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Abstract—This paper investigates the relationship between
rate–distortion theory and efficient content-based data retrieval
from high-dimensional databases. We consider database design
as the encoding of a data object sequence, and retrieval from the
database as the decoding of the sequence using side information
(i.e., the query) available only at the decoder. We show that, in
this setting, the optimal asymptotic tradeoff between the search
time (bits per data object read from the storage device) and
the expected search accuracy (relevance of the retrieved
data set) is given by the Wyner–Ziv solution with a side-in-
formation-dependent distortion measure. Moreover, the data
indexing and retrieval problem is, in general, inseparable from
the data compression problem. Data items selected by the search
procedure, which can be stored in the disk with a limited total
rate of , need to be presented at a prescribed expected
reconstruction quality . This is, hence, a problem of scalable
source coding or successive refinement, albeit with differing layer
distortion measures to quantify search and reconstruction quality,
respectively. We derive a single-letter characterization of all
achievable quadruples , and prove conditions
for “successive refinability” without rate loss. Finally, we show
that the special case = = 0 is nontrivial and of practical
interest in this context, as it can impose “acceptable” search and
reconstruction qualities for each individual data item and for the
entire query space with high probability, in contradistinction with
standard average distortion requirements. The region of achiev-
able is obtained by adapting Rimoldi’s characterization
to a new regular scalable coding problem.

Index Terms—Approximate similarity searching, content-based
retrieval, databases, scalable coding, successive refinability
without rate loss, Wyner–Ziv problem, zero–one distortion
measures.

I. INTRODUCTION

A. Motivation

THIS work was originally motivated by several observa-
tions regarding central problems in database management

and their relation to problems of source coding as well as to
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fundamental results in rate–distortion theory. An immediate
first observation is that the design of coding systems for static
databases eliminates one of the pitfalls experienced in virtually
all other compression applications, namely, performance gen-
eralization outside the training set. Simply stated, in the case of
compression for storage in a database one may train the code on
exactly the same set of data that will actually be compressed.

More important to this work is the fact that researchers
working on efficient retrieval from databases have come to
realize that their main challenge is the handling of very large
and high-dimensional databases, e.g., multimedia databases. A
highly motivating observation is that the search and retrieval
(or indexing) problem bears resemblance to the rate–distortion
problem in that it seeks an optimal tradeoff between the amount
of data that needs to be read during the search (“rate”) and
the quality of the retrieved data in terms of its relevance to
the query (“distortion”). Moreover, since very large databases
are at the focus of intense database research, it is of great
interest to identify and characterize the asymptotic (in size of
the database) performance bounds, which are naturally related
to standard rate–distortion theoretic results.

We further observe that, in real-world applications, one
must jointly handle search performance and compression
performance. On the one hand, it is desired to have the search
as efficient as possible in terms of the search time and quality
tradeoff. On the other hand, there is the question of the repro-
duction quality of the individual data items. (The data cannot
be reproduced losslessly as there is an inherent storage capacity
barrier.) It turns out that this combined problem is equivalent to
a scalable coding problem. The base layer is the “search” layer
and expends the minimal rate needed to secure a certain level
of search quality. The enhancement layer uses more rate to
refine the reproduction of the data items. Note that this scalable
coding problem involves different distortion measures at the
two levels.

Based on the preceding initial observations, it is the premise
of this paper that information-theoretic approaches may offer
highly valuable insight into and performance bounds for impor-
tant problems in storage and retrieval in large databases. More-
over, the database context offers a new setting and a variety of
problems that would be of interest to researchers in rate–distor-
tion theory.

B. Approximate Similarity Searching and
Rate–Distortion Theory

Similarity search refers to the task of seeking in a database
the entries that are most similar to a given query object. This
problem is central in a wide range of applications in multimedia
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Fig. 1. The block diagram of the similarity search system.

databases, which may contain images, video, music, etc. The
degree of similarity between two objects is often quantified by
a distance measure, e.g., the Euclidean distance, operating on
feature vectors extracted from the data. The user submits a query
object to a search engine, and may either provide a distance
threshold or the number of objects to be returned. These
types of queries are called the -range query, and the -nearest-
neighbor ( -NN) query, respectively.

In typical multimedia applications, the volume of data is
huge, and the feature vectors are of high dimensionality. For
example, for color-based similarity queries, a color histogram
of dimensions (i.e., bins per color component) is used.
Therefore, even a modest value of , e.g., , results
in 125-dimensional feature vectors. It is in fact impractical
to store all the extracted feature vectors in a random access
memory (RAM) and, therefore, it is necessary to read them
from a hard storage medium, typically a hard disk, during the
search operation. Since input/output (I/O) operations for hard
storage devices are slow, the time spent accessing the feature
vectors overwhelmingly dominates the time complexity of the
search. A sketch of the query processing system is provided in
Fig. 1.

