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Additive Successive Refinement

Ertem Tuncel Student Member, IEEEBNnd Kenneth Rosd-ellow, IEEE

Abstract—Rate-distortion bounds for scalable coding, and con- sive refinement without rate logy Koshelev [10], [11], and by
ditions under which they coincide with nonscalable bounds, have Equitz and Cover [6]. A sufficient condition was given in [10],
been extensively studied. These bounds have been derived for therq 11 for simultaneous achievability of the rate-distortion bound

general tree-structured refinement scheme, where reproduction at . e
each layer is an arbitrarily complex function of all encoding in- " all layers. In [6], the authors proved that the same condition is

dexes up to that layer. However, in most practical applications (e.g., &S0 necessary. Rimoldi [12] addressed the achievability of any
speech coding) “additive” refinement structures such as the mul- sequence of rates and distortions and provided a complete char-
tistage vector quantizer are preferred due to memory limitations. acterization of the achievable region. Effros [5] extended these
We derive an achievable region for the additive successive refine- results for stationary ergodic and nonergodic sources.

ment problem, and show via a converse result that the rate-dis- in all ori K it imolicitl d that lability i
tortion bound of additive refinement is above that of tree-struc- n all prior work, It was Implicitly assume at scalability 1S

tured refinement. Necessary and sufficient conditions for the two accomplished by using a tree-structured decoding scheme, i.e.,
bounds to coincide are derived. These results easily extend to ab-reproduction at layeE is an unconstrained function of all en-
stract alphabet sources under the conditionE{d(X, a)} < oo coding indices from layet to layer L. Of course, tree struc-
for some letter a. For the special cases of square-error and abso- y,req decoding is not a special case, but rather, it is the most
lute-error distortion measures, and subcritical distortion (where : .
the Shannon lower bound (SLB) is tight), we show that successive gener.al, and hence the optlmal scalable coding strategy. HOW'
refinement without rate loss is possible not only in the tree-struc- E€VET, its natural implementation, tree-structured vector quanti-
tured sense, but also in the additive-coding sense. We also providezation (TSVQ) [9], is usually impractical due to its high code-
e_xamples which are success_,ively re_ﬁnable V\_/ithOUt ratc_e_loss for all pook storage requirements and demand for a huge training set in
distortion values, but the optimal refinement is not additive. the design stage. To mitigate these complexity barriers, in most
Index Terms—Additive refinement, multistage vector quantiza- practical applications such as speech coding, a special case of
tion (MSVQ), rate distortion, scalable source coding, successive re- TSVQ, namely, the multistage vector quantization (MSVQ) [9],
finement. is preferred. MSVQ is what we call an “additive” refinement
structure, because refinement is based on adding a hew vector,
|. INTRODUCTION which is a function of only the current layer encoding index, to
UC_CESSIVE refir'lement' of infprmation, or scalabI%B?ezrg;/[?gf/gﬁirdri;gcsggfg%rgrg;);ga_l’ the decoding struc
oding, re_fer's to hierarchical cod_lng. of the source, WhereIn this paper, motivated by the popularity of MSVQ, we in-
coarser descriptions are embedded in finer ones. In hetero stigate the rate-distortion performance of additive successive
neous networks such as the Internet, where users may h ement coders with two layers. We first derive an achievable

different bandwidth constraints, this coding scheme is very ar%égion for the quadruple&i,, Ro, Dy, Ds, ), i.e., the distor-

pealing because of its capability to serve a diverse set of US§fSn and rates at each layer. A straightforward converse result,

While USers with high-bandwidth connections can aChie\/esﬁcourse, is that no additively refined coder can outperform the
high-quality reproduction of the source by accessing the ent Eneral scalable coding bound of [12]. We improve this result

Cf{).l(.jed lt)r:tstream, li)s_terts with Ik())w-bandw!dth colnsttr;;unts csn da deriving a tighter converse region. We then focus on whether,
utilize the same bitstream Dy accessing only the embe under what conditions, additive refinement is optimal, i.e.,

coarse descriptions and achieve a low-quality reproductioepChi

. o . . achieves the scalable coding bound. Observing the similarity of
In certain applications, such as image coding for Progressiyis requirement to the no-excess-rate case of the multiple de-

:Lansmlssmtrj,f'uzers.tﬁam stop the colmmlunlcatlon process Oggﬁptions problem [7], [1], we borrow a technique introduced
€y are satishied wi € accuracy [evel. in [1] to derive the necessary and sufficient conditions for the
From the viewpoint of rate-distortion theory, the problem o ptimality of additive refinement

scalable coding was initially addressed in the contesugtes- All the results established in this work easily extend to ab-

stract alphabet sources under the usual regularity condition, i.e.,

, _ _ the existence of areference lettesuch thatt' {d(X, a)} < oco.
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Fig. 1. The TSVQ (left) and MSVQ (right) decoders.

