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Abstract—This correspondence investigates the behavior of the com-
pound channel under a zero-error constraint. We derive expressions for
the capacity when a) neither the encoder nor decoder has side-information
about the channel; b) when only the encoder has such side-information.
These expressions are given in terms of capacities of appropriately defined
sets of graphs. We clarify that an earlier treatment of the zero-error
capacity of a compound channel corresponds to the case where the decoder
has side-information about the channel. We also characterize the min-
imum asymptotic rate for the source coding dual of the compound channel
problem, namely, source coding with compound side information. Finally,
we contrast the zero-error and asymptotically vanishing error capacities
of the compound channel.

Index Terms—Compound channel, graphs, side-information, Sperner
capacity, Witsenhausen rate, zero-error.

I. INTRODUCTION

The compound channel is one of the simplest generalizations of the
discrete memoryless channel (DMC). It is defined in terms of a set of
DMCs that share their input and output alphabets. An element of this
set (i.e., one of the available DMCs) is selected at random before trans-
mission begins and this choice characterizes the channel behavior for
the duration of the transmission. Both encoder and decoder are igno-
rant of the choice of DMC. The conventional (where an asymptotically
vanishing probability of error is allowed) capacity of this channel was
derived independently by Dobrushin [1], Wolfowitz [2], and Blackwell
et al. [3] around 1960. The zero-error version of the problem, however,
was only studied about three decades later.

Themotivation for examining the zero-error scenario arose from cer-
tain problems in asymptotic combinatorics. Cohen et al. [4] showed
that compound channels provided a convenient common framework for
analyzing several disparate problems. By defining sets of undirected
graphs appropriately, each problem could be reduced to that of finding,
what Cohen et al. termed, the Shannon capacity of a set of graphs. They
obtained an upper bound on this capacity and showed that it is tight in
some cases. In a remarkable paper [5], Gargano et al. showed that this
bound is in fact always tight. Both these papers presented an informa-
tion theoretic interpretation of the Shannon capacity of a set of graphs:
the zero-error capacity of a compound channel with an informed de-
coder1 is the Shannon capacity of a set of graphs associated with the
channel. In the follow-up study reported here, we provide expressions
for the capacity in the remaining cases of interest: a) uninformed de-
coder and encoder; b) informed encoder and uninformed decoder.
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1Note that [4], [5] do not make explicit the distinction between the case of the
informed decoder versus the uninformed decoder. Therefore, for completeness
we shall discuss the informed decoder case as well in Section IV.

In Section III, we show that the compound channel capacity is the
Sperner capacity of a set of directed graphs. The Sperner capacity
was defined in [6] as a formal generalization of the Shannon capacity
to directed graphs and was not related to information transmission.
In Section IV, we consider cases where either the encoder or the
decoder knows the choice of DMC. In Section V, we derive the min-
imum asymptotic rate for the source coding problem with compound
side-information at the decoder, which is the dual of the compound
channel coding problem. We conclude with a comparative discussion
of the asymptotically vanishing error and zero-error capacities of the
compound channel in Section VI.

II. PRELIMINARIES AND NOTATION

Our analysis is grounded in graph theory and employs quantities to
be defined below. All sets that arise are implicitly assumed to be finite.

A. Shannon Capacity of a Graph

A graph G = (V; E) consists of a vertex set V = fvi; i =
1; . . . ; jV jg and a set of edges E � V � V . Unless stated other-
wise, all graphs are assumed to be symmetrically directed, that is
(v; v0) 2 E ) (v0; v) 2 E and (v; v) =2 E. A symmetrically directed
graph G = (V;E) is for our purposes equivalent to an undirected
graph Gu = (V;Eu), where fv; v0g 2 Eu �

V

2
, (v; v0) 2 E.