A powerful tool for time complexity reduction is indexing:
the feature space is divided into subregions (usually using a tree
structure), boundaries of which are also stored on the disk (see,
for example, R-trees [9], kdb-trees [13], X-trees [1]). Fig. 2(a)
depicts the main working principle of indexing. Basically, the
purpose of the index is to narrow the scope of the search by
pruning irrelevant data objects based on the boundaries of the
subregions they fall into. However, these pruning techniques
work well only for low-dimensional applications, e.g., searching
on a geographic or road map, and tend to scale poorly to higher
dimensional applications [3], [17], such as those involving mul-
timedia databases. It was in fact shown in [17] that even the
simple sequential scan shown in Fig. 2(b) outperforms all ex-
isting indexing techniques, as the dimensionality increases be-
yond even moderate values (around ).1

On the other hand, it was observed that significant savings in
disk I/O costs compared to the system in Fig. 2(b) are possible
if one allows for approximate search results (see [7], [14], [16].)

1Even when the index structure cannot prune any data, and therefore the
system has to retrieve all data objects, sequential scan is still advantageous be-
cause the tree-structured nature of the index dictates many random seek oper-
ations on the disk. In terms of time complexity, one random seek operation is
equal to retrieving around 100 kbytes sequentially.

Usually, the extraction of feature vectors from the data objects is
itself a heuristic process that attempts to approximately capture
relevant information. Moreover, even if the feature vectors rep-
resented the original data perfectly and losslessly, users would
still differ in their perception systems, and hence in their sim-
ilarity expectations. Thus, rather than incur the extremely high
cost of an exact result, it is more cost-effective to develop a fast
search engine that outputs an approximate set.

We adopt in this work a widely accepted and very effi-
cient approach for approximate similarity searching. Without
building an indexing mechanism, the search engine simply
accesses partial information about all the feature vectors.
Popular examples of this approach are the VA-file algorithm
[16], and the dimensionality reduction techniques [4], [10].
Feature vectors are approximated using the accessed partial
information, thereby trading search quality for processing time.
From the source coding point of view, this corresponds to
quantization. Since the bottleneck for query processing is the
number of disk I/O operations, the processing time becomes
approximately proportional to the rate at which the sequence
of feature vectors are quantized. Fig. 2(c) shows the working
principle of the adopted approximate searching scheme. Note
that the original feature vectors do not have to be stored, as
they will never be used.

Since the database is very large, an additional storage com-
plexity constraint arises, and it becomes necessary to store the
data also in compressed form. One way to do this is to com-
press the data separately from the feature vectors. However, as
the compressed feature vectors already carry some information
about the data they are extracted from, their description could
be embedded into the description of the data and be viewed as
the base layer of a corresponding scalable coder. This scalable
coding approach, also demonstrated in Fig. 2(c), will certainly
improve the total storage performance. It is important to keep
in mind that the quality of compression is measured very differ-
ently in the two layers: the first layer performance is measured
by the accuracy of the search, while the second layer objective
is accurate reconstruction. Also, the first-layer rate reflects the
time complexity, whereas the second layer rate determines the
total storage size.

Practical databases are of finite size for obvious reasons.
However, we idealize the database as a random and infinite
sequence of data objects, drawn independently from a fixed
distribution, and measure the time complexity and the total
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Fig. 2. (a) The indexing mechanism where the decision of whether or not to retrieve a feature vector is solely based on which group it belongs to. (b) Sequential
scan of all feature vectors. (c) Sequential scan of compressed feature vectors, which constitute the first layer of the proposed scalable coding scheme.

storage size in normalized form, i.e., per data object. The
source coding intuition promises an improved performance
for the system if data vectors are compressed jointly, and the
performance reaches its maximum as the number of jointly
encoded data objects tends to infinity. Therefore, as shown
in Fig. 3, we consider coders that operate on “data blocks”
of length , and analyze the performance of the system when

. Of course, the limiting achievable performance region
obtained by such an analysis is also useful as an outer bound
on the performance of the system with finite .