any rate loss. Our result shows further that these circumstanaes
also guaranteadditivesuccessive refinement without rate loss.
We also provide examples for which the (optimal) refine- E{d(X™, g(f(X"))} <D +é.
ment that achieves the nonscalable rate-distortion bound_in i i )
both layers is not everywhere additive. We use the Bernoul|® fundamental result of rate-distortion theory [2]-[4], [14] is
source with continuous reproduction alphabet and square-effiit the rate-distortion function indicating the minimum achiev-
distortion measure, as the first example for this phenomend@y|€ ratek for prescribed distortio is given by minimizing
The second example involves a three-symbol discrete soup_e% mutual mformaﬂonl_(X;_Y) over all (_:ondm_onal _d'Str_'bu'
with Hamming distortion measure, where addition is modulo 1ONS Py |x (y|x) that maintain the prescribed distortion, i.e.,
(For discrete sources with Hamming distortion measure, it was (
shown in [6] that successive refinability is possible everywhere
without rate loss.) ) ) ) )
The organization of the rest of this work is as follows. In the L€t us consider the extension of this scenario to two-layer
next section, we discuss the preliminaries. The forward asgalable source coding, where the system consists of encoders
converse additive refinement rate-distortion regions are given in n
Section lll. In Section IV, we analyze the no-excess-rate case, fir X" — My
i.e., the necessary and sufficient conditions for the additive fa: X" — My
refinement bound to coincide with the general scalable coding
bound. Finally, in Section V, we analyze several examphnd decoders
sources.

D)= min I(X;Y). 2
Py x (ylo): E{d(X,Y)}<D

g1: My — Y
Il. PRELIMINARIES go: M1 X Mg — Y™,

Let {X;:}2,, X; € X, be a discrete memoryless source . , )
(DMS) with generic distributionPy (). Let ) denote the re- A Auadruple(Zy, Ro, D1, D,) is calledscalably achievabld

production alphabet. Assume a single-letter distortion meastP& €veryé > 0 and sufficiently largen, there exists a block
d: X x Y — [0, 00), i.e., code(f1, f2, g1, g2) such that

1
n —10g|M1|§R1+(5
Z d(@t, ye). 1) "

t=1

d(z"™, y") =

S|

1
- IOg|M1||M2| SRI +R2 +5
A block code(f, g) consists of an encoding function "
E{d(X", g1(f1(X™)))} D146
Jr At — M E{d(X", ga(f1(X"), fo(X")))} <D +0.

which maps the source to index set, and a decoding function Rimoldj [12] characterized the minimum scalably achievable

total rateR; + R, for prescribed Dy, Ds, Ry) as
g M— "

R(Dy, Dy, By) = min I(X; Y1, Y2).  (3)
A rate-distortion paif R, D) is calledachievableif for every i
§ > 0 and sufficiently large:, there exists a block codg, ¢) P ettt e
such that The decoding scheng;, g») in the above scalable scenario

1 is the most general decoding strategy, since the decoders are not
" log M| < R+6 constrained in how they process all the available information.



TUNCEL AND ROSE: ADDITIVE SUCCESSIVE REFINEMENT 1985

Let us next consider aadditivedecoding scheme, where the 1 (X; X1, j(2> +7 ()21; j(2) <Ry + Ry + 2a
decoder functions are constrained to be of the form

g1(i1) = ha(i1) ) E{d(X, Xl)} <D +8
92l i) =ha(ia) + haliz) ®) E{d (X, X +Xz)} <Dy + . (10)
whereh;(i1) andhs(i2) are independergtage decodersie /)=
require thaty), +) form an Abelian (commutative) grodpand Proof: The proof follows similar lines as that of the El

+ operate “per letter” on vectors as usual. This new constrafifimal-Cover achievability region for the multiple descriptions
imposed on the decoders brings significant storage saving®bPlem [7]. LetPs ¢, (21, #2|2) be the conditional distri-
the reproduction site. The most general decoding scheme nelddidon satisfying (10). Let the vector elements of the random
a total lookup table storage i1 |(1+|Ms,|) vectors, whereas S€tSC1 = {#7(i1): in € Ma}andCy = {3 (ia): iz € Mo}

the additive decoding scheme requires ot | + |Mo|. be drawn independently and accqrding to uniform distributions
o _ ~overT?(X,) andT!(X,), respectively.
Definition 1: The quadruple(Ri, Ry, D1, D») is addi-  Encoding Given " € A™, the encoder searches over

tively (., )-achievable if for largen, there exists an additive (;; 7,y M, x M. Ifit finds an (y, i5) such that
refinement codeff;, f2, h1, ha) with (&, 37 (i), #0(ia)) € T"(X X XQ)

1
—log|My| <Ri+a  (6) thenitstops the search and declafes™) = i1, fo(a™) = ia.
1 Otherwise, it sendg; (z") = fa(z™) = 1.
= log|My| <Ry+a (7) Decoding The decoders simply perforia (i) = £7(i1)
n anth(z'2) = i’g(lg)

E{d(X", hi(f1(X"))} <Di+pB (8  Expected DistortionBy definition of the stronglye-typical

—~ o~

E{d(Xn, hl(fl(Xn)) + ho fQ(Xn)))} < Dy +[3 (9) sets, If(:vn, :f??, f??) € T:l(X Xl, XQ), then

Definition 2: The quadrupléR;, R, Dy, D,)iscalledad- d(z", i) = - Z d(ws, $14)
ditively achievable if itis («, 3)-achievable for ale > 0 and t=1

> 0. 1
’ =Y LN b e i) da, )
The entire achievable region, denoted Qyis the set of all n

.. ] (a,b,c)EX XX XX
additively achievable quadruplé®:, R2, D1, D>).