Therefore, in the sequel, we shall use the terms undirected graph and
symmetrically directed graph interchangeably. Given a graph G, we
say that two vectors xn; x0n 2 V n are connected with respect to G if
at some coordinate i; (xi; x0i) 2 E. Let N(G; n) denote the size of
the largest subset of V n in which the elements are pairwise connected
with respect to G. The Shannon capacity of the graph is then defined
to be

C(G) = lim
n!1

1

n
logN(G; n): (1)

The existence of the limit follows from the supermultiplicativity of
N(G; n) and Fekete’s Lemma [7].
This quantity was defined by Shannon2 [8] to characterize the zero-

error capacity of a noisy channel. For a given DMC C with transition
probability function p(y j x); x 2 X ; y 2 Y , we define the fan-out sets
F (x) = fy 2 Y: p(y j x) > 0g. Using these fan-out sets we can define
the characteristic graph of the channel as the graph GX = (VX ; EX)
with vertex set VX = X where (x; x0) 2 EX if and only if x 6= x0

and F (x) \ F (x0) = ;.
It is apparent from the definition of the fan-out sets that the elements

of a scalar zero-error channel code have nonintersecting fan-out sets,
that is, every pair of elements from a scalar zero-error code forms an
edge in the characteristic graph. Since the channel is memoryless, the
fan-out set of an X -block of length n is the Cartesian product of the
fan-out sets at each coordinate. So two blocks xn and x0n can both be-
long to a zero-error code if and only if at some coordinate their fan-out
sets do not intersect; in other words xn and x0n must be connected
with respect to GX . Therefore the zero-error capacity of a channel is
the Shannon capacity of its characteristic graph.

C0(C) = C(GX):

Computation of the zero-error capacity for general graphs remains an
open problem despite the half century that elapsed since its definition.

2In Shannon’s definition, the right hand side in (1) would correspond to the
capacity of the complement of the undirected graph corresponding to G. Sim-
ilarly, the characteristic graph defined by Shannon is the complement of the
undirected graph corresponding to the characteristic graph that we define later.
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The concept of Shannon capacity was generalized to graphs that have
a probability distribution defined on their nodes in [9]. For a graph
G = (V;E) and a probability distribution P on its vertices, denote by
N(G;P; n; �) the size of the largest subset of the �-typical set A�

n(P )
whose elements are pairwise connected.A�

n(P ) is the set of sequences
in Xn whose empirical distribution is close to P

A
�

n(P ) = x
n: 8a 2 X ;

1

n
N(a j xn)� p(a) � �

p(a) = 0) N(a j xn) = 0

where N(a j xn) counts the number of times letter a appears in xn 2
Xn. The Shannon capacity of G within type P is

C(G;P ) = lim
�!0

lim sup
n!1

1

n
logN(G;P; n; �): (2)

For a channel with characteristic graphGX ; C(GX ; P ) is the capacity
of the channel under the restriction that the type of every element of the
codebook is approximately P . This interpretation along with results on
the number of possible empirical distributions of sequences of a given
length implies that [5]

C(G) = max
P

C(G;P ):

Another concept that is relevant to this correspondence is the
Shannon capacity of a set of graphs G = fGs; s 2 Sg that have
a common vertex set V . If N(G; n) is the size of the largest set in
V n that is connected with respect to every graph in G, the Shannon
capacity of G is

C(G) = lim
n!1

1

n
logN(G; n): (3)

In [4], the following simple upper bound was presented

C(G) � max
P

min
G2G

C(G;P ):

Gargano et al. [5] showed that this bound is tight.

B. Sperner Capacity of Directed Graphs

Motivated by some open questions in extremal set theory, Gargano
et al. [5] generalized the concept of capacity to directed graphs. A di-
rected graph G = (V;E) consists of a vertex set V and an edge set
E that is an arbitrary subset of V � V . Note that self loops are al-
lowed and that both (a; b) and (b; a) may be simultaneously included
in the edge set E. Given a directed graph G = (V;E), two vectors
xn; x0n 2 V n are called incomparable with respect to G, if there
exist coordinates i; i0 such that (xi; x0i) 2 E and (x0

i
; xi ) 2 E,

that is, there is an edge from sequence xn to x0n at coordinate i and
there is an edge from sequence x0n to xn at coordinate i0. Incom-
parability in directed graphs corresponds to connectedness in undi-
rected graphs. Indeed, in the special case where the directed graph
degenerates to an undirected graph, the two concepts are equivalent.
Hence, if we defineNd(G; n); Nd(G; P; n; �) andNd(G; n) similarly
to N(G; n); N(G;P; n; �) and N(G; n) in II.A by replacing connect-
edness with incomparability, we can define the Sperner capacity of a
graph