C. Summary of Results
In this paper, we look at the performance of the above system

in a rate–distortion theoretic framework. Four competing per-
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Fig. 3. A block-based scalable source coding look at the system in Fig. 2(c). Note the Wyner–Ziv setup of the first layer.

formance parameters2 are the time complexity , total storage
complexity , search distortion , and reconstruction dis-
tortion . Recall that time complexity is proportional to the
amount of bits per feature vector retrieved from the disk, i.e.,
the first-layer rate in Fig. 3. We omit the constant factor of “sec-
onds per bit,” and measure time complexity directly in bits, in
order to compare it with storage complexity. At the second layer
of scalable coding applications, one can alternatively consider
the differential rate as the relevant performance pa-
rameter. In the proposed application, however, the total rate
at the second layer is more appealing for our purposes as it has
a direct physical meaning (storage complexity). We model the
quality of the search by a distortion function , where

is the original feature vector, is the quantized version of ,
and denotes the query point given by the user. Since feature
extraction is a deterministic process, we can equivalently con-
sider a distortion function , where is the data point
from which was extracted. The quality of the reconstruction at
the second layer is captured by an ordinary distortion measure

, where denotes the reproduction for .
We consider distortion measures which penalize

the undesirable cases where is close to only one of the vec-
tors and . Effectively, this type of measure penalizes false
hits, i.e., inclusion of irrelevant data in the answer set, or false
dismissals, i.e., exclusion of relevant data from the answer set.
The notion of “closeness” is quantified by a distance function

, which is assumed to capture the similarity between the
data and the query point. Fig. 4 illustrates this concept. For
the feature vectors and query shown in the figure,

and yield high values, and
and yield low values. Note the contrast with clas-
sical (query-independent) distortion measures where

, which would imply .
We first analyze the rate–distortion performance in the first

layer. We show that the minimum achievable asymptotic rate
for a prescribed search quality is given by the

rate–distortion function for a special case of the well-known
Wyner–Ziv problem [18]: lossy source coding, where the
decoder has access to side information. The correspondence of
the first layer with the Wyner–Ziv setup is explicit in Fig. 3.
The side information known to the decoder (but not to the
encoder) is the query point . The encoder only has statistical

2Here and in the sequel, the subscripts s and r, respectively, refer to the search
performance and the reconstruction performance.

Fig. 4. Illustration of the behavior of query-dependent distortion measures.

knowledge in the form of the distribution of queries
which may, in practice, be approximated from the query history.
What makes compression of feature vectors a “special” case of
the Wyner–Ziv problem is that the side information is a single
random query instead of a sequence as in the original problem.
Also, note that the query is independent of the sequence to
be coded3 since the user of the search engine is assumed to
generate queries that are independent of the actual database
entries. Despite this independence, the query distribution can
be exploited to reduce the distortion, because the distortion
measure is a function of the side information (see [11] for
discussion of side-information-dependent distortion measures).

There is also a strong connection between the first layer
of our system and the robust descriptions system proposed
in [8]. The query-dependent reconstruction of the feature
vector can be equivalently performed by several decoders, each
corresponding to different query points , where the distortion
at each decoder is measured according to the ordinary measure

. The difference in our exposition is that we consider
the average distortion achieved by all such decoders (where
the average is taken over the query alphabet), whereas in robust
descriptions, the output quality of each decoder is evaluated
separately.

We next derive the region of all achievable quadruples
. As with other scalable coding scenarios,

an interesting question is whether the source is successively
refinable without rate loss [6] at distortion levels and ,

3However, this does not preclude the possibility that queries and stored data
be generated from the same probability distribution.
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i.e., whether the quadruple is
achievable.4 In the classical scalable source coding setting,
the meaning of this desirable property is that users with
different bandwidths can be served simultaneously without
compromising the quality of the system. In our scenario, on the
other hand, it implies that the search over the database can be
done optimally, i.e., with search accuracy and time com-
plexity , while keeping the total storage requirement
at its theoretical minimum subject to a prescribed
reconstruction distortion . Thus, successive refinement
without rate loss trivializes the tradeoff of time versus storage
complexity, as the theoretical minimum for both quantities
can be reached simultaneously. The necessary and sufficient
condition for successive refinability without rate loss follows
as a corollary from the region of achievable .
The resultant condition involves Markovian properties similar
to the well-known condition derived in [6] for the classical
successive refinement problem.

Finally we consider examples where and assume only
the values and , and we set . In the clas-
sical scalable rate–distortion analysis, the case
is of little interest, since it only accounts for lossless coding,
and hence eliminates the need for refinement. However, in our
scenario, with proper choices of and , this corresponds to
enforcing with high probability “good enough” search and re-
construction qualities for each individual data point and for all
points in the query space, in contradistinction with enforcing
distortion values and computed by averaging over a
block of data points and over the query space. We show that in
this setting, the region of achievable is obtained
by adapting Rimoldi’s characterization [12] to a new variant of
the classical scalable coding problem.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let , , and represent the alphabets for data objects,
queries, and feature vectors, respectively. We denote by

, for the random data sequence, by the
random query vector, and by the feature vector deter-
ministically extracted from . Also, let and , respectively,
denote data object reproduction and feature vector reproduction
alphabets. In many cases of interest, and .
We restrict our attention to the case where , , , , and
are all finite alphabets.

