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On Hierarchical Type Covering
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Abstract—This correspondence focuses on a significant distinction be-
tween two hierarchical type covering strategies, namely, weak and strong
covering, and on the impact of this distinction on known results. In par-
ticular, it is demonstrated that the rate region for weak covering, whose
natural use is in scalable source coding, is generally larger than the rate re-
gion for strong covering, which is primarily useful in hierarchical guessing.
This correspondence also presents a corrected converse result for the hier-
archical guessing problem.

Index Terms—Hierarchical guessing, hierarchical type covering, scalable
source coding.

I. INTRODUCTION

Central to many rate-distortion theoretic results and proofs is the
concept of type covering, i.e., covering of the set of source vectors
with the same empirical distribution (type class) P using identical
“spheres” that are centered at codevectors. For example, the achiev-
ability of Shannon’s rate-distortion function RP (D) can be proven
directly using the type covering lemma [4, Lemma 2.4.1], which
asserts that for large n it suffices to use � enR (D) spheres with
radius D to entirely cover a type class P of length-n sequences. Here,
the sphere of radiusD about a codevector yyy is defined as the collection
of source vectors xxx whose normalized distortion with yyy is less than
or equal to D. In [16], the type covering lemma of [4] is refined in
order to obtain an upper bound on the asymptotic rate redundancy
of D-semifaithful codes. (D-semifaithful codes are variable-length
codes that cover the entire source space and rate redundancy is defined
as the difference between the minimum achievable average codeword
length and the rate-distortion function RP (D)). Another example is
the achievability of optimum error exponents in universal lossy source
coding [11]: Given a quota of total rate R, it suffices to cover those
types P̂ for which RP̂ (D) < R to make sure that the probability of
error Pr[d(XXX;YYY ) > D] decays exponentially fast in block length n
with the optimum normalized exponent EP (D;R) for all sources P .

More recently, type covering was used in a related but different appli-
cation, namely, guessing subject to distortion [1]: Bob draws a samplexxx
from a discrete memoryless source (DMS), and Alice presents him with
a fixed sequence of guesses yyy(1); yyy(2); . . ., until Bob informs her that
d(xxx; yyy(i)) � D. The objective is to design an optimal guessing strategy
that minimizes the �th moment of number of guessesEfG(XXX)�g. The
guessing game models a naive approach to quantizer codebook search
where, given a data vector to be represented, codebook elements are se-
quentially read until a D-match is found. The guessing game can also
be utilized for a similarity search scenario where a high-dimensional
database is sequentially searched for a singleD-matching vector to the
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Fig. 1. Comparison of strong and weak hierarchical type covering schemes.
Notice that the relaxed requirement of weak covering, i.e., that every vector xxx
must be jointly covered by a (D ;D )-pair, may result in reduced number of
D -spheres compared to strong covering.

query provided by the user. It turns out that the optimal strategy is to sort
type classes P in increasing order of RP (D), and create the guessing
list as the concatenation of codebooks (i.e., sets of codevectors) that
cover type classes P1; P2; P3, etc.

The concept of hierarchical type covering was introduced in [7].
According to the definition therein, in the first stage, type class P is
covered usingD1-spheres with respect to (w.r.t.) the distortion measure
d1, and in the second stage, the portion of each D1-sphere (parent)
that lies within type class P is entirely covered using equal number of
D2-spheres (children) w.r.t. d2. In other words:

i. every vector xxx in type class P is covered by at least one
D1-sphere, and

ii. among the children of everyD1-sphere that coversxxx, there exists
at least one D2-sphere also covering xxx.

In this correspondence, we call this methodology strong hierarchical
type covering in order to distinguish it from the weak version intro-
duced in [15]. In weak covering, equal number of D2-spheres associ-
ated with (i.e., children of) each D1-sphere are chosen so as to guar-
antee that

for every source vector xxx in type class P , there exists a pair of
parent D1- and child D2-spheres both covering xxx.

Clearly, this is a more relaxed requirement, and therefore every strong
covering also constitutes a weak covering by definition. See Fig. 1 for
the illustration of the distinction between strong and weak covering.

The motivation behind the introduction of hierarchical type cov-
ering was mainly the determination of achievable error exponents in
scalable source coding. In fact, it is easy to verify that weak covering is
sufficient for that purpose, because the encoder is in general allowed to
search over the entire tree-structured codebook, i.e., over parent-child
(D1; D2)-pairs that jointly cover the given source vector. Strong
hierarchical type covering, on the other hand, is necessary for the
generalization of the guessing game, i.e., for hierarchical guessing
[12]: In the first stage Alice presents her guesses yyy1(1); yyy1(2); . . .
until Bob informs her that d1(xxx; yyy1(i)) � D1, and in the second
stage, she presents new guesses yyy2(1ji); yyy2(2ji); . . ., depending on
her guesses at the first stage, until d2(xxx; yyy2(jji)) � D2. Similar to
one-stage guessing, the objective is the minimization of EfG(XXX)�g,
where G(XXX) = G1(XXX) +G2(XXX) is the total number of guesses. The
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motivation behind hierarchical guessing is that good guessing strate-
gies correspond to good search strategies in (i) quantizer codebooks
that have a hierarchical structure, and (ii) high-dimensional databases
where data is stored in clusters and given a query, the strategy for
finding a single D2-matching vector in the database is to find a cluster
representative that D1-matches the query and to search inside that
cluster for a D2-match.1 Under the assumption that Alice knows the
type Pxxx of xxx, the best known strategy (which was claimed to be op-
timal in [12]) is to find a strong hierarchical covering of Pxxx achieving
a certain balance point in the tradeoff of the required number of D1-
and D2-spheres.