�(G) = lim
n!1

1

n
logNd(G; n) (4)

the Sperner capacity within a type

�(G;P ) = lim
�!0

lim sup
n!1

1

n
logNd(G; P; n; �) (5)

and the Sperner capacity of a set of graphs

�(G) = lim
n!1

1

n
logNd(G; n): (6)

In [5], it was also shown that

�(G) = max
P

�(G;P )

�(G) = max
P

min
G2G

�(G;P ):

All the above Sperner capacities reduce to the corresponding
Shannon capacities for undirected graphs. In Section III we will show
that the capacity of the compound channel is the Sperner capacity of
a certain set of graphs (see [10] for a different information theoretic
interpretation of Sperner capacity).

III. CAPACITY OF THE COMPOUND CHANNEL

A compound channel is a set of DMCs fps(y j x): x 2 X ; y 2
Y; s 2 Sg, whereX ;Y and S , which are the channel input, output, and
index alphabet, respectively, are finite sets. When a codeword is input
into this channel, the compound channel behaves like one of its con-
stituent channels. The transition probability distribution remains con-
stant for the duration of the codeword. Let Fs(x) denote the fan-out
set of x 2 X with respect to channel s. The fan-out set of xn 2 Xn

with respect to a channel s, denoted Fs(xn) is the Cartesian product
of the fan-out sets at each coordinate of xn. The fan-out set of xn with
respect to is defined as F (xn) = [s2SFs(x

n). F (xn) is the set
of all possible channel outputs when xn is the input to the channel. A
zero-error n-code for is a set fxn(j) 2 Xn; j = 1 . . .Ng such
that F (xn(j)) \ F (xn(j0)) = ;;8j 6= j0. Note that the code
does not depend on the constituent channel actually in operation.N is
the number of messages that can be sent using this code. If the mes-
sage to be sent is j 2 f1; . . . ; Ng, the encoder chooses xn(j) as
the input to the channel. If the channel output belongs to the corre-
sponding decoding region F (xn(j)), the decoder declares that mes-
sage j was sent. The conditions on the code guarantee that the prob-
ability of decoding error is zero. If N( ; n) denotes the size of the
largest n-code, the zero-error capacity of the compound channel is
C0( ) = limn!1

1

n
logN( ; n). It is the maximum number of bits

that can be reliably transmitted in one channel use.
The condition that the fan-out sets of xn and x0n with respect to

should not intersect can be rewritten as

F (xn) \ F (x0n) = [[s2SFs(x
n)] \ [s2SFs(x

0n)

= [s2S [s 2S [Fs(x
n) \ Fs (x0n)]

= ;:

This condition is equivalent to the set of conditions

8s; s
0 2 S: [Fs(x

n) \ Fs (x0n)] = ;

and leads us to our main result, which is described here.
To develop an expression for the capacity of the compound

channel , we define the characteristic set of (directed) graphs
G( ) = fGss ; s; s

0 2 Sg: For every pair s; s0 2 S; Gss is the
directed graph onX such that (x; x0) 2 Ess , Fs(x)\Fs (x0) = ;.
Gss tells us whether we can distinguish two letters when the first
letter is sent through channel s and the second through channel s0.Gss
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is the symmetrically directed graph corresponding to the characteristic
graphGs of channel s. AlsoGss andGs s can be obtained from each
other by reversing edge directions.

Just as every compound channel corresponds to a set of graphs, every
set of graphs G = fGss ; s; s

0 2 Sg, where the Gss; s 2 S are undi-
rected andGss andGs s can be obtained from each other by reversing
edge directions, is equivalent to some compound channel. One way to
obtain the compound channel from the set of graphs is to define the
fan-out sets as Fs(x) ff(s; x); (s0; x0)g: (x; x0) =2 Gss g. The
output alphabet is [s [x Fs(x).

Theorem 1: The zero-error capacity of the compound channel is

C0( ) = �(G( )): (7)

Proof: Let xn and x0n be distinct elements of a block length n
codebook C for the compound channel. Since the decoding regions are
fixed, for every pair s; s0 2 S , the fan-out set of xn with respect to
channel s is disjoint from the fan-out set of x0n with respect to channel
s0, that is, there exists 1 � i � n such that Fs(xi) \ Fs (x

0
i) = ;.

