andD,,.. > D1 > D, there exists a
normal vecto(a, B) € £ for which(R, D) = (R, D)a, g.

Proof: If (R, R2, D1, D5) is achievable by a two-lay-
ered scalable coder, then so are the quadruples

(Ba, B1, D1, Dy) E. Navigation Over the RD Surface
(Ra, e, Da, Do) In the two-layer example given earlier, we have demonstrated
(0, R2, Diax, D). wo-layer example giv ier, we hav !
Let the minimization (2) with Lagrangian parametéts f3) ?how tt?' d(:'termw:eDdaV%(le n§2) f‘}; a”RRl} R;. HOW.?VGF, if
yield (Ry, Ro, D1, Ds). Hence, e objective is to determinB,., (R, R») for a specificpair

) (R1, R2), it would be clearly inefficient to simply run the algo-
_La,ﬁ = a1l + azRo + f1D1 + B2 Ds. ~rithmforall (a, B) € L. Inthe nonscalable case, this task is rel-
Let us defineL;, ; andL; 4 as the values of the Lagrangianstively easy: run the Blahut—Arimoto algorithm for some initial

corresponding to paramete(is, 3) and quadruples slope parameter faR(D), and if the resulting rate is greater or
(R1, R1, D1, D1) and (Ra, Ry, D2, Do) less than the desired rate, decrease or increase the slope param-
respectively. Then, by definition eter, respectively, until the attained rate converges to the desired

0<L' w—L*  —as(Ri — R Di—D 33) rate. Typically, sugh practical sea_rch should involve an interval
=Tep ap = 02 2) + 2(Ds 2) (39 partitioning technique. However, in the scalable case, we have
0< L;’“ﬂ — L;ﬁ =a1(Ry — R1) + f1(D2 — Dy)  (34) to control a “normal vector” instead of a slope parameter, and
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hence we have a continuum of possible “directions” to updatencave function of, and hence (35) is a convex optimization

a. We propose the following method.

« Start with an arbitranya(® > 0 andk = 0. LetR =
(R1, R») be the target rate vector.

« Repeat until convergence:
—run the iterative algorithm to determid®,);
— updaten*t1) = a(*) ¢4 (R ) — R), whereey, > 0;
—k — k+1.

problem.
Proof: Follows from the convexity oD, (R). For elab-
oration, see [4]. O

Proof of Theorem 3:Since D...(R) is a strictly convex
functioninthe se{R: D,.,(R) > 0}, it follows that for eacla,
there is a uniqui,, and thatl.;, 4 is differentiable with respect
to (w.r.t.) a everywhere. It further can be shown by algebraic
manipulation that

The following theorem is concerned with the convergence of the

method.

Theorem 3:1f Da,(R)
set{R: D..,(R) > 0}, then in the preceding methog, can
be chosen properly so as to satisfy

lim R, = R.

k—o00

VQL:;,ﬂ - Ra~

is a strictly convex function in the Hence, the updata®*+!) = o + e,(Ryx) — R) is the up-

date for a gradient-ascent algorithm to maximize (3bxan be
chosen as in any line-search method (e.g., see [13]). O

Remark: If D,..(R) is not strictly convex at the target rate
vector R, then it must be planar, and there are infinitely many
solutions for the corresponding. Under that circumstance,

Before we present the proof, we give the following lemmahe above algorithm breaks down. However, in nonscalable RD
which is a simple application of the duality principle in opti-analysis, this phenomenon is seen only when the size of the

mization theory [13].

Lemma 3:

Davg(R) = max {L}, g — a1 Ry — as Ry} (35)

Qy,02

for all R. The maximum is achieved bya;, o3), where
(1, a7, a3) is the normal toD,y,(R). Moreover, L}, 4 is a

reproduction alphabet is larger than that of the source (see [2,
Example 2.7.3]), and this fact is most likely to be generalizable
to scalable RD. On the other hand, the most interesting cases of
RD analysis typically involve identical source and reproduction
alphabets.