The distinction between strong and weak hierarchical covering mo-
tivated us to rederive single-letter characterizations of the rates corre-
sponding to the number of D1- and D2-spheres necessary and suffi-
cient to cover a type class in both the weak and the strong senses. The
main result of this correspondence is that, somewhat surprisingly, the
two characterizations lead to different rate regions, i.e., the rate region
of strong covering is contained in that of weak covering (we provide an
example where the former is strictly contained in the latter). In fact, the
claimed rate region for strong covering that appeared in [7], which coin-
cides with the achievability region for scalable source coding [8], [13],
turns out to be precisely the achievability region for weak covering.2

Since weak covering is sufficient for the analysis of error exponents,
all the results stated in [7] and [15], pertaining to error exponents, re-
main correct. On the other hand, the result in [12], which effectively
assumes the results of [7] as valid for strong covering, needs to be rein-
vestigated and revised to reflect the true region of achievable rates in
strong hierarchical covering.

The achievability results for the two types of covering are best un-
derstood in terms of a third, more technical, variant of covering—joint
type covering. Given a joint distribution PXY Y on the source and the
reproduction alphabets whose source marginal is P , the goal of joint
type covering is to design first and second stage codebooks satisfying
the following conditions.

i. For every vector xxx in type class P , there is some first stage code-
word yyy

1
(i) such that the joint type of (xxx; yyy

1
(i)) is PXY .

ii. For every pair (xxx; yyy
1
(i)) with joint type PXY , there is an el-

ement yyy
2
(jji) of the second stage codebook corresponding to

yyy
1
(i) such that the joint type of (xxx; yyy

1
(i); yyy

2
(jji)) is PXY Y .

Even though this type of covering will be directly employed for
proving the forward directions of weak and strong type covering
lemmas, it is i) too strong to employ in the derivation of a converse
for weak covering, and hence for scalable coding, and ii) too weak to
derive a tight converse for strong covering. Joint type covering can
also be used in a variant of the hierarchical guessing problem where
the guesses need to satisfy joint type requirements instead of distortion
requirements (see Section VI).

The organization of the correspondence is as follows. We begin in
the next section with the preliminaries and motivation. In this section,
we shall also present a clarification of some confusion in the literature
regarding the achievable rate region for scalable source coding, leading
to a new lower bound on the minimum achievable guessing exponent.
We then derive the region of achievable rates for joint type covering

1The latter usage of hierarchical guessing is justified by the fact that due to the
curse of dimensionality, efficient indexing schemes are hard to come by and the
performance of clustering followed by sequential search over cluster represen-
tatives is comparable to the performance of more complicated search strategies
[5], [10], [14].

2In private communication, Linder, Narayan (coauthor of [7]), and an anony-
mous reviewer, pointed out the specific error in the proof of the hierarchical type
covering lemma in [7]. Basically, the error stems from the assumption that mar-
ginally typical xxx and yyy are also jointly typical when d (xxx; yyy ) � D . They
also suggested a relaxed variant of strong covering—joint type covering—which
we discuss next.

in Section III. In Section IV, we present the region of achievable rates
for strong hierarchical covering, and demonstrate via an example that
it may be strictly contained in the achievable region of scalable source
coding. Then we formally show in Section V that the scalable source
coding region is indeed the achievable rate region for weak hierarchical
covering. Finally, in light of the revised rate region for strong covering,
Section VI reinvestigates the upper bound on the minimum achievable
guessing exponent.

II. PRELIMINARIES AND MOTIVATION

A. General Notation

Let A and B be finite alphabets. For a given vector aaa =
(a1; . . . ; an) 2 An, the empirical probability mass function, or
the type, of aaa is denoted by Paaa, where

Paaa(a) =
1

n
N(ajaaa); a 2 A

where N(ajaaa) is the number of occurrences of the letter a 2 A in aaa.
The set of all vectors aaa having type Paaa = P is called the type class P ,
and is denoted by Tn

P

T
n
P = faaa 2 An : Paaa = Pg:

Similarly, for given vectors aaa 2 An and bbb 2 Bn, the conditional type
of bbb given aaa is denoted by Vbbbjaaa, where

1

n
N(ajaaa)Vbbbjaaa(bja) =

1

n
N(a; bjaaa; bbb):