We close this section by recalling the fundamental property < Z (PX %, %, (@, b, ¢) + e) d(a, b)
of strong typicality, which will be extensively used in the main (b, ) EX X X x A o
results section. A vectar” € Z™ is said to be strongly-typical R
with respect to random variablé ~ Py if <E {d (X, Xl)} + ecy
1
Pz(a)—gN(a|z”)’<e, Vae Z <D+ B +ec

where N (a|z") denotes the number of occurrences of Symb@{_he_recl is a constant determined by the distortion measure.
a in z". The stronglye-typical set ofZ, denoted byI™(Z), is  Similarly

the set of all vectors that are stronghtypical with respect to q(;", i7" +i%) < E {d (X, X, + Xz)}+662 < Do+f+eco

Z. The strong typicality property is generalized in & Stralgh\t&herecz only depends on the distortion measure. Now, denote

forward manner to handle jointly distributed multiple randorB £ the “encoding failure” event where for ajl € M, and
1

\S{Z?Sa.bles. See [4] for a detailed discussion of types and typ'%§1€ Mo, (&, #0(i1), #3(ia)) & T"(X, Xl: f(z). From the

preceding discussion, it follows that
ll. MAIN RESULTS E{d(X", ha(f1(X™)))} < D1+ B+ eer + Pr[€] maxd(a, b)

The first theorem defines an achievable region of quadruplesd
(R1, R2, Dy, D5). In other words, it provides sufficient condi- E{d(X™, hy(fi(X™)) + ha(fo(X™)))}
tions for achievability.

Theorem 1: The quadruplé Ry, Ry, D1, Dy) is additively 3 _ _ _
(o, B)-achievable if there exist random variabl&s and X,, The probabilityPr[£] was shown in [8] to vanish as — oo if
jointly distributed with source variabl&, such that log | M| > I(X; Xl) Yecs

I(X; Xl) <Ri+a«a

< Dy + 3+ ecy + Pr[€] max d(a, b).

S 3=

I(X- X2> <R+« 10g|M2|>I(X; X2)+ec4

1 N N N ~
1As a matter of fact, a more relaxed condition that is sufficient for the validity — 10& [M1[|Maz] > I(X§ X, X2) + I(Xlé X2) +ecs.
of our results is that{ (A, B) = H(A, A 4+ B) for any pair of jointly dis- . ) B . .
tributed random variabled and B. However, practical examples of addition 1 nerefore, Set_t'ng)’é |M;| = n(R;+a)fori =1, 2and letting
usually form an Abelian group. € — 0 establishes the result. O
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We denote by Q;, the region of all quadruples >H ()A({Q X;‘)
(ﬁl, Ry, Dy, D) for which there exist random variables
X, and X, satisfying (10) for alla > 0, 8 > 0. Obviously, >T (X"; X, X;‘)

Qin IS an inner bound to the achievability regiad, i.e.,

Qin C Q. Given the similarity of both the method of proof and n . ;

the resulting conditions to those of [7], and recalling further > Z I (Xt% Xt X2t) - (15
the fact that the El Gamal-Cover region is not tight [15], we - R -

conjecture tha;, # Q. Also, by definition of additive achievability

Turning to converse results, a straightforward observation is
that the general (not necessarily additive) scalably achievable n(D1 + ) >
region characterized by RimoldiB(D;, D-, R;) function (3)
automatically defines a converse region for the additive refine-
ment problem. Let us denote Rimoldi’s region @y.. The fol- n(Dy + B) >
lowing lemma provides an alternative characterizatiogf,
which is more convenient for additive scalability considerationgjow, |et

NE

E {d (Xt, Xlt)} (16)

&~
Il

1

NE

E {d (Xt, X+ XZt)} . @)

o+
Il

1

Lemmal: GivenD;, Dy, andR;, the minimum overall rate . _ . ( v 9 )
R + R, required for a quadruplgR?;, R», D1, D-) to be scal- R (D1, Dy, By, Ry) = I(Xf?ii?gl I(X; X1, Xo).
ably achievable is given by 1(X; X3)< R

£{d(X, X1)}<Dq
R(D1, D3, Ry) = min I (X; X1, XQ) (11) PO = ne (18)
I(X; Xq1)<Rq
E{d(X,X1)}<Dy Then from (15)

B{d(X,X;+X3)}<Dy
where the minimization is ovelPy < (21, Z2[).
Proof: Since(é\?, +) is an Abelian group, observe that
FG K, ) = (X X, 64 o) B {a (0 St )} 1 (0 %) (X ).
Therefore, the proof follows from Rimoldi's result [12] after

making the transformatioris, = X; andY, = X; + X,. [ Bythe (obvious) convexity ak*(-, -, -, -), using (13), (16), and
(17), we obtain

n(Ry+ R +20) > 3 R (B{a (X0 %) ),
t=1

In the next theorem, we prove a stronger converse result.