As a final note, it should be emphasized that by replading
with D, D,y With R,,, anda with 8 in the above discussion
we obtain the equivalent results for “targ@tnavigation.”
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IV. NECESSARY AND SUFFICIENT CONDITIONS FOR A necessary condition for the optimality of a givey) ., is
OPTIMALITY that all perturbations increase the free energy. We formalize an
e-perturbation ofg,, ,, as
In this section, we investigate analytical evaluation of the A

scalable RD function. The first attempt toward this direction was Ty ys = (1= €)qyy,yo + €Tyyyo

made in [7, Sec. V]. Th_ere, the solution to m|n|m|zat|on of (2) I§vqeree > 0, and require

presented as the solution for a system of equations and inequal-

ities in ¢}, .. The conditions for optimality are embedded in 0La, (q°) >0 (39)

the system. (See [7, inequalities (25) and (26)]) However, those Oe —o

conditions are ambiguous for a tegf, ,, such thag, = 0at ¢\ -4 iccinle reproduction distributions;, ,,,. Further, if

somey; . It is not clear if one should ignore those values;of 12

heth ot £ th diti ¢ bi the free energy is a convex function @fthen the “first-order”
orw ether s:’_ms ‘?‘Ctlon of the conditions for an arbitrayy, , condition (39) is sufficient as well. Therefore, we start by
indicates optimality ofy,, .. y

Thi tivat 1o derive th timalit diti b %Jroving the convexity of the free energy in Section IV-A; we
IS motivates us to derive the optimaity COnditions by Carte, i e by deriving the optimality conditions in Section IV-B;
fully handling the cases whetg, = 0. The optimality condi-

we then show in Section IV-C that a suboptimal tentative

Liution could be declared optimal by the conditions of [7];

derived in [7] for the case where the distribution under test S8ld end this section with a demonstration of the difficulty in

|s.f|.es @y, > 0 f_or all ;. However, the rewsepi optimality CON" avaluation of the (Kuhn—Tucker) optimality conditions.
ditions surprisingly require us to tll conceivabley,,,, for

eachg,, = 0. As we show by an example later in this section, i, convexity of the Free Energy
we ignore those; such that,, = 0, or rely on the conditions
g\f,g; Sztggrt]“j\l/lif;:g:ﬁ:rﬁ;ygﬁt';ﬁ]’;hen a suboptimal tenta show thatfo (=) is a concave function af,, ., . Toward this end,

Recall that (21) provides us with an equivalent minimization © Prove the following lemma.
problem forLy, 4, whichis more compact and has fewer param- Lemma 4: Letp, . be ajoint distribution, and lét < v < 1.
eters to optimize. We refer to the expression to be minimizedling(-) is a strictly positive concave function, then the function
(21)

To prove the convexity of the free energy (36), it suffices to

h(py, =) = Pyg(P=1y)”

La,(q) 2 - (a1 + a2) me log fo(x) (36) Isconcave irp, ..
- Proof: Letr, . = Apy -~ + (1 — N)g,. -. Then

as theHelmholtz free energgf the system, in order to empha- Ty =Apy + (1= A)gy
size relations with statistical physics. The analogy is direct aagéd

simple in the nonscalable case (see [15] and [16]) where the I Ty,z

RD Lagrangian is, in fact, the Helmholtz free energy of a phys- Wy,

ical system whose energy is the distortion and whose inverse Ay + (1= N)gy.-
temperature is the slope parameter. Thus, finding a point on the - r

RD curve is equivalent to reaching isothermal equilibrium in the

physical analogy. In the scalable case the description is similar,

albeit complicated by the existence of multiple temperatures a,r\]d i . buious| Y With 0 < ~ < 1
the interaction between layers. ow, if g(-) is concave, obviously so ig-)” with 0 < vy < 1,