The set of vectors bbb having conditional type Vbbbjaaa = V is called the
V -shell of aaa and will be denoted here by Tn

V (aaa).
LetM(A) and C(BjA) denote the set of all probability distributions

on the alphabet A, and the set of all conditional distributions from A
to B, respectively. Also let Mn(A) denote the set of all valid types of
length-n sequences over A, or

Mn(A) = fP 2M(A) : Tn
P 6= ;g:

Similarly, for P 2 Mn(A), let CnP (BjA) denote the set of all valid
conditional types of vectors bbb 2 Bn given any3 aaa 2 Tn

P

CnP (BjA) = fV 2 C(BjA) : Tn
V (aaa) 6= ; for aaa 2 T

n
P g:

An important fact we will use frequently is that Mn(A) is dense in
M(A). That is, for any P 2 M(A) and � > 0, we can find Pn 2
Mn(A) such that kPn � Pk � � if n � n(�). Similarly, CnP (BjA)
is dense in C(BjA) in the sense that for any � > 0; P 2 Mn(A), and
V 2 C(BjA), there existsVn 2 CnP (BjA) such that kP�Vn�P�V k �
� if n � n(�).

For Q 2 M(A) and V 2 C(BjA), we denote by I(Q;V ) the
mutual information between random variables A and B induced by
the joint distribution Q � V , i.e.,

I(Q;V ) =
a2A;b2B

Q(a)V (bja) log
V (bja)

a
Q(a0)V (bja0)

:

3The validity of a conditional type V , i.e., whether T (aaa) 6= ;, depends on
aaa only through its type P .
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Here and in the sequel, all logarithms are natural. Also, let H(Q) and
H(V jQ) respectively denote the entropy of A, and the conditional en-
tropy of B given A, i.e.,

H(Q) = �
a2A

Q(a) logQ(a)

and

H(V jQ) = �
a2A;b2B

Q(a)V (bja) log V (bja):

For Q1 2 M(A1); Q2j1 2 C(A2jA1), and W 2 C(BjA1 � A2),
we denote by I(Q2j1;W jQ1) the mutual information between random
variables A2 and B given A1, induced by the joint distribution Q1 �
Q2j1 �W , i.e.,

I(Q2j1;W jQ1)=
a 2A ;a 2A ;b2B

Q1(a1)Q2j1(a2ja1)W(bja1; a2)

� log
W (bja1; a2)

a
W (bja1; a02)Q2j1(a

0
2
ja1)

:

Note that all these entropy and mutual information functionals are fi-
nite-valued and continuous in their parameters.

B. Basic Properties of Types

We will repeat here for convenience some very basic properties of
types. For a more detailed discussion, see [4].

A fundamental property of types is given by the type counting lemma
[4, Lemma 1.2.2], which states that there are only polynomially many
elements in the set Mn(A). More precisely,

jMn(A)j � (n+ 1)jAj:

Similarly, for Q 2 Mn(A)

jCnQ(BjA)j � (n+ 1)jAkBj:

Another useful property for our purposes concerns the size of type
classes [4 Lemmas 1.2.3 and 1.2.5]: For any Q 2Mn(A), we have

H(Q)� jAj�(n) �
1

n
log jTn

Qj � H(Q) (1)

where

�(n)
4
=

1

n
log(n+ 1):

Similarly, for aaa 2 An and V 2 CnP (BjA), we have

H(V jPaaa)� jAkBj�(n) �
1

n
log jT n

V (aaa)j � H(V jPaaa): (2)

Observe that �(n) �! 0 as n �! 1, and therefore the above es-
timates of the sizes of type classes and V -shells become increasingly
accurate as n grows large.

C. Lossy Source Coding

Let fXtg
1
t=1 be a DMS with alphabet X , i.e., the samples Xt 2

X are independent and identically distributed (i.i.d.) with probability
mass function (pmf) P 2M(X ). Let Y1 and Y2 be two reproduction
alphabets. Define the distortion between sequences xxx = (x1; . . . ; xn)
and yyyk = (yk1; . . . ; ykn) for k = 1; 2 as

dk(xxx; yyyk) =
1

n

n

t=1

dk(xt; ykt)

where dk : X � Yk ! [0;1) are distortion measures satisfying
miny dk(x; yk) = 0 for all x 2 X . Denote by Sk(yyyk; Dk) the
“sphere” of radius Dk about yyyk 2 Yk for k = 1; 2, i.e.,

Sk(yyyk; Dk) = fxxx 2 Xn : dk(xxx; yyyk) � Dkg:

We say that yyyk “Dk-matches” with xxx if

xxx 2 Sk(yyyk; Dk):

A length-n block code consists of an encoder-decoder pair

f1: X
n ! f1; . . . ;M1g

and

g1: f1; . . . ;M1g ! Yn
1 :

The pair (R1; D1) is said to be achievable if for every � > 0, there
exists a block code with large enough n such that

1

n
logM1 � R1 + �

Pr[d1(XXX; g1(f1(XXX))) � D1] � 1� �:

For a reproduction pmfQ1 2M(Y1), we denote by V(P;Q1; D1) the
set of “backward channel” pmfs V 2 C(XjY1) which are consistent
with the source pmfP , and at the same time yield an expected distortion
of at most D1 between the induced random variables X and Y1 :

V(P;Q1; D1)
4
= V (xjy1) :

y 2Y

Q1(y1)V (xjy1) = P (x);

x2X ;y 2Y

Q1(y1)V (xjy1)d1(x; y1) � D1 :

It is well-known that a pair (R1;D1) is achievable if and only if

I(Q1; V ) � R1 (3)

for some Q1 2 M(Y1) and V 2 V(P;Q1; D1).
A two-stage code is obtained by adding a refinement encoder-de-

coder pair on top of the single-stage pair (f1; g1)

f2 : Xn ! f1; . . . ;M2g

and

g2 : f1; . . . ;M1g � f1; . . . ;M2g ! Yn
2 :
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The quadruple (R1; R2; D1; D2) is said to be achievable if for every
� > 0, there exists a two-stage block code with large enough n such
that

1

n
logM1 � R1 + �

1

n
logM2 � R2 + �

and

Pr[d1(XXX; g1(f1(XXX))) � D1;

d2(XXX; g2(f1(XXX); f2(XXX))) � D2] � 1� �:

For a first stage reproduction pmf Q1 2 M(Y1), a refinement pmf
Q2j1 2 C(Y2jY1), and a backward channel pmf V 2 C(X jY1), define

W(V;Q2j1;Q1; D2)

4
= W (xjy1; y2) :

y 2Y

Q2j1 (y2jy1)W (xjy1; y2) = V (xjy1);

x2X ;y 2Y ;y 2Y

� Q1(y1)Q2j1(y2jy1)W(xjy1; y2)d2(x; y2) � D2

i.e., the set of all backward channel pmfs W 2 C(XjY1 � Y2) which
are consistent with V and yield an expected distortion of at most D2

between the induced random variables X and Y2. It was shown in [8],
[13] that a quadruple (R1; R2; D1; D2) is achievable if and only if

I(Q1; V ) � R1

I(Q1; V ) + I(Q2j1;W jQ1) � R1 +R2 (4)

for some Q1 2 M(Y1);Q2j1 2 C(Y2jY1); V 2 V(P;Q1; D1), and
W 2 W(V;Q2j1;Q1; D2). We will denote byRP (D1;D2) the region
of all achievable rates (R1; R2) in two-stage coding of source P with
prescribed distortion values (D1;D2).

At this point, we would like to make explicit a distinction that has
hitherto led to some confusion in the literature. Given distortion values
(D1;D2), we denote byR0

P (D1; D2) the region of all rates (R1; R2)
satisfying

I(Q1; V ) � R1

I(Q2j1;W jQ1) � R2: (5)

Note that if a rate pair (R1; R2) is in R0
P (D1; D2), it is also in

RP (D1; D2), but the converse is not true. Were R0
P (D1;D2) the

true “converse” region for the scalable coding problem, achievability
of any (R1; R2) would imply the existence of Q1 2 M(Y1);
Q2j1 2C(Y2jY1); V 2V(P;Q1;D1), and W 2W(V;Q2j1;Q1;D2),
satisfying

I(Q1; V ) � R1 +R2

I(Q2j1;W jQ1) = 0

as one can always transfer rate from the second stage to the first stage
while maintaining a constant total rate. We construct an example in Ap-
pendix A where I(Q2j1;W jQ1) = 0 is impossible to satisfy, thereby
proving R0

P (D1;D2) 6= RP (D1;D2) in general.

D. Matching Probabilities for Pure-Type Codebooks

Consider a two-stage coding scenario, where codevectorsYYY 1 andYYY 2

are randomly generated from “pure types” TnQ at the first stage, and
TnQ (YYY 1) in the second stage, respectively. Then the probabilities

Pr[d1(xxx; YYY 1) � D1]

and

Pr[d2(xxx; YYY 2) � D2jYYY 1 = yyy1]

decay exponentially fast in n for any xxx. The exponent of the
D1-matching probability Pr[d1(xxx; YYY 1) � D1] is well-known [17],
[18]. Here, we will rederive that exponent and present a straightfor-
ward extension for the exponent of Pr[d2(xxx; YYY 2) � D2jYYY 1 = yyy1].

Following the notation of [18], we denote by Im(PkQ1; D1) the
lower mutual information

Im(PkQ1; D1)
4
= inf
V 2V(P;Q ;D )

I(Q1; V ): (6)

If the set V(P;Q1;D1) is empty, then it is understood that
Im(PkQ1; D1) = 1. Otherwise, the infimum of (6) can be re-
placed by a minimum since I(Q1; V ) is finite and continuous in V ,
and the set V(P;Q1; D1) is bounded and closed. We will denote by
V �(P;Q1;D1) the backward channel V minimizing (6).