Although , , , , and may, in general, be vectors
in some space, we will consider them as “letters” of the cor-
responding super-alphabets , , , , and . We assume
that the data objects are collected independently from the same
distribution, i.e., are independent and identically distributed
(i.i.d.) . For example, consider a web crawler creating
a database by independently collecting random pictures from
random websites, or a government database where biometric
data of individuals are added in the same (random) order they
apply for a driver license. Also, note that is independent of

.

4Here R (D ) denotes the minimum time complexity achieving search dis-
tortion D , whereas R (D ) denotes the ordinary rate–distortion function at
distortion D .

We introduce a query-dependent distortion measure

in order to capture the dependence of quantization quality on
the query point . Since feature extraction is a determin-
istic process, is determined by . Therefore, we can equiva-
lently consider . Before describing
the compression scheme, we provide below examples demon-
strating how the distortion measures or
might be chosen in practice to capture the notion of search ac-
curacy.

A. Example A

Consider and let the feature
be the unnormalized empirical distribution vector (commonly
referred to as type in information theory, or as histogram in mul-
timedia searching terminology) of . In other words

and .
A well-known fact is that the number of distinct types are

“polynomially many” in [5]. More specifically

Therefore, it suffices to use bits to losslessly
describe any feature vector . Following the common intu-
ition borrowed from the method of types, the number of distinct
types may be perceived to be negligibly small compared to
the total number of distinct data objects . This,
in turn, would trivialize the task of scalable coding at hand, be-
cause then the feature vectors can be losslessly encoded with
zero rate for all practical purposes. However, that intuition is
correct only for long data vectors defined on small alphabets,
i.e., , while there are many database examples where

and even . For instance, consider document
search on the web, where is the vector of word counts. In
that context, is the number of distinct words in English and

is the number of words in a typical document. Another ex-
ample is image search based on similarity of color histograms,
where and per megapixel.

Let

That is, the users are interested in finding the data vector whose
empirical distribution is close to (say, within a fixed neigh-
borhood of it). The extra factor of is not necessary but is
included since is always an even integer. Note that
for , the empirical distribution is equivalent to the Ham-
ming weight, and .

Assuming that the search engine outputs data points for which
, the search accuracy criterion

and
and

otherwise
(1)
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is a natural choice since it exactly penalizes inclusion of irrele-
vant data in (false hits), or exclusion of relevant data from (false
dismissals), the answer set. The more relaxed criterion

and
and

otherwise
(2)

for some , , penalizes only false hits that are farther
than from, and false dismissals that are closer than
to, the given query point . All data with distance to the query
point between are considered as “don’t-care”
points.

Depending on the application, one can generalize (2) by intro-
ducing unequal penalty terms for false hits and false dismissals,
rather than penalize both by . Another (perhaps more impor-
tant) direction of generalization is to average over

, the distribution of , which reflects the frequency of range
queries with “radius”

(3)

where denotes the distortion measure for a fixed
, given by (2). Note that (3) requires only statistical rather

than exact knowledge of during the design stage, and there-
fore gives the user freedom to choose together with the query
point .

B. Example B

Consider the same setup as in Example A. Although it may be
desirable to use a distortion measure as in (3), suppose we do not
know the distribution in advance. We observe that assuming

, in (2) yields if ,
regardless of the value of . Moreover, if ,
then there exists an such that yields . Therefore,
another possibility for the search accuracy criterion is given by

otherwise.
(4)

C. Problem Formulation

In the design phase, the data objects are grouped into blocks
of length and encoded using the block encoder

which is a combination of feature extraction and compression.
The compressed bit descriptions are then written to disk
sequentially. In the query processing phase, the whole set of
feature vectors are reconstructed sequentially using the block
decoder

Observe that for different queries the decoding of the same
compressed description may be performed differently
because the distortion measure is query dependent. Therefore,
despite its independence from the data, the query can be ex-
ploited to reduce the distortion. The resultant time complexity

and expected search accuracy are given by and
, respectively, where

Definition 1: A pair is achievable if for all ,
there exists a block encoder and a decoding
function such that

(5)

(6)

This is almost exactly the Wyner–Ziv problem with a side-in-
formation-dependent distortion measure [11], but with the ex-
ception that the side information is not a sequence, but rather,
a single random variable. Nevertheless, as we show in Sec-
tion III, the rate–distortion region is given by the Wyner–Ziv
characterization [11], [18].

Consider next the more demanding requirement that the ex-
pected search accuracy conditioned on each query point
be less than or equal to .

Definition 2: A pair is strongly achievable if for
all , there exists an encoding function
and a decoding function such that

(7)

(8)

Remarks:

1) The strong achievability may be a desirable feature, as
it imposes high search quality for all query objects, as
opposed to high search quality averaged over the query
alphabet .