Theorem 2:If the quadruplé Ry, Ry, D1, D) is additively Bi+ Ry + 20 2 RY(Dy+ 0, D2 + B, Ba + @, R + @)

(o, f)-achievable, then there exist random variabsand \hich, with the definition ofR* in (18), implies the theorem.

X, jointly distributed with source variabl&, such that 0
I (X; Xl) <R+« We denote byQ,,; the outer bound t@ characterized by
(18), i.e., the region of al{ Ry, Rs, D1, Ds) such thatR; +
I (X; j(z) <Ry+a Ry > R*(D1, Dy, R1, R,). From the foregoing discussion, it
is clear that
I(X; X, X5) <Ri+Ry+2
(%5 %1, %) <Ryt R 420 Qi C QC Qo C Qg (19)
Ed (X7 X1) <D +p whereQ,.; C Qr follows from (11) and (18).
Ed (X7 Xp + Xz) <D;+p. (12) IV. OPTIMALITY OF ADDITIVE REFINEMENT
_Proof: Since (R, Re, D1, D7) is additively (o, f)- In this section, we consider the question whether it is pos-
achievable, for large enough we have fori = 1, 2 sible for an additive refinement coder to achieve the general (not
n(R; + a) > log | M| necessarily additive) scalable coding bound, i&.,4+ Ry =

o R(D,, Ds, R;). There is important practical motivation be-
> H(X]") hind this question. If there exists an additive refinement coder
n. n achievingR; + Ry = R(D1, Dy, Ry), we can significantly
>I1(X"; X] : gy :
reduce the codebook storage without sacrificing (asymptotic)
n . performance relative to unconstrained scalable coding. Not sur-
> Z I (Xt; Xit) (13) prisingly, to answer this question, we adopt an approach very
t=1 similar to that introduced in the discussion of no-excess-rate in

where the last inequality follows from the independence of thfultiple descriptions [1].
samplesX;. Moreover If (R1, R2, D1, D5) is additively (a, 3)-achievable, and

n(R1 + Re + 2a) > log | M| + log | Ma] Ry + Ry = R(D1, Do, Ry), then from (14)

>0 (X7)+H(£3) (14) n(R(Di, Dy, Ry) +20) > H (X7) + H (X3).
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Also, from (13), (15)—(17), and using the fact tlﬁal +)isan there existrandom variablé§, andXs, jointly distributed with
Abelian group source variableX, such that (21) holds.

1 o e 1 e o The proof is almost identical to Ahlswede’s proof for the
H (X1’7 Xz) =i (Xl’-/ X1+ Xz') no-excess-rate case for the multiple descriptions problem [1],
and is therefore relegated to Appendix A for completeness

2 B(Dy +f, D2+ f, B + 0). without disrupting the flow of the text.

Hence,

I (X{L; XS) =1 (X{L) o (XS) - (X?, XS) In this section, we analyze different memoryless sources and

n[R(Dy, D2, B1) + 2« investigate values ab; and D, where additive refinement im-
— R(Dy + 8, Do + B, Ry + a)]. poses gxce;s_rate expenditgre relative to unconstrgined refine-
ment. Since itis not easy to find closed-form expressions for the
It follows from the continuity ofR(D:, D, R;) in all of its conditional distributions achieving(D1, Dy, Ry), we focus
arguments that, given fixed, we can choose and 3 small On sources that are successively refinable without rate loss, i.e.,
enough to ensure that the case wher&(D1, D2, R(D1)) = R(D-). For this special
case, itis clear from (11) that one can readily find random vari-

V. EXAMPLES FORADDITIVE REFINEMENT WITH OR WITHOUT
RATE Loss

I (X?; Xg) < en. (20) ablesX; and X5 such that

) ) I(X; Xl) — R(D")
In other words X1* and.X 3 are almost independent. Notice that
we need a single-letter characterization of all additively achiev- I (X; X, Xz) = R(D>)
able(Rl, Rg./ Dl./ D2) such that?; + Ry = R(Dl, Dg./ Rl),
and hence, as it stands, (20) is not strong enough. However, if Ed (X, Xl) <D,
we provedl (X1;; Xo:) < €, then we would be able to derive a -
tighter converse tha@,;, by adding Ed (X X+ X2) <D,.

I (Xl? XZ) =0 If, in addition, X; and X, are independent, then

to the necessary conditions in (12), when— 0, 3 — 0. R(Dy) =T (X; X, Xz) +7 (Xl; Xz)
In other words, we would require, as the necessary condition
for additive achievability of R, Rz, D1, D2), the existence -7 (X; Xl) 47 (X; )22) 47 (X1; X2|X)

of random variable(; and X, such that

i > R(D) +1(X; %)

I (X; Xl) <R

Hencel(X; X,) < R(Ds) — R(D;) = Ry, and (21) is auto-

(X X2) matically satisfied.