We similarly define the conditional lower mutual information
Im(V kQ2j1;Q1;D2)

Im(V kQ2j1;Q1; D2)
4
= inf

W2W(V;Q ;Q ;D )
I(Q2j1;W jQ1):

(7)

Similarly, if W(V;Q2j1;Q1;D2) is empty, then it is understood that
Im(V kQ2j1;Q1;D2) = 1, and otherwise the infimum in (7) can
be replaced by a minimum. Denote by W �(V;Q2j1;Q1;D2) the min-
imum W achieving (7).

Let us also define the counterparts of the sets V(P;Q1;D1) and
W(V;Q2j1; Q1;D2) in the domain of types

Vn(P;Q1; D1)
4
= V(P;Q1; D1) \ C

n
Q (XjY1) (8)

Wn(V;Q2j1;Q1; D2)
4
=W(V;Q2j1;Q1;D2)

� \CnQ �Q (XjY1 � Y2) (9)

where (9) is defined only when V 2 CnQ (XjY1).
Let P 2 Mn(X ) and Q1 2 Mn(Y1). Suppose, for any source

vector xxx 2 TnP , we randomly pick a codevector YYY 1, with a uniform
distribution over TnQ . That is,

Pr[YYY 1 = yyy1] =
111(yyy1 2 TnQ )

jT nQ j
:

Then for any conditional type V 2 CnQ (XjY1) satisfying

y
Q1(y1)V (xjy1) = P (x), we can write

e
�n[I(Q ;V )+jXkY j�(n)] � Pr[xxx 2 T

n
V (YYY 1)]

� e
�n[I(Q ;V )�jY j�(n)] (10)

using (1) and (2). The total probability of a D1-match of the codeword
YYY 1 with xxx is given by

Pr[d1(xxx; YYY 1) � D1] =
V 2V (P;Q ;D )

Pr[xxx 2 T
n
V (YYY 1)]:

(11)

Consider the type V �
n 2 Vn(P;Q1;D1) minimizing I(Q1; V ).

Since the set CnQ (XjY1) is dense in C(XjY1); Q1 � V
�
n approaches
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Q1 � V
�(P;Q1; D1) for large n. It then follows from the continuity

of I(Q1; V ) that

Im(PkQ1;D1) � I(Q1; V
�
n ) � Im(PkQ1;D1) + �

for arbitrary � > 0 and n � n0(�). Thus, we can write

e
�n[I (PkQ ;D )+2�] � Pr[d1(xxx; YYY 1) � D1]

� e
�n[I (PkQ ;D )�2�] (12)

for all n � n1(�). The lower bound in (12) follows by dropping all
types other than V �n from the summation in (11). To prove the upper
bound, we can use the fact that there are at most polynomially many
conditional types in CnQ (X jY1), and in effect, the summation in (11)
can be replaced by a maximum operation.

Consider now the extension of the above scheme to two-stage source
coding. Suppose that for a fixed first stage codevector yyy1 2 Tn

Q , we
pick the second stage codevector YYY 2 with a uniform distribution over
Tn
Q (yyy1), where Q2j1 2 CnQ (Y2jY1)

Pr[YYY 2 = yyy2] =
111 yyy2 2 Tn

Q (yyy1)

Tn
Q (yyy1)

:

Now, for any source vector xxx 2 Tn
V (yyy1), and any conditional type

W 2 CnQ �Q (XjY1 � Y2) satisfying

y

Q2j1(y2jy1)W (xjy1; y2) = V (xjy1)

we have

e
�n[I(Q ;W jQ )+jXkY kY j�(n)] � Pr[xxx 2 T

n
W (yyy1; YYY 2)] (13)

and

Pr[xxx 2 T
n
W (yyy1; YYY 2)] � e

�n[I(Q ;W jQ )�jY kY j�(n)]
: (14)

Using the relation

Pr[d2(xxx; YYY 2) � D2jYYY 1 = yyy1]

=
W2W (V;Q ;Q ;D )

Pr [xxx 2 T
n
W (yyy1; YYY 2)]

and with similar analysis as above, we conclude that

e
�n[I (V kQ ;Q ;D )+2�] � Pr[d2(xxx; YYY 2) � D2jYYY 1 = yyy1] (15)

and

Pr[d2(xxx; YYY 2) � D2jYYY 1 = yyy1] � e
�n[I (V kQ ;Q ;D )�2�] (16)

for all � > 0 and n � n2(�).

E. Guessing Subject to Distortion

For the DMS fXtg
1
t=1 with pmf P , let Y1 and Y2 this time denote

guessing alphabets. A (fixed) list G = fyyy1(1); yyy1(2); . . .g is called a
D1-admissible guessing strategy if

i

S1(yyy1(i);D1) = Xn
:

The guessing function G(xxx) induced by a D1-admissible strategy is
the function that maps each xxx 2 Xn into a positive integer indicating
the first guessing codevector yyy1(i) 2 G that D1-matches xxx.