2) The region of strong achievability coincides exactly with
that of a corresponding robust descriptions problem [8],
where are distinct decoders, each equipped
with distortion measures .

3) The strongly achievable region of is a subset
of the achievable region described in Definition 1. Note
further that the two regions coincide when .

We next consider the scheme of scalable coding where
descriptions of compressed feature vectors are embedded in the
descriptions of compressed data. The data reproduction quality
is evaluated by a “reconstruction” distortion measure

which is generalized to blocks of length
as

The enhancement layer encoders and decoders are denoted by

and
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respectively. Note that the decoder does not rely on the
knowledge of the query, as i) both the reconstruction distortion
measure and the data objects are independent of the query,
and therefore it cannot be utilized for better reconstruction,
and ii) the data may not always be accessed via searching, i.e.,
the user might know the exact location of the specific data
object to be reconstructed. The total storage complexity of the
system and the reconstruction quality are respectively given by

and .

Definition 3: A quadruple is successively
achievable if for all , there exist encoding functions

, , and decoding functions
, , such that5

(9)

(10)

(11)

(12)

The notion of strong successive achievability can be similarly
defined as in Definition 2.

In the achievability proofs we provide in Section III, we use
Csizsár and Körner’s notation of types and strong typicality [5].
A vector is said to be strongly -typical with respect to
(w.r.t.) random variable if

where denotes the number of occurrences of symbol
in . The strongly -typical set of , denoted by , is the
set of all that are strongly -typical w.r.t. . Similarly, given

, the vector is said to be conditionally strongly
-typical w.r.t. if

and the corresponding typical set is denoted by . We
refer the reader to [5] for a detailed discussion of types and
typical sets.

III. MAIN RESULTS

In this section, we first derive the rate–distortion region for
the first layer, i.e., the region of all achievable pairs of query
processing time and search accuracy . Next, we derive
the region of all achievable quadruples .
Finally, we analyze the conditions for the achievability of

, where denotes the min-
imum rate needed to achieve search accuracy , and
denotes the ordinary rate–distortion function at distortion .

5Notice that according to this definition, fR ;R ;D ;D g can be achiev-
able even when R > R . However, achievability of R and R implies only
that the expended rates at the first and second layers are at most R and R ,
respectively. Thus, if R > R is said to be achievable, it is to be understood
as “there exists a scheme expending at most R bits at both layers.”

A. Achievable First-Layer Rate–Distortion Region

We show in the next theorem that the region of all achievable
is in fact given by the Wyner–Ziv characterization

[11], [18].

Theorem 1: A pair is achievable if and only if there
exists a random variable distributed on some alphabet , and
a deterministic function , such that

and

(13)

(14)

Remark: The corresponding rate–distortion function
is given by

(15)

Note that this is precisely the Wyner–Ziv characterization, since
when form a Markov chain,

and is independent of . Therefore, the discussion in [18,
Appendix A1] implies that is convex and that it suffices
to consider alphabets of size to compute .

Proof of Theorem 1: We begin with the converse. Fol-
lowing the notation of Fig. 3(b), we let and

. If is an achievable pair, then we know that
for any , there exists large enough such that

(16)

and

(17)

Since is independent of , we have

Also, , where yields the th component of
. It then follows from the definition of that

for all ( playing the role of the auxiliary random
variable for all ). Using (16), (17), and convexity of ,
we obtain
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for any . From continuity of , we conclude
.

For the achievability part, since is independent of , we
do not need to use the random binning argument introduced in
[18]. Assume that there exist a random variable and a deter-
ministic function , such that

, and .
Code design: Choose vectors independently

and according to a uniform distribution over . Reveal this
set to the encoder and the decoder.

Encoding: For the source vector , find the lowest
index such that , and send .
If no such is found, then let . The rate needed for
transmission of is obviously .

Decoding: Reconstruct and evaluate
. Note that this corresponds to the

decoding operation .
Expected distortion: Letting , we guar-

antee that the probability of the existence of satisfying
approaches as . This implies

with probability approaching , and therefore,

where . Therefore, for large we
have

(18)

where is a constant. Taking expectations w.r.t. on both
sides establishes the desired achievability result. Note that the
expectation on the left-hand side of (18) is w.r.t. the random
codebook of messages , as well as . Hence, there must
exist a deterministic codebook with the desired distortion level.

The region of strongly achievable can similarly be
characterized by a slight modification of the proof of Theorem 1.
We present the result as a lemma, and omit the proof.

Lemma 1: A pair is strongly achievable if and only
if there exist a random variable distributed on some alphabet

, and a deterministic function , such that

and

(19)

(20)

B. The Successive Achievability Region

The next theorem gives a single-letter characterization for the
achievable quadruples .