Although we derived our results for DMSs, the results can be

(Xl, X2) extended to memoryless sources with abstract alphabets, under

) the usual assumption that there exists a “reference lettauth

(X X1, X5) <R+ Ry = R(D,, Do, Ry) that E{d(X, a)} = d* < oo. Therefore, in the following sub-
sections, we also discuss continuous alphabet sources satisfying
this extra constraint.
We begin by analyzing continuous sources with tight SLB
Ed (X, X+ j(2) < D,. (21) [2], under square-error and absolute-error distortion measures.
For both measures, it is known that tightness of the SLB for
D = D, implies tightness of it for anyp < Dg. Hence, there
exists acritical distortion D, such that the SLB is tight if and
only if D < D, [13]. We prove that for continuous sources
with Dy < D; < D., successive refinement without rate
ss is achievable not only generally [6], but also in the addi-

Ed (X X,

Note further that, random variablé$§, and X, satisfying (21)
also satisfy (10). Therefore, (21) also constitutes a sufﬁment
condition for additive achievability iR, Rs, D1, D2).Inthe

proof of the next theorem which formalizes this discussion, it |$ |0

:Ezgea:nzgﬂ\t’mwﬁ:nrgl;ﬁ?/gthfgx :;md )fétcﬁ:ﬁ %%ZC:::ISOP ally tive-decoding sense. We then discuss the Bernoulli source under
R 9 y P P I the square-error distortion measure, where the reproduction al-

andX2 This result is then used to generate new random Va[ralhabet is the real line. We show that the optimal refinement is
ables satisfying (21).

nowhere additive, although the source is successively refinable
Theorem 3: The quadrupléR,, R2, D1, D>), whereR; + without rate loss for all distortion values. Finally, we investi-
Ry = R(D1, Do, Ry), is additively achievable if and only if gate a discrete source under the Hamming distortion, for which
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we show that additive refinement is optimal if and onlyif is Lemma 2: For0 < D < p(1 — p), the optimal reproduction
below a specified threshold. distribution, achieving the rate distortion functid¥( D), and

the corresponding backward channel, are, respectively, given by
A. Continuous Sources at Subcritical Distortion Under

Square-Error and Absolute-Error Distortion Measures Py(y) =qdly—a)+(1-q)bly—1+a) (22)

LetX — X — R, and letX have a probability density func- 2nd . 0w CLu—1
tion (pdf) Px (x). Assume that the critical distortioB.. is pos- Py py (aly) = { —a, r=0,y=a0rz=1,y=1—-a
itive, and letD, < D; < D.. From the discussion in [6], it ' a, r=1ly=a0rz=0,y=1-a
follows that (23)
R(D1, Dy, R(D1)) = R(D>) where
i.e., successive refinement without rate loss is possible, for both q= l-p—a
square-error and absolute-error distortion measures. We show 1—2a

in what follows a stronger result for both cases: for@l < andq is determined byD = a(1 — a) and0 < a < 1 — p.
D; < D., additive refinement without rate logsachievable.

For the square-error case, the random variableand Y, Note that the distortion values of interest are within the in-
achievingR(D;) andR(D-), respectively, also satisfy terval0 < D < p(1 — p), becauseR’(D) = 0 forall D >
p(1—p). From [6], successive refinability without rate loss from
X =Y2+ Ny D1 to D, with Dy > D, is possible if and only if{ — Y5> — Y3
Y, =Y; + N, form a Markov chain, i.e., if and only if one can find a legitimate

Py, |y, (y2|y1) satisfyin
whereN; ~ N(0, D1 — Dy) andNy ~ N/ (0, D5). This is the vaiyi (y2ln) fying

well-known “backward-channel” interpretation [2]. The noise Pxy, (z]y1) = /PYQm (y2y1) Px v, (z|y2) dys
termsN; and N, are independent from each other and frbm

andYa, respectively. Introducing the transformatidris= X; WherePxy; (z[y1) andPxy, (z|y2) correspond td; and D,
andYs; = )21 + )22, we obtain respectively. But this condition is equivalent to the existence of

. . a matrix P with nonnegative entries, where
X=X1+Xa2+ N,

. 1-b b P l—a a
Xo =Ny b 1-b |l a 1-a
It easily follows that/ (X;; X5) = 0, and the rest of the condi- \yith D1y =a(l—a), Dy =b(1—b),and0 < a, b < 1 —p.
tions in (21) are automatically satisfied. Solving for P, we gét ' -
Similarly, for the absolute-error case, we have
1 l1—a-b a—>b
X =Y+ 2 T 1-2 a—b l—a—0b
Yo=Y1+ 7 whose entries are obviously positive, sinBe > D, implies
where a > b. In other words Py, v, (y1, y2) isS given by
1 |Z2| PYI Y2 (y17 y?)
P = _— St ’
z:(22) 2D, P { D, } 1
i.e., Z, has a Laplacian distribution, and ~ (1—2b)(1 - 2a)
D2 D2 1 Jl=-a=b)(1—-p—a)d(y1 —a, y2 —b
Pr(en) = gaoten) + (1- 32) o e {1211 (o= B =p ol = a0 =)
Dy D1 ) 2D D, +(a=b)(p—a)d(y1 —1+a, y2 — b)
As in the square-error case, the noise te#mandZ, are inde- +(a=b)(1l-p—a)d(yr —a,yo—1+0)
pendent from each other and frdfpandY>, respectively. Upon +(1—a—b)p—a)s(ys —1+a, ys — 1 +b)].

introducing the transformatiort§ = X; andY, = X; + Xo,
it follows thatI(X;; X,) = 0, and therefore (21) is satisfied. The only distributionP. < «(#1, @2|2) that could satisfy
(21) is found by applying the transformatiod§ = Y; and

B. Bernoulli Source Under Square-Error Distortion Measure x, — v, _y;. Itimmediately follows that this choice o, X
Let X be a Bernoulli source, i.e., distributed with (z) = does not satisfy (Xi; X») = 0.