Given an intermediate distortion level D1, and a target distortion
level D2, a two-stage (D1;D2)-admissible guessing strategy com-
prises a D1-admissible guessing strategy G1 = fyyy1(1); yyy1(2); . . .g

with a guessing function G1(xxx), and a set of lists G2(i) =
fyyy2(1ji); yyy2(2ji); . . .g for i = 1; 2; . . ., such that for each i,

j

S2(yyy2(jji);D2) � S1(yyy1(i);D1) \

i�1

l=1

S1(yyy1(l);D1)

c

:

Denoting by G2(xxx) the index j of the first codevector yyy2(jjG1(xxx))
that D2-matches xxx, the guessing function induced by a (D1;D2)-ad-
missible strategy is G(xxx) = G1(xxx) + G2(xxx).

The main problem in guessing subject to distortion is the determina-
tion of the optimum �th-order guessing exponent

E(D1;D2; �) = lim
n�!1

1

n
min
G ;G

logEfG(XXX)�g (17)

whenever the limit exists.
In [12], using the scalable coding converse, a converse result for

E(D1;D2; �) was presented

lim inf
n�!1

1

n
min
G ;G

logEfG(XXX)�g

� max
P 2M(X )

[�K(D1;D2; P
0)�D(P 0kP )] (18)

where

K(D1;D2; P )
4
= min maxfI(Q1; V ); I(Q2j1;W jQ1)g (19)

and D(P 0kP ) denotes the standard Kullback-Leibler divergence

D(P 0kP ) =
x2X

P
0(x) log

P 0(x)

P (x)
:

Relying on the hierarchical type covering lemma of [7], the authors
of [12] also proved that the right-hand side (RHS) of (18) is achiev-
able by a guessing strategy if Pxxx, the type of xxx, is known beforehand.
To that end, they used a strong hierarchical covering of type Pxxx. This
proof, together with (18), suggested that the hierarchical guessing ex-
ponent is completely characterized (at least, for the case where Pxxx is
known to the guesser.) However, in light of our observations and re-
sults herein, two main difficulties arise. First, the proof of (18), which
appeared in [12], assumes that the scalable source coding converse re-
gion is R0P (D1;D2). But, as we have shown earlier, the true converse
region isRP (D1;D2), which is generally distinct fromR0P (D1; D2).
This observation leads to the revised scalable coding converse4

lim inf
n�!1

1

n
min
G ;G

logEfG(XXX)�g

� max
P 2M(X )

[�J(D1; D2; P
0)�D(P 0kP )] (20)

with

J(D1; D2; P )

4
= minmax I(Q1; V );

I(Q1; V ) + I(Q2j1;W jQ1)

2
(21)

where the minimization is over the same set as in (19). Note that
K(D1;D2; P ) � J(D1; D2; P ), which implies that the RHS of (20)
is greater than or equal to that of (18). We further show in Appendix B
that the inequality can be strict.

4The best lower bound tomaxfa; bg when a � c and a+b � c+d is given
by maxfc; g. We use this fact with a = R ; b = R ; c = I(Q ; V ), and
d = I(Q ;W jQ ).
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Moreover, since [12] relies on the hierarchical type covering lemma
of [7], the achievability result must also be reinvestigated. After char-
acterizing the correct achievable strong covering rates, we will restate
the best achievable guessing exponent based on strong covering of Pxxx
to be

max
P 2M(X )

[�L(D1; D2; P
0)�D(P 0kP )] (22)

with L(D1;D2; P ) � K(D1;D2; P ), where L(D1;D2; P ) will be
defined in Section VI. In the same section, we will also demonstrate an
example satisfying L(D1;D2; P ) > K(D1;D2; P ).

F. Two-Stage Type Covering

We now formally define the two-stage type covering methodologies
we will compare.

Definition 1: A type P 2 Mn(X ) is said to be weakly (D1; D2)-
covered by codebooks fyyy1(i)g

M
i=1 and fyyy2(jji)g

M
j=1 for 1� i�M1, if

for all xxx2TnP , there exists a pair (i; j)2f1; . . . ;M1g � f1; . . . ;M2g
with

d1(xxx; yyy1(i)) � D1

d2(xxx; yyy2(jji)) � D2:

This two-stage type covering strategy is especially useful for lossy
source coding purposes. That is, if the codebook pair fyyy1(i)g

M
i=1 and

fyyy2(jji)g
M
j=1 weakly (D1; D2)-covers type P , then it is possible to

construct a two-stage coder (f1; f2; g1; g2) such that

d1(xxx; g1(f1(xxx))) � D1

d2(xxx; g2(f1(xxx); f2(xxx))) � D2

for all xxx 2 TnP , the expended rates at the two stages respectively being
1
n
logM1 and 1

n
logM2.