Swapping the roles of s and s0, there exists 1 � i0 � n such that
Fs(x

0
i
)\Fs (xi ) = ;. This means that the two sequences are incom-

parable with respect to Gss . Since this holds for all s; s0, a codebook
is an incomparable set with respect to G( ). Conversely, we can show
that every incomparable set is a valid zero-error code for the compound
channel. It follows by standard asymptotic arguments that the capacity
of the compound channel is the Sperner capacity of the characteristic
set of graphs.

IV. COMPOUND CHANNEL WITH SIDE-INFORMATION

We now study the effect of knowledge of the choice of the constituent
DMC at either the encoder or the decoder on the capacity of the com-
pound channel. We evaluate an example in Section IV.C to contrast the
various capacities.

A. Capacity of the Compound Channel With an Informed Encoder

When the encoder, but not the decoder, knows which of the con-
stituent channels will be in operation, the codewords can depend on the
channel, but the decoding regions cannot. The following lemma leads
to an expression for the capacity.

Lemma 1: mini2I �(Gi) > 0 if and only if

max
P

min
i2I

�(Gi; P ) > 0:

Proof: The “if” part follows from basic min-max results

min
i2I

�(Gi) = min
i2I

max
P

�(Gi; P ) � max
P

min
i2I

�(Gi; P ):

To show the converse, we prove that

max
P

min
i2I

�(Gi; P ) = 0) min
i2I

�(Gi) = 0:

If maxP mini2I �(Gi; P ) = 0;mini2I �(Gi; P ) = 0 for every
P , in particular when P is the uniform distribution over the ver-
tices. Let G be the graph that achieves the minimum for the
uniform distribution. Since the minimum is zero, for all n, no
pair of n-vectors is incomparable with respect to G. Without loss
of generality assume that X is of the form f1; 2; . . . ; kg, where
k = jX j. For n = k2, consider the following sequences in
Xn: xn = 11 . . . 122 . . . 2 . . . kk . . . k, where each letter is repeated k
times and x0n = 123 . . . k123 . . . k . . . 123 . . . k, where the alphabet
is repeated k times. Both sequences belong to the typical set for the
uniform distribution on X . Let c; d 2 X be a pair of distinct vertices.

Both (c; d) and (d; c) appear as (xi; x
0
i) and (xi ; x

0
i
) at certain

coordinates i; i0 in the above sequences. If (c; d) were an edge in G,
the two sequences would be incomparable and violate the hypothesis.
Moreover, G has no self-loops since that would make the sequences
incomparable as well. Therefore, G is an edge-free graph. Since
distinct sequences are never incomparable with respect to such a graph
mini2I �(Gi) = 0.

The above lemma is used in the next theorem, which specifies the
capacity.

Theorem 2: The capacity of a compound channel with an informed
encoder (i.e., whose encoder knows which constituent DMC is in use)
is

C0

enc( ) =
0; if C0( ) = 0

mins2S C(Gs); otherwise.
(8)

Proof: Gs denotes the (undirected) characteristic graph of
channel s. Consider the case where C0( ) = 0. Let fCs =
fxn(s; j): j = 1; . . . ; Ng; s 2 Sg be the set of codebooks,
one for each possible DMC. The zero-error constraint requires
that the decoding region for message j (common for all s 2 S)
be [s2SFs(x

n(s; j)) and that the decoding regions be mutually
exclusive. Hence, Fs(x

n(s; j)) \ Fs (x
n(s0; j0)) = ; for all

1 � j 6= j0 � N and s; s0 2 S .
Since C0( ) = 0, the Proof of lemma 1 above implies that one of

the graphs in G( ), say Gss , is an edge-free graph. This implies that
for all j; j0; Fs(xn(s; j))\Fs (x

n(s0; j0)) is nonempty. So the channel
code cannot contain more than one codeword, and the capacity is zero.
When C0( ) > 0, the encoding can be done in two steps.

Using a code for the compound channel (that does not exploit side-
information), the encoder conveys its knowledge about the channel to
the decoder. Since the set of DMCs is finite, this procedure requires a
constant number of channel uses. After the first step, both encoder and
decoder know the channel in operation. Hence they can transmit at least
at the rate mins C(Gs). Since this is also the maximum rate at which
zero-error transmission can be guaranteed (it cannot be exceeded
when the channel that minimizes C(Gs) is the channel in operation),
the capacity of the compound channel is as given above.