Dy 1,
=Xy + (1= A) gy
Ty Ty

In this section, we apply calculus of variations on (21) to déi—nd
rive the necessary and sufficient conditions for a giygn,, to h(ry,.) =ryg(rapy)”
minimize the free energy. ’ P q ¥
For a better intuition about the interpretation of the functions =Tyg (A T—y Pay + (1= A) Ti qz|y>
fo(z) and fi(z, y1), we observe that the optimal random en- Y Y
coding function in the first and second layers are given by >, <)\ % 9(py)? + (1= X) z_y g(qzly)7>
Y Y
—B1di (z,y1)+(1—a)) log fi(z,y1) = \p, 21 T4+ (1= Ng, 21 Y
Q;l\m((l) _ e o ! 37) Py (P=1y) ( )2y 9(4zy)
Jo(z =M(p,,.)+ (1 = Mh(qy, -)- O
and (pJ; )+ ( ) (qJ; )
* —B5d2(z,y2) . . .
@y (@) = Qyrwole (@) gyypy, e 202 38)  We use this lemma to prove thAt(x) is concave iny,, ,, as

Qy, |z(fl) fi(@,y1) ( follows. From the definition offy(z) in (16), we observe that
in order to apply the lemma it suffices to show the concavity of

respectively. These forms, together with (16) and (14), givg(z, y1) in qy,),, - Indeed, by (14)f, (=, y1) is alinear func-

fo(z) and f1 (z, y1) the interpretation of partition functions, intion of, and consequently concave in, the conditional distribu-

the statistical physics analogy. tion gy, |y, -
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B. Derivation of the Optimality Conditions 9fs(z)

We proceed by expanding (39). First, observe that, we have L Py
not yet clarified the definition of, («, y; ) for values ofy; such = —fola) + Z e Bidi(@ y1)+(1-a)) log fi(z, y1)
thatg,, = 0. In the iterative algorithm of Section IlI-B, this am- ”
biguity does not cause a problem, because we start with a distri-

i (0) i ; + Z Ty, €
butiongy,; 4, > 0 everywhere, and the iterations never reach a Y

Y1:qy; >0
—B1d1(z,y1)+(1—ay) log g1 (z, y1)

case Wherqz(ff) = 0. Moreover, in the free energy formula (36), v1€Yo(a,m) / /
it does not matter how, or even whether or nfatz, 11 ) is de- +(1—af) Y gye ilvdailos @)
fined fory, such thay,, = 0. We choose to leave it undefined Y1y, >0
for those cases, and recast the formulggf:) as Off(w, )
_ —Bids (z, y1)+(1=a}) log fi(z,31) (40 de oo
fole) = 37 ame (“0) _
Y1:qy; >0

Now, denote byf§(z) and ff(x, y1) the perturbed versions o
of fo(x) and fy(z, y1), respectively. The domain df (z, y1) e=0
is potentially larger than that of; (=, y1), due to the inclusion _ 1 Z(T' — )e—,ﬁédg(z,yg)
of the possibly nonempty set Iy 4 yiy2 Ty Sz

Yolg, ) 2 {y1: gy, =0, 1y, > 0}. where the last equality is fay; such that,, > 0 only. Com-

bining all these derivative evaluations, we expand (39) as

Forally, € Vo(q, r), notethay, , = ery,, 4,,and,therefore,
0,1y = Tyaly, - HENCE, forys € Yo(g, r), we have 1> Z Ty, w(Y1)
y1€Yo(g, )
e A B do (. y-
fl(xv yl):gl('xv yl): Zryglme Brda ’yZ)' (41) +(1—Oé/1) Z Z’I‘yhm’l}(yl,yg)
Y2 Y1:qy; >0 Y2
Remark the independence @f(, y1) from . +a Z Zrquy2|y1u(y1, Y2). (48)
We will also need the following limits: Y11y, >0 2
Thereforeg,, ., is optimal if and only if (48) is satisfied for all
hIn ff(x7 yl) — {fl(x7 y1)7 qyl > 0 (42 qu:J_ p y ( )
=0 gi(m, y1),  y1 € Nolq, 7) Ty, yae o .
and Now, if (44) and (45) are both satisfied, then so is (48) for any
s\ Ty, y, - CONVeErsely, if (48) is true for at,, ., , then by choosing
lg(l) fo(z) = fo(x). (43) deterministic distributions for,, ., i.e.,
We are finally ready to present the explicit conditions resulting L oy, g =2, 2
from (39) as a theorem. "viv2 = 0, otherwise