(1 —p)é(z) + pb(xz — 1), whereé(z) denotes the Dirac delta ) ) , . )

function. Without loss of generality, we can assume fhat C. A Discrete Alphabet Source With Hamming Distortion

0.5. LetX = R, i.e., the reproduction is allowed to be positivé//éasure

everywhere on the real line, and tr, y) = (z — ). LetX = X = {0, 1, 2} and let “+” be defined as moduld
Now, we present a lemma which introduces a parameter chemmmation. Also, lePx (z) = [po, p1, p2] suchthapy > p; >

acterizing the optimal reproduction and backward channel djs;. We know that this source is successively refinable without

tributions, and the attained distortion. The proof will be prerate loss in the general sense [6], i.B(,D1, D2, R(D1)) =

sented in Appendix B. R(D,). Using the transformationg = z; andy, = &1 + &+
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on the conditional distributiof?y, v, |x (y1, y2|z) that achieves

1989

Casell:p; > ay > ps > s

the rate-distortion bound in both layers, provided in [6], we ob- Itis also true for this case that; (z1) > 0onlyforz; =0
serve that the only distributioffy XQ\X(flv Zo|z) that could or Z; = 1. Computing the conditionals

satisfy (21) is given by

Pf(l,f(ﬂX(‘%l? §72|x)

= Ps (81)Px, %, (£2121) Py %, x, (2|21, £2)

where

L Px (@) —aal T
e S

z

is the first layer reproduction distribution

PX2|X1 (Z2]21)
1-— D1 — Q9
1—Ds —ay’
max|ag, min(ay, Px (1 + £2))] — as
1— Dy — ’

To=0

G2 #£0

is the second-layer distribution conditioned on the first-layer

reproduction, and finally

1— Dy,

min(az, Px(z)), R A

PN T =21+ 12
PX|X1,X2(‘T|$17 B2) = {

(1 — Dy — as f0 =0
1—1)2—0[27 2
X a1 — Q2 «
P (@l0) = 775, =0, #2=1
P2 — Q2 A
_ =2
\1—D2—052/ 2
and
(11— D1 — as £0 =0
1—1)2—0[27 2
. . P2 — Q2 A
P, 15, (@21) = 1= Dy— oy’ Ty =1
a1 — (2 «
_ =2
\1—D2—O¢2/ 2

we conclude thak; and X, are not independent.
Case lll: po > a1 > as
Py, (z1) > 0 for all z4, and

1—D1—(¥2 R 0
’ T2 =
A A 1—D2—0z2
Py, 1%, (#2]1) = oy —
_—, r 0
1—D2—042/ 1275

independent from the value 6f. Therefore,[()?h Xz) = 0.
The condition; < p, can be translated using (24) Bs <

is the backward channel. Here; andas, are uniquely deter- 2p,. From the preceding analysis, we conclude that (21) is sat-

mined byD; and D,, respectively, according to

Di = —a;+ Y min(a;, Px(r)), i=1,2  (24)

isfied for this source if and only iD; < 2p,. We thus have an
example of a source that is successively refinable everywhere
without any rate loss, but optimal refinement is not additive ev-
erywhere.

Note that whenD; = 1 — py, i.e., whena; > pq, the inde-
pendence conditio(X;; X5) = 0 is trivially satisfied, since
Py (&1) > 0 only for &; = 0. This is not surprising, since We analyzed the rate-distortion performance of additive re-
ahﬁ two-layer tree-structured decoding scheme Wittate at finement coders. After providing inner and outer bounds for
the first layer is implementable by additive decoding. We afide region of all achievableR,, R», D1, D,), we considered

VI. CONCLUSION

alyze the remaining nontrivial cases, > «; > as > po,
p1 > aq > pa > g, andps > ay > as, Separately.
Caselip; > a1 > as > ps
For this casePs. (#1) > 0 only forZ; = 0 ord; = 1. Also,

1—D1—0[2 0

1—D2—0427 2=
Py, 5, (#2]0) = ¢ a1 — o Gy =1

1—D2—(¥27

0, By =2

and

1—D1—Oé2 N 0

- - To =

1—D2—0427 2
Py, 1%, (@21) = < 0, By =1

a1 — Q2 N
s e =2
1—D2—O(2, r2

HenceX; and X, are not independent.

the question whether additive refinement coders can be optimal,
i.e., whether they can achieve the general scalable coding bound
Ry = R(D1, Do, Ry). An affirmative answer to this question
has an important practical implication: it means that we can sig-
nificantly reduce the codebook storage without sacrificing per-
formance of the coder. We derived necessary and sufficient con-
ditions for the optimality of additive refinement, and analyzed
those conditions for several examples.