B. Capacity of the Compound Channel With an Informed Decoder

When the decoder knows the channel in operation, the code is a set
fxn(j); j = 1 . . .Ng. The decoding region for message j when s is
the channel in operation is Fs(xn(j)). For every s 2 S , the decoding
regions for distinct messages should not overlap, that is, Fs(xn(j))\
Fs(x

n(j0)) = ; for all 1 � j 6= j0 � N , or, the codewords should be
connected with respect to Gs for all s 2 S . Therefore, the zero-error
capacity of a compound channel with an informed decoder, C0

dec( ),
is the capacity of the set of characteristic graphs GS = fGs; s 2 Sg

C0

dec( ) = C(GS): (9)

Using a definition of a valid zero-error code slightly different from
ours, the above result was presented in [4].

C. Example: C0

dec( ) 6= C0( )

Consider the compound channel 1 defined by X = f1; 2g;Y =
f1; 2; 3; 4g;S = f1; 2g. The fan out sets for the two constituent chan-
nels are as in Table I. Observe that F1(a) \ F2(b) 6= ;;8a; b 2 X .
Given any two sequences xn and x0n, there exists a possible output se-
quence yn such that either input sequence could have produced it: at
every coordinate i choose yi from F1(xi)\F2(x

0
i). Thus we can never

reliably distinguish any pair of sequences, which implies that C0( 1)
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TABLE I
FAN-OUT SETS FOR THE COMPOUND CHANNEL /SI SETS FOR THE SOURCE

WITH COMPOUND SIDE-INFORMATION

Fig. 1. (a) Characteristic graphs for the channels in (Distinguishability
graphs for the source-side-information pairs in ). (b) Characteristic set of
graphs for (Graphs in the distinguishability set of ).

is zero, which is consistent with Theorem 1 sinceG12 andG21 are edge
free graphs.

The characteristic graph for both channels is identical and is the
complete graph on X , shown in Fig. 1(a), which we denote by G.
C0
dec( 1) = C(GS) = C(G) = 1 bit/channel use. Since, C0( 1) =

0; C0
enc( 1) is also zero. Therefore, for this example, we have

0 = C
0( 1) = C

0
enc( 1) < C

0
dec( 1) = 1:

V. SOURCE CODING WITH COMPOUND SIDE-INFORMATION AT

THE DECODER

We study the problem of source coding with compound side-
information, which is defined as follows: Let (U;W1; . . . ;WM ) �
PUW ...W be a set of random variables defined over a finite set
U � W � � � � � W . The random variables represent the values
taken at any instant by a discrete time stationary memoryless random
process. Alice, who has access to the U sequence wishes to convey
her information using fixed length codes to Bob, who has access to
one of the M random sequences corresponding to W1; . . . ;WM .
Neither Alice nor Bob knows which of the M random sequences is
available to Bob. Such a situation can be motivated as follows: Alice
and Bob are observing the samples of some underlying continuous
time stationary process f(Ût; Ŵt)gt2[0;1). However the clocks used
for sampling by Alice and Bob are not synchronized. Although there is
drift between the clocks, we assume that it is slow enough for the shift
between sampling times to be constant over a block length. However,
because of this drift, synchronizing would require a large overhead.
Therefore, while Alice and Bob know that the joint distribution of their
random sequences is one of a set of distributions, neither knows the
exact distribution. Since the continuous time process is stationary, the
coding process can assume that theU marginal is fixed and we have the
problem described earlier. We characterize the minimum asymptotic
rate R(PUW ...W ) required for Alice to convey her information
without any error by recasting the problem in terms of graphs. In
the graph theoretic framework, this problem is seen to be the dual of
the compound channel coding problem. The simpler case where Bob
knows which of the possible sequences he has access to is equivalent
to the scenario where Alice has to broadcast her information to a
set of users each with his own side-information. Here, the zero-error
minimum asymptotic average rate has been characterized earlier for
both fixed-length [11], [12] and variable length coding [13].