Theorem 2: A quadruple is successively
achievable if and only if there exist random variables
and , and a deterministic function ,
such that

and

(21)

(22)

(23)

(24)

Remarks:

1) For a successively achievable , inequal-
ities (22) and (24) imply where
denotes the ordinary rate–distortion function [2], evalu-
ated at

(25)

This is shown by contradiction. Suppose that
. Then by (22)

which contradicts (24) and (25). Similarly, (21) and (23)
imply .

This result formalizes the intuitively obvious notion
that by adopting a two-stage coding scheme, we may be
penalized with increased time complexity, or increased
storage complexity, or both. In the corollary to the the-
orem, we will provide conditions for achieving

and simultaneously.

2) Using arguments similar to [18, Theorem A2], it is easy
to prove that the successive achievability region defined
by (21)–(24) is convex, and that it suffices to consider
alphabets with size .

3) If we replace condition (23) with

we obtain the characterization of the region of strongly
and successively achievable . The proof
is implied by the proof of the theorem.

Proof of Theorem 2: We begin with the converse. Once
again following the notation of Fig. 3(b), we let ,
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, , and . If
is an achievable quadruple, then for any

, there exists large enough such that

(26)

(27)

Also, from (17)

(28)

Finally,

(29)

Note that

and that . The converse, therefore, follows from
the convexity of the region defined by (21)–(24), which can be
easily proved, and from (26)–(29), by letting play the role of

in (21)–(24) and taking similar steps as in the converse part
of the proof of Theorem 1.

For the achievability part, assume that there exist random
variables , , and a deterministic function ,
such that

and

Code design: Choose vectors independently
and according to a uniform distribution over . For each

, choose vectors indepen-
dently and uniformly from . Reveal this tree struc-
tured codebook to the encoder and the decoder.

Encoding: For the source vector , find the lowest index
such that , and send as
the first-layer message. If no such is found, then let .
If in the first-layer encoding a was found,
find the lowest index such that ,
and send as the second layer message. If no
such is found, or if in the first layer no was found, then let

. The resultant first- and second-layer rates are
and , respectively.

Decoding: First-layer decoder reconstructs and
evaluates

as the first-layer output. The second-layer decoder reconstructs

as the second-layer output.
Expected distortion: Letting and

, we guarantee that the probability
that approaches as . Having

implies

as shown in the proof of Theorem 1, and

where . Therefore, for large , it fol-
lows that

(30)

and

Taking expectations of (30) w.r.t. establishes the desired
result.

Corollary 1 (Successive Refinability Without Rate Loss):
The quadruple is successively

achievable if and only if there exist random variables
and , and a deterministic function ,
such that

and

(31)

(32)

(33)

(34)

Remark: Note that this is the familiar Markov chain con-
dition that appeared in [6]. That is, the optimal solutions

and achieving and ,
respectively, are “compatible” in the sense that there exists a
distribution satisfying

i.e., forms a Markov chain. An insightful inter-
pretation of this condition, which is also valid in our scenario,
was provided in [12, Sec. III and Fig. 1 ]. More explicitly, for
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and achieving and , if forms a
Markov chain, then optimal “search” balls

about are almost unions of optimal “reconstruction”
balls

about . Therefore, there exists a tree-structured par-
tition of the space such that the first- and second-level regions
almost exactly give the optimal search and reconstruction balls,
respectively.

Proof of Corollary 1: For the “if” part, having
implies

Therefore, Theorem 2 implies successive achievability of
.

For the “only if” part, assume the successive achievability
of . Then, according to Theorem 2,
there must exist a

and a deterministic function such that (21)–(24) holds
for and . From the very definition
of , (23) implies that (21) holds with equality. Moreover,
since

(24) implies

Since the last equality implies that forms a Markov
chain, we have

which completes the proof.

IV. COMPUTATION OF THE ACHIEVABILITY REGION

The successive achievability region in its full generality
is difficult to compute, because of i) the abundance of pos-
sible functions one can choose, and ii) the fact that

is not differentiable w.r.t. . However,
as we will soon show, the special case of is easy
to compute, as the characterization of successively achievable

reduces to that of the classical scalable coding
scenario derived in [12].

In ordinary scalable rate–distortion analysis, this specializa-
tion is perhaps the least interesting, because the distortion mea-
sures usually dictate if and only if , and
therefore this zero-distortion case is already covered by the anal-
ysis of lossless coding. Moreover, even for more general ,
since the distortion is usually measured by the same function in

both layers, i.e., , there is no need for refinement to
achieve .