APPENDIX A
PROOF OFTHEOREM 3

The “if" part of the proof is obvious since (21) implies (10)
foralla > 0,5 > 0. For the “only if” part, we need two lemmas
from [1] known as thevringing lemmas

Lemma 3: If I(X7; X7) < o, then for anys > 0, there
existl < ty, ..., tx < nwith k < %, such that

I (Xlﬁ X2t|X1t1-/ sz Xltkv thk) <o (25)
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If (Ri,Rz,D1,D,) is additively achievable, then it isandZ(e, p, t) 2 Z'(e, t)NZ(p, t). Also, letm = ¢~2/3. Then,
additively («, 3)-achievable for anyx > 0 and8 > 0. For py Chebyshev’s inequality and (25)
sufficiently small « and 8 and largen, we showed that

I(X7; X3) < en. Choosings = en, § = em with 1 <m < n,
we obtain (25) withk < .
Z=Xut,, Xot, ..., X1, Xot, . FOri = 1,2, we observe
n(R; +a) > H(X]') > I(X"; X7', Z) — H(Z)
and, therefore,
1 « N 1
. > = - X i .

Ri+a>- ; I (Xt, Xlt|Z) ~H(Z).  (26)

Similarly, we can derive

1< s 1
Ri+Re42a> I(Xt; X1, X2t|Z)——H(Z). 27)
n —1 n

Define now for every. random variables;; (z) and.X;(z) with
distributions
Pr [Xit(z) - x] — Pr [Xt = #i|Z = z]
Pr[Xi(2) = 2] = Pr[X; = 2|Z = 7]

so that we can write

D1+[32%§ZP1"[Z:Z]

z

B {d(Xi(2), X))} (28)
1 n
D>+ >~ ;gPr[Z:z]
B{d(Xi(2), Ku(2) + Xaul2)} - (29)
We also havel (Z) < klog|X|? and hence
1 H(Z) < 2 log | X|. (30)
n m

At this stage, we need the second wringing lemma.

Lemma 4: Let {X;} be a DMS and leZ be a random vari-

able correlated witf X }. If we define forl > p > 0

Z(p, t) 2 {Zi Z |Px,|z(%]2) = Px,(z)] < P}

xr

then for anyy > 0 and everyn, there exists a set of indices

T(n,~v) C {1, ..., n} such that

T(n,7)| > ——n

T 14y
1+~
H(X:|Z) >H(X;)— ——H(Z), forallt € T(n, v)
n
1 1+~
Pz(Z(p,t)) >1—— H(Z), forallt € T(n, v)
P cn

wherec is a constant.

Now, define

Z'(e, 1) 2 {z: I (X”(z); j(%(z)) < 51/5}

Pz(Z'(e, ) > 1—€2/5

Now use the abbreviationfort =1, ..., n. Applying the second wringing lemma with

].+ P
7 2¢1/51og | X |

and using (30), we obtain
Pr(Z(p, ) > 1 - p 110
fort € 7 (n, 7). Therefore, it follows that
Pz(Z(e, p, 1) 21— /% — p~he /10 > 1 —2p71 /10
fort € T(n, 7). Also, |7 (n, v)| > nv(e), where
v(e) 21-2c 15 og |X].

It is easy to see from the preceding equations that as»> 0,
vie) — 1, |T(n,v)] — n, andPz(Z(e, p, t)) — 1.
Motivated by this observation, and using (25)—(30), we obtain
the following inequalities:

R,;—I—oz—l—?log‘)? €2/5
(1~ 2p 161/1)

1
> Ty 2 2

teT (n,v) z€Z(e, p, 1)

Pz(z) -
2 1 (X(2): X,
Prte g | (V2 X2)
Ri 4 Ry + 20 + 2log | X |e/®
v(e)(1 —2p~tet/10)
1
> T 2 2
! teT (n,v) z€Z(e, p,t)
Pz(Z(e, p,t))

D, +p
V(1 — 20 11/0)

1
> T 22

teT (n,vy) z€2Z (e, p, t)

I (Xt(z); X1i(2), th(z))

o Pz(2)
PZ(Z(ev p>t))

Dy + 3
VL — 2 1e/10)

1
2 Ty 22

t€T (n,7v) zEZ(e, p,t)

d (Xt(z), Xlt(z))

P
Pz(Z(e,p.t))
Lete — 0 and observe that the inequalities converge to (13),
(15)—(17), respectively, except for an extra expectation with re-
spect toZ. By a convexity argument, as in the proof of The-
orem 2, and also from (25), we establish the result. For a more
precise and detailed argument, the reader is referred to [1].

d (Xt(z), Xio(2) + th(z)) .
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APPENDIX B which is to be evaluated only gt= a andy = 1 — a. Substi-
PROOF OFLEMMA 2 tuting Px («) and Py (y), we conclude that
Let l—a, z=0,y=a0rz=1y=1-a
3 ! I 1-a 31 PX‘Y('ﬂy): a rx=1 y:aOfx:O y:l—a
bla) = 15, e —, (1) / | / (33)

where0 < a < 1 —p < 0.5. Itis easily verified using differen- Gi fixed val Bwith0 < a < 1 h i
tiation that3(a) is a monotonically decreasing function in the lven a fixed value ot wit < a < 1 —p, the resulting

interval0 < a < 1 — p. The range ofi(a) in the same interval diStortion is

is [1=5; log 152, 00). We will prove that the tentative solution ,, _ S S Peln) Py (aln) (e —9)* = a1 — a).