Consider first an even simpler scenario where there is only one
source of side-information. For this setup, Witsenhausen developed

a graph theoretic framework which he used to express the minimum
asymptotic rate. If (U;W ) � PUW (u; w); (u;w) 2 U � W is
the source-side-information pair, for each u 2 U , define the SI set
S(u) = fw 2 W: p(u;w) > 0g. The SI set for a vector in Un is the
Cartesian product of the SI sets at each coordinate. For the pair (U;W ),
the distinguishability graph GUW = (VUW ; EUW ) is a graph with
VUW = U and (u1; u2) 2 EUW , S(u1) \ S(u2) = ;. Under any
valid coding scheme, only vectors whose SI sets are nonintersecting
can receive the same codeword. In other words, a valid code at block
length n is equivalent to a partition of Un into sets whose elements
are pairwise connected with respect to the distinguishability graph.
The minimum asymptotic rate R(PUW ) is the Witsenhausen rate
of the distinguishability graph Rw(GUW ) defined next. For a graph
G = (V;E), ifM(G; n) denotes the size of the smallest partition of
V n using sets of elements that are pairwise connected with respect to
G, the Witsenhausen rate is [14]

Rw(G) = lim
n!1

1

n
logM(G; n): (10)

The limit in (10) exists from the submultiplicativity of M(G; n) and
Fekete’s Lemma [7]. Note that the Shannon capacity and the Witsen-
hausen rate of a graph are duals in the sense that finding the capacity
corresponds to finding the largest among the sets with pairwise con-
nected elements while finding the Witsenhausen rate corresponds to
finding the smallest partition into sets of the above type.
When there is compound side-information, for a given source vector

un, the set of possible side-information sequences, denoted S (un),
is [kSk(un), where Sk(un) is the SI set for un with respect to the
source-side-information pair (U;Wk). Two sequences in Un can re-
ceive the same codeword only if their compound SI sets do not inter-
sect. The distinguishability set (of directed graphs) for the source is
defined as follows: G = fGkk = (U ; Ekk ): k; k0 = 1; . . . ;Mg,
where (u1; u2) 2 Ekk , Sk(u1) \ Sk (u2) = ;. A necessary and
sufficient condition for two vectors to be able to receive the same code-
word is that they be incomparable with respect to every graph in the set
G . Motivated by this observation, we define the Witsenhausen rate of
a set of directed graphs as follows. For a set of directed graphs G with a
common vertex set V , ifM(G; n) denotes the size of the smallest par-
tition of V n into sets whose elements are pairwise incomparable with
respect to every graph in G, the Witsenhausen rate of G is

�w(G) = lim
n!1

1

n
logM(G; n): (11)

Now we have the following.
Theorem 3: Consider a source with compound side-information

whose joint probability distribution is PUV ...V . Let G denote the
corresponding distinguishability set. For this source

R(PUW ...W ) = �w(G ): (12)

Using essentially the same arguments as in [11], [12], we can show
that for a set of directed graphs G

�w(G) = max
G2G

�w(fGg): (13)

For the sake of brevity, we omit the proof.
If two vectors are incomparable with respect to Gkk , they are also

connected with respected to Gk , the (undirected) distinguishability
graph corresponding to the source-side-information pair (U;Wk).
Therefore the minimum asymptotic rate achievable for the source
coding with compound side-information problem is at least as large as
R(PUW ) = Rw(Gk), the minimum asymptotic rate when both Alice
and Bob know that Bob is observing theWk sequence. However, as is
seen in the following example, R(PUW ...W ) can be strictly greater
than maxkR(PUW ).
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Consider the problem of coding for a source with compound side-
information 1 = (U;W1;W2)whereU = f1; 2g;W = f1; 2; 3; 4g.
The SI sets for the two constituent source-side-information pairs of
random variables are as in Table I. This source is the dual of the channel
considered in Section IV-C.

Observe that S1(a) \ S2(b) 6= ;;8a; b 2 U . The distinguisha-
bility graph for both source-side-information pairs is identical and is
the complete graph on U , shown in Fig. 1(a), which we denote by
G. maxk Rw(Gk) = Rw(G) = 0 bit/channel use. However, given
any two sequences un and u0n, there exists a possible side-information
sequence wn such that both (un; wn) and (u0n; wn) are observable
with probability greater than zero: at every coordinate i choose wi
from S1(ui)\S2(u

0

i). Thus, we can never reliably distinguish any pair
of source sequences based on the side-information, which implies that
the minimum asymptotic rate for this source is log 2 = 1 bit/sample,
which is consistent with Theorem 3 since G12 and G21 are edge free
graphs. Therefore, in general, R(PUW ...W ) is strictly greater than
maxk R(PUW ). However, theminimum asymptotic rate is, somewhat
surprisingly, indeed maxkR(PUW ) [11], [12] if Bob (but not Alice)
knows which of theM side-information sequences he is observing.