Definition 2: A type P 2Mn(X ) is said to be strongly (D1; D2)-
covered by codebooks fyyy1(i)g

M
i=1 and fyyy2(jji)g

M
j=1 for 1 � i �M1,

if for all xxx 2 TnP , there exists i 2 f1; . . . ;M1g with

d1(xxx; yyy1(i)) � D1

and for all i such that d1(xxx; yyy1(i)) � D1, there exists j 2
f1; . . . ;M2g with

d2(xxx; yyy2(jji)) � D2:

In other words, type P is strongly (D1;D2)-covered if

T
n
P �

M

i=1

S1(yyy1(i); D1)

and

T
n
P \ S1(yyy1(i);D1) �

M

j=1

S2(yyy2(jji);D2)

for all i 2 f1; . . . ;M1g.

Strong (D1; D2)-covering is useful for applications where weak
covering is not sufficient, e.g., in hierarchical guessing, as discussed in
[12]. Of course, a strong (D1; D2)-covering is automatically a weak
(D1;D2)-covering as well. However, strong covering is unnecessary
for source coding purposes, and in fact, as we show in this correspon-
dence, the expended rates for strong covering can be higher than those
for weak covering.

We will also investigate the performance of joint type covering
of TnP .

Definition 3: Let the joint type PXY Y 2 Mn(X � Y1 � Y2)
induce P 2 Mn(X ); Q1 2 Mn(Y1);Q2j1 2 CnQ (Y2jY1); V 2

CnQ (XjY1), and W 2 CnQ �Q (XjY1 � Y2) as its corresponding
marginal and conditional types. Then P is said to be PXY Y -covered
by codebooks fyyy1(i)g

M
i=1 � TnQ and fyyy2(jji)g

M
j=1 � TnQ (yyy1(i))

for 1 � i � M1, if

T
n
P �

M

i=1

T
n
V (yyy1(i))

and

T
n
V (yyy1(i)) �

M

j=1

T
n
W (yyy1(i); yyy2(jji))

for all i 2 f1; . . . ;M1g.

Note that the codebook structure is akin to that of strong cov-
ering in that for every first stage codeword yyy1(i) that V -matches xxx,
there is at least one second stage codeword yyy2(jji) that along with
yyy1(i);W -matches xxx.

By judiciously choosing the joint distribution PXY Y , this type of
covering can be used to create a stronger scalable source coder as well
as a weaker variant of hierarchical guessing where Bob is allowed
to inform Alice whether xxx 2 TnV (yyy1(i)) in the first stage and xxx 2
TnW (yyy1(i); yyy2(jji)) in the second stage. However, it cannot be directly
used in the original hierarchical guessing introduced in [12]. Also, in
general, it results in higher rates in scalable coding, as we will show in
Section III.

III. ACHIEVABLE RATES IN JOINT TYPE COVERING

The following lemma presents an achievable rate region for joint
typicality covering.

Lemma 1: For any joint type PXY Y 2 Mn(X � Y1 � Y2) in-
ducing P;Q1; Q2j1; V , and W , there exist codebooks fyyy1(i)g

M
i=1 �

TnQ and fyyy2(jji)g
M
j=1 � TnQ (yyy1(i)) with

1

n
logM1 � I(Q1; V ) + � (23)

1

n
logM2 � I(Q2j1;W jQ1) + � (24)

PXY Y -covering TnP , for arbitrary � > 0 and large enough n.
Proof: We will first show for large n the existence of a codebook

fyyy1(i)g
M
i=1 � TnQ such that

T
n
P �

M

i=1

T
n
V (yyy1(i))

with

1

n
logM1 � I(Q1; V ) + �: (25)

Then, for each i 2 f1; . . . ;M1g, we will show for large n the existence
of V -shell refinement codebooks fyyy2(jji)g

M
j=1 � TnQ (yyy1(i)) such

that

T
n
V (yyy1(i)) �

M

j=1

T
n
W (yyy1(i); yyy2(jji))

with

1

n
logM2 � I(Q2j1;W jQ1) + �:

For any set B1 = fyyy1(i)g
M
i=1, denote by U(B1) the set of typical

vectors xxx 2 TnP which are not “covered” by any TnV (yyy1(i)), i.e.,

U(B1) = T
n
P �

M

i=1

T
n
V (yyy1(i)):
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Similarly, for a V -shell refinement codebook B2(i) = fyyy2(jji)g
M
j=1,

let U(B2(i)) denote the vectors xxx 2 TnV (yyy1(i)) which are not covered
by any TnW (yyy1(i); yyy2(jji)), i.e.,

U(B2(i)) = T
n
V (yyy1(i))�

M

j=1

T
n
W (yyy1(i); yyy2(jji)):

We need to demonstrate the existence of B1 and B2 such that

jU(B1)j = 0 (26)

and

jU(B2(i))j = 0; 8i 2 f1; . . . ;M1g: (27)

We follow standard random coding arguments: Randomly pick ele-
ments forB1 = fYYY 1(i)g

M
i=1 independently and uniformly fromTnQ . It

suffices to show that this random choice of B1 satisfiesEfjU(B1)jg <
1 to prove the existence of a first-stage codebook B1 = fyyy1(i)g