Theorem 4—Kuhn—Tucker Optimality Condition&:given we can show that

Qy,. 4, is optimal if and only if (o1 + 02) > o v(y1, y2) + 01 Y dyrpy, vy, vh)  (49)
v(y1, y2) <1, Yy, y2 with gy, >0 (44) v

wly) <1, ¥y with g, = 0, andVr,,,, (45) forall Y1 Y2 with ¢,, > 0. Multiplying both sides by, ,|,,, and
: summing overy,, we get
where
1> ey VY1, .
( s poe—Pidi (o) =Bhds (,52) =0 log fi(r.01) = JZ D)
v(Y1, Y2) = )
- folx) On the other hand, since from (46),, . ¢y,, 4, 0(y1,92) =1,
(46) we have equality above for @i such thay,, > 0. Therefore,
and from (49), (44) follows. Similarly, if we substitute in (48), =
A ppe—fidi @) +(1=ai) loggi (@.y1) 1 at somey; such that,,, = 0, we precisely obtain (45). O
= i . 47
wis) ; fo(w) (47) Remarks:

s , 1) Condition (44) is equivalent to the optimality conditions
_ Proof: With the help of (41)~(43), we evaluate the derivag aimed in [7]. However, as we show in the next subsection,
tives related to (39) as satisfaction of (44) is not sufficient for optimality f,, ..
OLq p(q°) 2) Checking condition (44) involves only substitution of
Je the candidatey,, ,, in (46), and hence, is straightforward.
. However, checking (45) involves substitution of all conceiv-
= —(a1 + as) Z pe 0f5(x) ablery2|yl_ in (47) for everyy, such tha_ltqy1 = 0, Which_is
fo(z) de |, computationally catastrophic. Alternatively, one can think of
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maximizing w(y;) over allr,,,, and checking whether the0.8197, a; = 1.9126. Running the algorithm proposed in Sec-
attained maximum is less thanUsing (41) and (47), togethertion I1I-B, we can obtain the correct solution fgf, , : see the
with Lemma 4, this is easily shown to be a convex optimizatiamatrix at the bottom of the page, where columns and rows rep-
problem, i.e.,.w(y;) is a concave function of,,,, . Solving resentthe first-and the second-layer symbols, respectively. Note
this new problem, we get the optimality conditions that the values of;, , are numerically computed in finite pre-
D s (@ 90)~Byda (. 92) 0 og g1 (1) cision, and are hence approximate. Howeyﬁz;, the error is negli-
Z il < w(y) gibly small sincev(y, y2) < 1+1.3323 x 10~*° for all y1, yo.

- fo(z) Also, using the stopping criterion (31), we ensure that the La-
grangian cost., g(q) = 0.8285 is at most3.6402 x 10715
Quay from the true optimal, 4.

ow consider a different tentative solutigp,  ,,

with equality whenever,,,, > 0. Note that this condition is
not easy to check either. However, it leads us to an alternat
set of Kuhn—Tucker conditions, which we present below.

