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The compound channel is one of the simplest generaliza-
tions of the discrete memoryless channel (DMC). A compound
channel C is defined by a set of DMC {p(x|y, s) : x ∈ X , y ∈
Y, s ∈ S}, that share their input alphabet X and output al-
phabet Y. S is an index set. All sets are assumed finite.
Before transmission an arbitrary DMC s is chosen and the
channel behaves like the chosen DMC for the duration of
transmission. We characterize the zero-error ( as opposed to
the more conventional requirement of asymptotically vanish-
ing error) capacity when neither the encoder nor the decoder
is informed of the choice of DMC s. We also study the effect
of informing either the encoder or decoder of the choice of s.

A study of the zero-error capacity of the compound chan-
nel was initiated by Cohen et al. [1] motivated by certain
combinatorial problems. They presented an upper bound on
the capacity in terms of certain graphs associated with the
channel. In a remarkable paper, Gargano et al., [2] showed
the bound is in fact tight. Our paper is motivated by the ob-
servation that the expression for the capacity presented in the
above papers is accurate only in the case where the decoder
is informed of s. However the other, central results of these
papers remain valid.

We present a complete characterization of the compound
channel capacities. But first, some notation:

For any input letter x and DMC s, the fan-out set Fs(x)
is the set {y ∈ Y : p(y|x, s) > 0}. The fan-out set of a vector
x ∈ Xn with respect to the the channel s is the Cartesian
product Fs(x) � Fs(x1) × · · · × Fs(xn) and the fan-out with
resect to the compound channel is FC(x) � ∪s∈SFs(x). Fan-
out sets characterize the possible channel outputs for a given
channel input. The zero-error requirement implies that any
pair of elements in a valid code have non-intersecting fan-out
sets. We define the characteristic set of graphs of a compound
channel GC = {Gss′ : s, s′ ∈ S} as follows: Gss′ = (X , Ess′),
where (x, x′) ∈ Ess′ ⇔ Fs(x) ∩ Fs′(x

′) = ∅. Note that these
graphs are directed in general. Also the graph can have self
loops and (v, v′) ∈ E does not preclude (v′, v) ∈ E. Gss

corresponds to the usual (undirected) characteristic graph of
G̃s channel s [2]. Let GS � {G̃s : s ∈ S}.

Given an undirected graph G = (V, E), two vectors x,x′ ∈
V n are incomparable if {xi, x

′
i} ∈ E for some 1 ≤ i ≤ n. If

N(G, n) denotes the cardinality of the largest set whose el-
ements are pairwise incomparable, the Shannon capacity of
the graph C(G) � limn→∞ 1

n
log N(G, n). Shannon showed

that C(G) is in fact the zero-error capacity of the channel
with characteristic graph G [3]. The concept of capacity was
extended to sets of graphs in [1]: if N(G, n) denotes the car-
dinality of the largest set whose elements are pairwise incom-
parable with respect to every graph in the set G, the Shannon
capacity of the set of graphs C(G) � limn→∞ 1

n
log N(G, n).
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Further generalizations of capacity were defined in [2] by ap-
propriately defining incomparability with respect to directed
graphs: two vectors x,x′ ∈ V n are incomparable with respect
to a directed graph G = (V, E) if there exist co-ordinates i, j
such that (xi, x

′
i) ∈ E and (x′

j , xj) ∈ E. Using this notion
of incomparability, we can define the Sperner capacity of a
directed graph G, denoted Σ(G), and a set of directed graphs
G, denoted Σ(G) as above. In [2], Gargano et al. obtained
expressions for the Shannon and Sperner capacities of sets of
graphs.

Our main result is

Theorem 1 Given a compound channel C with characteris-
tic set of graphs GC and set of characteristic graphs GS , the
capacities of C are as follows–

a) when neither encoder nor decoder is informed:

C0(C) = Σ(GC).

b) when decoder is informed:

C0
dec(C) = C(GS).

c) when encoder is informed:

C0
enc(C) =

{
0 if C0(C) = 0

mins∈S C(Gs) otherwise
.

(a) follows from the definition of Sperner capacity and the
zero-error requirement. (b) is essentially a careful restatement
of the result in [1]. (c) relies on our result that if Σ(G) is zero,
then one of the graphs in G is edge-free.

These capacities are qualitatively different from those ob-
tained for the conventional asymptotically vanishing proba-
bility of error case: in the conventional case we have C(C) =
Cdec(C) ≤ Cenc(C) [4], while in the zero-error case we only
have C0(C) ≤ C0

dec(C) and C0(C) ≤ C0
enc(C) in general. The

differences arise because in the conventional case, the de-
coder can with high probability identify the DMC in oper-
ation purely by observing the channel output. However, this
imperfect knowledge about the channel cannot be used for
zero-error decoding.
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