Py (y) given in (22) satisfies the Kuhn—Tucker optimality con- ol W (8

ditions [2] with the slope parametéf 2l — —3(a). To this (34)
end, we write
Fy) 2 / Px (z)eP@)(@—v)* ACKNOWLEDGMENT
y)= —B(a)(z—1y’)? z .
[ Pr(y)e Bla@—v)dy The authors wish to thank the anonymous referees for

—(1- p))\oe_ﬁ(“)yz n pAle_'B(“)(l_y)Q pointing out an error in the statement of Lemma 3.

where REFERENCES

-1 -8 2 -8 —a)? . . . . e
/\0 =q1€ Ala)a + qoe Ala)1-a) [1] R. Ahlswede, “The rate-distortion region for multiple descriptions
) R without excess rate,IEEE Trans. Inform. Theoryvol. IT-31, pp.
+ qoeBl@)e” 721-726, Nov. 1985.
o . . [2] T.BergerRate Distortion Theory: A Mathematical Basis for Data Com-
To prove thatPy-(y) is indeed optimal for the value db satis- pression Englewood Cliffs, NJ: Prentice-Hall, 1971.
fying dl(zi(DD) _ _Ig(a), it suffices to ShOv\f(y) < 1. By substi- [3] '\I’(.olyll(.. S\?i}/:yr air;)dgi A. Thomaglements of Information Theary New
tution, we see [4] I. Csiszar ahd J. Kérnemformation Theory: Coding Theorems for Dis-
_ _ _(1_ B(a)a® crete Memoryless SystemsNew York: Academic, 1982.
(1 p)/\o =ph = (1 a)e (32) [5] M. Effros, “Distortion-rate bounds for fixed- and variable-rate mul-
and, hence, tiresolution source coding,JEEE Trans. Inform. Theorwol. 45, pp.
, N 1887-1910, Sept. 1999.
fly)=(1- a)e—ﬂ(a)a‘ (e—‘@’(a)'y2 + e—ﬂ(a)(l—y)‘) ] [6] W. H. R. Equitz and T. M. Cover, “Successive refinement of informa-
’ tion,” IEEE Trans. Inform. Theoryol. 37, pp. 269-275, Mar. 1991.

By inspection, we observe th is symmetric with respect [7] A El Gamal and T. M. Cover, “Achievable rates for multiple descrip-
y P - ﬁty) y P tions,”IEEE Trans. Inform. Theoryol. IT-28, pp. 851-857, Nov. 1982.
toy = 0.5, and [8] A.El Gamal and E. van der Meulen, “A proof of Marton’s coding the-

orem for the discrete memoryless broadcast chani€EE Trans. In-

)\1—1 :qle—ﬁ(a)(l—a)2

f(a) =1 form. Theoryvol. IT-27, pp. 120-122, Jan. 1981.

f'(a) =0 [9] A. Gersho and R. M. Grayyector Quantization and Signal Compres-

o sion Boston, MA: Kluwer, 1992.

f (a) <0 [10] V. Koshelev, “Hierarchical coding of discrete sourceBrobl. Pered.

. Inform,, vol. 16, no. 3, pp. 31-49, 1980.
therefore,f(y) assumes a local maximum of valueat y=a [11] ——, “Anevaluation of the average distortion for discrete schemes of se-
andy = 1—a. Observing thaf (y) is proportional to the mixture quential approximation Probl. Pered. Inform.vol. 17, no. 3, pp. 20-33,
i i i i 1981.

of two Gaussians with the Same V_anance' it follows tﬁ@) [12] B. Rimoldi, “Successive refinement of information: Characterization of
can assume only two local maxima; therefore, the rds(l@ﬁ < the achievable rateslEEE Trans. Inform. Theotyol. 40, no. 1994, pp.
1 follows. 253-259, Jan..

Th kward channel distribution rr ndin [13] K. Rose, “A mapping approach to rate-distortion computation and anal-
e backward channel distribution co espo d g’{dy) ysis,” IEEE Trans. Inform. Theoryol. 40, pp. 1939-1952, Nov. 1994.

is given by [14] C. E. Shannon, “Coding theorems for a discrete source with a fidelity
P _(:L,)e—’(}(a)(z—y)g criterion,” in IRE Conv. Reg¢vol. 7, 1959, pp. 142-163.
PX\Y($|U) = X : [15] Z. Zhang and T. Berger, “New results in binary multiple descriptions,”
’ | Py (y)e=Bla)z—y)? IEEE Trans. Inform. Theotwol. IT-33, pp. 502-521, July 1987.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


