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We consider a multi-terminal source coding scenario known
as robust descriptions coding (1, Section VII], where the source
is to be encoded in a way that enables good descriptions
for several distortion measures simultaneously. Multiple de-
coders, reconstructing the source according to their respec-
tive distortion measures, may represent users with different
perception systems (e.g., humans vs. machines), or different
quality expectations. Alternatively, they may represent a sin-
gle user decoding the same bitstream for different applications
(see e.g., [3] for the use of different distortion measures for
searching and for reconstruction). The rate-distortion func-
tion for robust descriptions, derived in (1], is given by

R(Dy,...

, D) I(X;Yh,...,Yn) . (1)

= min
E{d;(X,Y;)}<D; Vi

By trivial source coding arguments, we observe

max Ri(D;) < R(Di,...,Dn) < ZRz‘(Di) ) (2)

where R;(-) denotes the standard rate-distortion function for
the measure d;(-,-). When the upper bound in (2) is tight,
then the simple strategy of encoding the source separately for
each distortion measure, and multiplexing or concatenating
the descriptions is asymptotically optimal. The other extreme,
i.e., achieving the lower bound in (2), is the best-case scenario,
because then the encoder need not expend any more rate than
the maximum of rates necessary to achieve the distortion levels
D1, ..., Dy by individual encoding.

An equivalent characterization for R(D1,...,Dn) is

L= min I(X;Yl,...,YN)+Z,BiEdi(X,Yi), 3)
Qyy,eynlz .

where Bi1,...,8n are appropriate non-negative Lagrangian

multipliers. Denote by Q) . . any conditional distri-

bution achieving the minimum in (3), and let gy, . 4y
3o PaQ}, . ynier Our first result is obtained by posing ro-
bust descriptions as a special case of successive refinement
coding, for which we obtained optimality conditions in [2].
Theorem 1: An optimal reproduction gy, .., satisfies
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and the corresponding conditional Qy, is given by
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We next derive conditions for equality on either bound of
(2), and show by examples that they can indeed occur.
Theorem 2: R(Ds,...,Dn) =Y., Ri(D;) iff

q;um,yN = q;1q;2 o 'q;N . (6)
Example: Let N = 2, X = {0,1,2,3}, )1 =Y = {a,b},
and p, = 1/4 for all z € X. Also let
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1
0

1
0 and da(z,y)=
0
1

0

This setup arises naturally in database searching where the
users are only interested in identifying objects in a database
that are most similar to a query object (see [3]). It can eas-
ily be verified using (4) and (6) with ¢;, = ¢y, = 1/2 that
R(Dl, Dz) = R](Dl) + RQ(D2) for all Dy, Ds. :
Now for the lower bound in (2). Without loss of generality,
we assume that R;(D;) is the largest among R;(D;).
Theorem 3: R(Ds,...,Dn) = Ri(Dh1) if and only if

Y min Y pePyadi(z,u) < Di s ™
z

Yi€Ys
y1

for 2 < i < N, where P, |, is an optimal conditional distrib-
ution attaining Ri(D1).

Example: Let N = 2, X = )1 = Y. = {0,1,2}, and
pz = 1/3 for all z € X. Also let di(z,y1) = |z — y1| and
da(z,y2) = du(z,y2), ie., the Hamming distance. Figure 1
below shows the relevant regions on the (D;, D2)-plane.

Figure 1: The gray color indicates the region where
R(D1, D2) = max{R1(D1), Rz2(D2)}, and the bold curve sep-
arates Ri(D1) > Ra(D2) from R2(D3) > Ri(D1).
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