Lemma 5—Alternative Optimality Conditiong given 0 12
0y, 4. 1S optimal if and only if there exists g,,|,, for all 0 /200
¢y, = 0 such that when the domain ¢f(z, y1) is extended to 1 0 00
all z, y1, we obtain 2 /200

This simple solution yields(0, y2) < 1 for all yo. How-

v(ys, y2) S vlyr) <1 (50)  ever, testing (45) for the values(1) with the choice of

for all Y1, Y2, Wherev(yl_/ y2) is defined as in (46), and conditional d|str|but|0n’l"y2|1 = {1/47 07 3/4}, we obtain

w(l) = 1.01330374. Hence, the Kuhn-Tucker conditions
(51) are violated and this tentative solution ssiboptimal Also,
the Lagrangian coska., g(¢) = 0.8465 is considerably larger
than the optimal cosL;, 5. However, the conditional distri-
Checking this version of the optimality conditions is noPution choicer,,; = {1, 0, 0} andr,,;> = {1, 0, 0} yields
easier than the original form in Theorem 4, as in order to verify(1) = 0.97562679 andw(2) = 0.9575114, respectively.
the optimality ofg,, ,,, one has tdind some artificialg,,,, 1herefore, had we either ignored(1) andw(2) or evaluated
for all ¢,, = 0 such that (50) is satisfied. Note that once théhem only for the latter choice of conditional distribution, we
domain of f,(z, y1) is assumed to b& x Yy, definitions of Would have considered this suboptimal solution to be optimal.

{ééféégg s;ljj;(%’ y1) become identical ifr, ,, in (41) is D. The Difficulty in Evaluating the Kuhn—Tucker Conditions

Another alternative for checking optimality is to run an iter- Let us reconsider the example of Section IV-C with the ten-
ative algorithm that is guaranteed to converge;to, i.e., the tative solutiong,,  ,
maximizer ofw(y; ). In Section l1l-B, we already provided an it- 0 1 9
eratlye algorithm which can be utilized for this purpose: p_erturb 5 0006777 33662559 0. 49323601533916 0
the giverg,, ,, to ensure thag,, ,, > 0, runthe proposed iter- 0 0 0
ative aIgothm.untlI convergence, and check if thg free energy 9 0.00206622293909 0.49795039454623 0
of the solution is arbitrarily close to that of the origing| ..

Although the most prominent application of the KuhnWhen we teswv(y., y2) for y1 € {0, 1} andy, € {0, 1, 2},
Tucker conditions is to verify optimality of a givep, ,,, the we see thav(y;, y2) < 1, and, hence, the first part of the
alternative version given by (50) is also useful in dealing witKuhn—Tucker conditions (44) is not violatéddowever, to test
solutions for product sources and sum distortion measures tf#¢ second part (45), we have to evaluatg) for all r,,5. In
Sec. 2.8]. Specifically, using Lemma 5, it is easy to prove thkig. 2, we preseni(2) as a function of |, andry),. (Note that
the boundary poinfR, D), g can be computed by summingwe made use of the fact thafj, + 712 + 722 = 1 to draw the
up the RD vector§ Ry, Dy)a, g Which are computed for the figure in three dimensions.) We see tha2) exceedsl for a

di(z,y1)+(1—a}) log f1(z,y1)

fo(z)

A pee~ P
v(y1) = Z -

component problems fdr = 1, ..., K independently. region of conditional distributions,,,, and, thereforeg,, .,
is not optimal. Furthermore, since this region is very small, the
C. Distinction With Previous Results time complexity of checking (45) is in the same order as that of

In this subsection, we will demonstrate that the simpler coAD €xhaustive search over the entire simplex,gf.. One could

ditions of [7] are not sufficient for optimality. Let us recon- igjmjary, due to finite precision, we havéy:., y2) < 1-42.2204 x 10-15

sider the example of Section IlI-D. Now lgt= 0.1803, cv; = fory, € {0, 1} and for allys.
0 1 2
0 0.09749464111237 0.37302587944721  0.02947947944042
1 0 0 0

2 0.02947947944042  0.37302587944721 0.09749464111237
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Fig. 2. Kuhn-Tucker conditiom:(2) as a function of-q|> andr 2. The small region where(2) > 1 is filled in.