In our scenario, however, fixing is not nec-
essarily trivial. Recall that the distortion measures quantify dif-
ferent criteria at the first and the second layers, i.e., the inac-
curacy of the search, and the inaccuracy of the reconstruction,
respectively. Thus, or even are in general
nontrivial cases. Moreover, for all finite

(35)

(36)

imply that

for , and for all , . In other words,
(35) and (36) ensure that for each object in the database, and for
any point on the query space, the search distortion and the re-
construction distortion are always “acceptable,” i.e., within the
allowable limits. Those limits are, of course, determined by the
triplets for which , and pairs for
which . Although achievability of
does not imply (35) and (36), it certainly implies for arbitrarily
small the existence of large enough such that

(37)

(38)

This in turn means that an arbitrarily large subset of data objects
are searched and reconstructed with acceptable accuracy, which
is a very desirable feature.

A. An Alternative Characterization for

Substituting in (23) and (24) of Theorem 2
yields

(39)

(40)

Expanding (39), we obtain

(41)
Assuming without loss of generality that and

for all and , (41) holds if and only if
for every and ,

Using this observation, we prove the following simplified char-
acterization of all successively achievable .

Theorem 3: is successively achievable if and
only if there exist random variables and , jointly
distributed with , such that

(42)

(43)

(44)

(45)
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where

(46)

and

s.t.

s.t.

Remarks:

1) The new alphabet consists of subsets of the data space
satisfying the following: For any query , it is possible to re-
construct a single feature vector yielding accept-
able search quality for the whole collection of data objects.
The alphabet , on the other hand, consists only of those sets
in which are maximal, i.e., which are not properly contained
in any other set in . This result indicates that the problem of
encoding with acceptable search quality for all data objects and
queries reduces to a regular “covering” problem, where optimal
encoding of blocks of objects drawn from is performed by
covering the high probability set using Cartesian products
of the sets in .

2) Although the theorem would remain valid by setting
, as we will see via examples in Section IV-C, the size of the set
could be prohibitively large for computation purposes. Using
instead of significantly reduces the complexity of the task

of computing the successive achievability region.

Proof of Theorem 3: The sufficiency part follows by set-
ting (and, therefore, ), and ,
because (44) and (46) imply that

Hence, by the definition of , and the fact that
, we obtain for every and that

which implies that (39) holds. Therefore, is suc-
cessively achievable, as (21), (22), and (40) also hold.

For the necessity part, assume that (21), (22), (39), and (40)
are satisfied. Then, consider subsets of defined by the map-
ping

(47)

Now, observe that

which follows from (39) and (47). Therefore, by setting
for some arbitrary such that , we

have

and, hence, . Next, consider an arbitrary mapping
such that for all , and let

Now, (21) and (22) automatically imply (42) and (43), respec-
tively, and (45) is the same as (40). Finally, (44) also holds, since

s.t.

and

s.t.

B. Computation of Achievable Rates

The alternative characterization of Theorem 3 is precisely the
Rimoldi characterization for successive refinability [12], spe-
cialized to . Therefore, any method devised for
the computation of Rimoldi’s region can be utilized to compute
the region of successively achievable in our sce-
nario.

In [15], we developed an iterative algorithm which is guaran-
teed to converge to a point on the rate–distortion surface. The
limit point on the surface is determined by the positive La-
grangian multipliers for the rate and the distortion terms. To
achieve a point with , it suffices to let the mul-
tipliers for the distortion terms tend to . Assuming without
loss of generality that the other two multipliers add up to , the
algorithm in [15] simplifies to the algorithm provided as fol-
lows.

1) Initialize with arbitrary for all ,
, such that

Also set the Lagrangian multiplier for the
first-layer rate.

2) For fixed , compute as

(48)

if and , and

otherwise. Here

and

3) For fixed , compute as

4) Iterate steps 2) and 3) until convergence.

5) Compute and using
the resultant .
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Fig. 5. Tabular demonstration of d (x; ẑ; y) in Example A with M = 3, � = 1, � = 0, and � = 1.

The complexity considerations of [15] imply that analytical
computation of points on the rate–distortion surface is not fea-
sible in general. Therefore, an iterative algorithm such as the
above is the only practical tool for the computation of the re-
gion of successively achievable .

C. Examples

We revisit here the examples given in Section II, and compute
the region of successively achievable . Although
the examples are intended for large and/or , we focus here
on very simple cases and analyze the behavior of the achievable
rate region.