VI. THE COMPOUND CHANNEL: ASYMPTOTICALLY VANISHING

ERROR V. ZERO ERROR

We observe that there are a number of differences between the con-
ventional (asymptotically vanishing error) and zero-error scenarios.
First, the conventional capacity does not increase if the decoder has
side-information about the channel while the zero-error capacity does.
The difference arises because, even without side-information, the
decoder can almost reliably identify the channel in operation based on
the channel output, which yieldsC( ) = Cdec( ) in the conventional
case. However, if we require zero-error, almost reliable identification
is not sufficient andC0( ) � C0

dec( ), possibly with strict inequality.
The aforementioned phenomenon also leads to another difference: in

the conventional case, since the decoder can always effectively (almost
reliably) know the channel in operation, Cdec( ) � Cenc( ). In the
zero-error case, this inequality holds often but not always. The excep-
tion is encounteredwhen someGss ; s 6= s0 inG( ) is the emptygraph,
and no Gss; s 2 S is empty. In this case, the encoder cannot convey
its knowledge to the decoder and C0

enc( ) is zero while if the decoder
knew the channel in operation, transmission at nonzero rates would be
possible. Such a case arose in the example considered in Section IV.
Although C0

enc < C0

dec implies that C0

enc = 0, in general, we could
haveC0( ) < C0

dec( )with neither quantity being zero. For example,
if G = fG11; G12; G21; G22g where G11 and G22 are both symmet-
rically directed complete graphs (edge set contains all ordered pairs of
distinct vertices) onK vertices andG12 andG21 are identical symmet-
rically directed graphs onK vertices with a single pair of edges. From
the discussion in Section III, there exists a compound channel whose
characteristic set of graphs G( ) = G. For this channel, C0( ) = 1
bit/channel use while C0

dec( ) = log
2
K bits/channel use.
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Locally Optimal (Nonshortening) Linear Covering Codes
and Minimal Saturating Sets in Projective Spaces

Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, and
Fernanda Pambianco

Abstract—A concept of locally optimal (LO) linear covering codes is in-
troduced in accordance with the concept of minimal saturating sets in pro-
jective spaces over finite fields. An LO code is nonshortening in the sense
that one cannot remove any column from a parity-check matrix without
increasing the code covering radius. Several -concatenating construc-
tions of LO covering codes are described. Taking a starting LO code as a
“seed”, such constructions produce an infinite family of LO codes with the
same covering radius. The infinite families of LO codes are designed using
minimal saturating sets as starting codes. New upper bounds on the length
function are given. New extremal and classification problems for linear cov-
ering codes are formulated and investigated, in particular, the spectrum
of possible lengths of LO codes including the greatest possible length. The
complete computer classification of the minimal saturating sets in small ge-
ometries and of the corresponding LO codes is obtained.

Index Terms—Covering codes, covering density, covering radius, min-
imal saturating sets in projective geometry, nonshortening covering codes.

I. INTRODUCTION

We consider linear covering codes, saturating sets in the projective
spaces over finite fields, and connections between these objects. We

Manuscript received April 5, 2005; revised July 20, 2005. The material in this
correspondence was presented in part at the International Workshop on Optimal
Codes and Related Topics, OC2005, Pamporovo, Bulgaria, June 2005.

A. A. Davydov is with the Institute for Information Transmission Problems,
Russian Academy of Sciences, GSP-4, Moscow 127994, Russia (e-mail: adav@
iitp.ru).

G. Faina, S. Marcugini, and F. Pambiancois are with the Department of
Mathematics and Informatics, Perugia University, Perugia 06123, Italy (e-mail:
faina@dipmat.unipg.it; gino@dipmat.unipg.it; fernanda@dipmat.unipg.it).

Communicated by M. Sudan, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2005.859297

0018-9448/$20.00 © 2005 IEEE