argue that we can use some iterative maximization algorithmherefy(z, y1, ..., yy) = 1, and
to find the region wherev(2) > 1. However, rather than em-fi(x, y1, ..., Ys)
ploy an iterative algorithm for the evaluation®f2) at asingle _ Z
tentative solution, we might as well use the iterative algorithm — Quisrs o ynlyns o wi
proposed in Section 11I-B, whicHirectly produces the optimal et Y /
solution. . e{_ Zj:i+1 ﬂjdj(m’yj)_zj:iﬂ o; log fi(@, y1, '”’yj)} (54)
for0 < i < N. Also,
V. GENERALIZATION TO N-LAYERS folz) = Z o
In this section, we demonstrate that the results generalize to Y5 YN
N layers, whereV > 2. Most proofs are fundamentally similar AL i) =30 adlog fi(e, s wi) (55)
to the N = 2 case, except that they require cumbersome nota-
tion. We provide proof sketches when needed. and 5, o
/ v I ?
Lemma 1-A-Layer: ﬂi_ai+...+aN’ T Mt tan (56)
. ] i Lo 5(Q.0) (52) Proof: It suffices to show by substitution that
= min min o , q). *
@B Qy1 ..... ynle i, un i 1 Lﬂ,ﬂ(Q7 q) = La,ﬂ(Q (q)7 q)
Proof: Follows after observing + Do (pryu ounle |[Pe@y,, ...,lez(q)) - d

La,p(Q. @) = La, p(Q) + Da(Qys, .. yw s, ..y ). O COrOllAry 2—=N-Layer:
L;ﬂ:q min —(a1+---+aN)prlogf0(z). (57)
Y1 YN T

In Lemma 2, we determine the optimal conditional distribu-

tion Q;h ...,lea:(Q) for the outer minimization of Lemma 1. Before proceeding further, let us rearrange (54) and (55) into
Lemma 2-A-Layer: simpler recursive forms
filz, v, -5 i)
Q;"“’y""Z(Q) = Z Qyisilys, -, vi
- qyl,...,yNe{_ S Bldi(wy) =Y allog filwyr,eyi) | Yit1

. e{—5£+1d¢+1($, Yir1)+H(1—oiyy)log firr(z, 1,y yi+1)}

(53) (58)

fo(z)
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fo(z) Proof: If (R, D) is achievable by aiV-layered scalable
_ Z qyle{fﬂidl(z,y1)+(17a'1)10g filey)} (59) coder, then so are
v N 3 o (Ry, ..., Ri—1, Ry, Ri, Riqs, ..., Ry,
The above identities may be verified by substituting Dy, ...,Di 1, D;, D, Diya, ..., Dy)
Dy, -unlyrs v = Qyaralyn, o v Qyero, s unlyr, o vina forall0 < i < N, and
Qyi,....,yn = Qy1 dys, < YN Y1 (0 R27 te RN7 Dmax7 D27 LR DN)

in (54) and (55), respectively, and taking the summations oveke rest of the proof is identical to that of Theorem 2. [
Yit2, -- -, Yyn andys, ..., yy first. As in the case olV = 2, ) o ] o
these alternative forms shed more light on the statistical physics! N€ discussion in Section III-E on the navigation on the RD

analogy by allowing the observation surface is, in fact, valid for generd, and, therefore, we will
o (0) not repeat the arguments, theorems, and lemmay for 2.
vittlz,yr, i \d Convexity of the free energy (57) is provable by arguments
Q* (q) similar to those of (21). From (58) and (59), it suffices to show
_ Yisyeeny yi+1|:r . . . . .
=0 (@ that f(, y1) is concave ingy, . yy,, for which it suffices
Yl to show thatfs(z, y1, y2) is concave iny,, . |y, 4., @Nd SO
— _Tyialyrys on. This sequence of reasoning leads to the concavify(af)
filz,y1, .o u0) in gy, ... 4y, after observing thafy_1(z, y1, ..., yn—1)is a

linear (and hence a concave) functio .
el Bldivi (@, yis )+ (1—al ) log fipr (@, y1, o yign) (60) ( ) Lo TR