1) Example A: Let , i.e., ,
, and . Consider

the search accuracy measure induced by (2), and re-
construction quality measure given by

otherwise
(49)

which thresholds at the value of the Hamming distance be-
tween and , given by

Assume a uniform distribution over , i.e., for
all . We consider three simple cases, each of which
demonstrates a different phenomenon of the achievability re-
gion .

a) Let , , , , and . With the
specified parameters, becomes

and
and

otherwise
(50)

where denotes the Hamming weight of
. This accuracy measure is displayed as

a table in Fig. 5.
We now form the set , and then the set , to utilize

the alternative characterization in Theorem 3. According
to the definition, in order for a subset to be
an element of , there must exist a for each such that
all entries in the column and the rows are

. For example, , because for
or , there is no choice of such that the first

four rows are . On the other hand, ,

since satisfies the requirement for each . By close
inspection, we conclude that

There are 79 elements in the set . However, the cardi-
nality of is only , since it consists of only the max-
imal elements in , which are

or

or

or

Running the algorithm provided in Section III for var-
ious , we obtain the achievability curve
shown in Fig. 6(a). The two corner points corresponding
to and are given by and

, respectively. It is evident that we cannot simulta-
neously achieve the nonscalable bounds
and . In other words, this specific setup of

is not successively refinable without
rate loss.

b) Let , , , , and . Then
becomes

and
and

otherwise.

A similar analysis as above shows that consists of only
two elements

In this case, without running the iterative algorithm,
we can analytically prove that successive refinability is
achieved without rate loss, i.e., the nonscalable bounds

and are simultaneously achiev-
able. Therefore, the achievability region is as shown in
Fig. 6(b).

c) Let , , , , and .
Therefore, is the same as in (50), and it is not
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(a)

(b)

(c)

Fig. 6. Regions of successively achievable fR ;R g for Example A, cases a), b), and c), respectively.
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difficult to show that consists of four elements of the
form

In Fig. 6(c), we show the achievability region computed
by the iterative algorithm for various . For
this example, we observe a somewhat surprising outcome:

is not achievable by any scalable
coding scheme. That is, not only is the setup not succes-
sively refinable without rate loss, but there is also an in-
herent rate loss at the second layer, i.e.,

. In other words, as soon as one decides to facili-
tate search in the database, one has to pay an extra price
in storage. This is perhaps because of the fact that the re-
quirements of this particular type of search (i.e., the mea-
sure ) are “incompatible” with the requirements of re-
construction quality of the data objects (the measure .

2) Example B: Let and consider the search accu-
racy measure induced by (4), and the reconstruction
quality measure given in (49). We again consider an
example case characterized by the parameters , ,
and , and the distribution . We observe
that

with equality when . Thus, is the most restrictive
query point in determining the set , because if ,
then for all . In other words, the set
becomes

s.t.

with

otherwise.

It easily follows that the maximal sets in are characterized by
, and therefore, , where

for . Fig. 7 shows the successive achievability region
obtained using the iterative algorithm. Again, we observe from
Fig. 7 that the chosen parameters, namely, , , and

, do not yield successive refinability without rate loss, as
nonscalable bounds and are
not achieved simultaneously.

V. SUMMARY AND CONCLUDING REMARKS

This work investigates the relationship between rate–distor-
tion theory and efficient content-based data retrieval from high-
dimensional databases. It is motivated by the observation that
the optimal performance tradeoff of a similarity search engine
is closely related to the fundamental rate–distortion tradeoff.

We showed that the minimum asymptotic rate re-
quired to achieve search quality is given by the rate–distor-
tion function for a special case of the well-known Wyner–Ziv

Fig. 7. Successively achievableR versusR for Example B with parameters
M = 10, � = 2, and T = 1=10.

problem, where the query point is viewed as decoder side in-
formation. Since the distortion measure we consider is side-in-
formation dependent, knowledge of the query distribution is ex-
ploited to reduce the search distortion, although queries are as-
sumed to be independent of database entries.

If the database itself has to be in compressed form, the
optimal strategy is to implement a scalable coder. For searching
purposes, only the first layer is decoded, while reconstruction
uses the entire bitstream. We analyzed the tradeoff between
the first-layer rate , and the total rate , employed to
achieve search distortion and reconstruction distortion

. We derived the necessary and sufficient condition for
successive refinability without rate loss, i.e., the achievability
of . As in the classical successive
refinement problem, the derived condition involves Markovian
properties of the distributions that achieve and .

Finally, we considered examples where and are distor-
tion measures assuming only values and , and we require

. This special case is both nontrivial and of
practical interest, as it enforces with high probability accept-
able search and reconstruction qualities for each data point and
for the entire query space. We showed that, in this setting, the
achievability region corresponds to that of a classical scalable
coding problem. The analysis of this special case also shed some
light on the design of practical database systems. Although the
design of a practical system is out of the scope of this paper, it
is worth mentioning here some observations. It is apparent that
the optimal encoding regions of the first layer quantizer (deter-
mined by elements of ) are not classical nearest neighbor re-
gions. Instead, they are regions for which a good feature vector
reconstruction (according to the distortion measure ) is
possible for each query. This makes the design of a quantizer a
tedious task, and may practically necessitate recourse to subop-
timal solutions. For instance, one way to tackle the design dif-
ficulty can be to partition the feature vector space in a nearest
neighbor manner first, and then combine regions with similar
characteristics.
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