forall0 < i < N. Lemma 5 -Layer: A given ¢, .. ,, iS optimal if and

only if there exists ay,,, |y, ...y forall g, .., = 0,such
Theorem 1-~-Layer: The sequence that when the domain of;(z, y1, ..., ¥;) is extended to all
¢, QW M Q@ . x, Y1, -- -, Y;, WE obtain
as generated by the iterative algorithm vy, - yN) Loy, -, ynvo1) < - < o(y) < 1(62)
* initialize with q§?)yV > O0forallyy, ..., yn; forall yy, ..., yn, wherev(yy, ..., y;) is defined as
« iterate until cc():)vergence: * oy, - %) |
_COmpUterh...,me = le,__.,yN\.r(q); _ Z LA Z;Zl Bid;(z,y;)
—computeg™_ . = prng(ﬁ?___7yN‘z; — fo(z)
converges to ] 6{_ Z;;i (y;- log fi(z,y1, ..., y;)+(1—a’) log fi(x, y1, ..., yq)} )
*q") = arg min Lo , q).
T L LA L (63)
The proof of this theorem is identical to that of Theorem 1,  Proof: Asin the proof of Theorem 4, we expand
and therefore is omitted. It suffices to show OLa, p(q%) >0
La,ﬂ (Q(n), q(n—l)) - La,ﬂ(Q**, q*) e e=0 B
i} (n—1) i} ) by substituting the derivatives
S D"(qy17---7yzv qul,---,yzv)_Da(qy17---7yzv quly---;yN) of&(x) Off(z,y1, .-, yi)
ZJo\") and Ji\T, Y1, y Yi
which also yields the following stopping criterion as a corollary. e |._o Oe —0
Corollary 3—V-Layer: whereq® = (1 —¢€)q+er, f§(x), andff(z, y1, ..., y;) are the

perturbed versions aof, fo(z), and fi(z, y1, - .., ¥;), respec-
tively. To proceed further, we need to introduce the functional

gl(w Yis -y yz) for (yh ceey yl) such that]yh...,yi =0, but

(n
Qyy1,...,yn
< 3 L LEIAL LA B
< (ag+ -+ an)log Lf}.l.%zv D) ] Tyr oy > 0

La,p (Q(”), q(”_l)) — La,s(Q%, ¢°)

Yi,-- YN
_ _ 9i(w, Y1, -5 Y1)
To generalize the results of Section IlI-C, we redefihas Z
= Tyivalyr, - v
In _ Bn- 3 —
£={<a,ﬂ):“z”—12-~-z/—12%}. (61) A ,
an aN_—1 Qq . e{_ﬁi+1di+l(f’77yi+1)+(1_(’i+1) log git1(=,y1, ---7yi+1)}
Theorem 2-A-Layer: Let J; = Y, andd;(xz, ;) = Withgn(z, y1, ..., yn) = 1as the recursion termination rule.
d(z, y;), fori = 1, ..., N. Then, for each RD vector pair AlSO, let
(R, D) on the RD surface with w(ys, ..., y:)
Ry>--->R; >0 and Dpax > Dy >---> Dy =3 A= Bdie v}
— Jo(z)

there exists a normal vectéd, € L for which (R, D) = i
(R. D) N 6, B) ( ) .6{72]‘:1 o logfj(z,yl,...,yj)+(17a§)loggi(x,yl,...,yi)}‘
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After some manipulation, the expansion becomes tions, in the sense that checking the optimality conditions nor-
(a1 + -+ an) mally requires an iterative :_al_gorithm to be used._

! We also derived the sufficient set of Lagrangian parameters

to visit all the points on the RD surface, and devised an efficient

N . . .
> Z - Z T T algorlthm_ for navigating over the RD surfaqe SO as to reach a
P i ’ target point. These two problems are relatively easy for non-
W1,y 70 scalable coding, but complications occur due to the increased

dimensionality of the RD surface in the case of scalable coding.
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