M
i=1 �

TnQ such that (26) holds.
Then, for each yyy1(i) in that “good” B1, randomly pick elements

for B2(i) = fYYY 2(jji)g
M
j=1 independently and uniformly from

TnQ (yyy1(i)). Similarly, it suffices to show that this random choice of
B2(i) satisfies EfjU(B2(i))jg < 1 for all i 2 f1; . . . ;M1g, to prove
the existence of some B2 such that (27) holds. Now

EfjU(B1)jg =
xxx2T

Pr[xxx 2 U(B1)]

=
xxx2T

(1� Pr [xxx 2 T
n
V (YYY 1(1))])

M

� jT nP j 1� e
�n[I(Q ;V )+�=2]

M

where in the last inequality, we used (10). Using the identity (1�t)K �
e�tK for 0 � t � 1, we obtain

EfjU(B1)jg � e
nH(P )�M e

:

Hence, choosing

I(Q1; V ) +
3�

4
�

1

n
logM1 � I(Q1; V ) + �

results in EfjU(B1)jg < 1 for large enough n.
Similarly, for any i 2 f1; . . . ;M1g

EfjU(B2(i))jg

=
xxx2T (yyy (i))

Pr[xxx 2 U(B2(i))]

=
xxx2T (yyy (i))

(1� Pr [xxx 2 T
n
W (yyy1(i); YYY 2(1ji))])

M
:

Using (13),

EfjU(B2(i))jg � jT nV (yyy1(i))j 1� e
�n[I(W;Q jQ )+�=2]

M

� e
nH(V jQ )�M e

:

We then obtain EfjU(B2(i))jg < 1 for large enough n by choosing

I(W;Q2j1jQ1) +
3�

4
�

1

n
logM2 � I(W;Q2j1jQ1) + �:

The proof is now complete.

We also present here without proof the converse for joint type cov-
ering. The proof will be given in the context of strong covering in
Lemma 3. It suffices to replace D1- and D2-spheres therein with V -
and W -shells.

Lemma 2: For any n > 0, if there exist codebooks fyyy1(i)g
M
i=1 �

TnQ and fyyy2(jji)g
M
j=1 � TnQ (yyy1(i))whichPXY Y -cover TnP , then

1

n
logM1 + �(n) � I(Q1; V )

1

n
logM2 + �(n) � I(Q2j1;W jQ1)

whereQ1; Q2j1; V , andW are the marginals and conditionals induced
by PXY Y , and �(n) �! 0 as n �! 1.

Lemmas 1 and 2 fully characterize the achievable rate region
for joint type covering as the collection of rate pairs greater than
fI(Q1; V ); I(Q2j1;W jQ1)g. Therefore, were this type of covering
used for constructing a scalable coder, the resultant region of achiev-
able rates would be given by R0

P (D1;D2). Since we know that
R0
P (D1;D2) � RP (D1;D2) (strict inclusion shown by example in

Appendix A), this implies that joint type covering is too strong for
scalable source coding purposes, and will result in higher rates.

IV. ACHIEVABLE RATES IN STRONG TYPE COVERING

In this section, we will derive the correct characterization of the
region of rates that are necessary and sufficient to strongly cover a
type. More specifically, we will show that strong (D1; D2)-covering
of type P with rates R1 and R2 is possible if and only if (R1; R2) 2
TP (D1;D2), where TP (D1;D2) consists of rate pairs (R1; R2) such
that there exists Q1 2 M(Y1) satisfying

Im(PkQ1; D1) � R1 (28)

and for all V 2 V(P;Q1;D1), there exists Q2j1(V ) 2 C(Y2jY1)
satisfying

Im(V kQ2j1(V ); Q1; D2) � R2: (29)

Therefore, by definition, we have TP (D1;D2) � RP (D1;D2). On
the other hand, we will demonstrate via an example that strict inclusion
TP (D1;D2) � RP (D1;D2) may hold. In particular, the example
shows that if the first stage rate is fixed at R1 = RP;d (D1), i.e., at
the value of the rate-distortion function with respect to d1, evaluated at
D1, then

minfR2 : (R1; R2) 2 TP (D1;D2)g

> minfR2 : (R1; R2) 2 RP (D1;D2)g:

A. Converse for Strong Type Covering

Let us first state and prove a converse result that characterizes neces-
sary conditions for strong type covering. The lemma below essentially
proves that there exists no covering strategy that performs better than
that which first covers the type with D1-spheres, and then covers each
V -shell in each D1-sphere with D2-spheres. Similar ideas can be em-
ployed to derive Lemma 2, which characterizes the necessary condi-
tions for joint type covering.

Lemma 3: For any n > 0, if there exist codebooks fyyy1(i)g
M
i=1

and fyyy2(jji)g
M
j=1 strongly (D1;D2)-covering TnP , then there exists

Q1 2 M(Y1) such that

1

n
logM1 + �(n) � Im(PkQ1; D1) (30)

and
1

n
logM2 + �(n) (31)

� max
V 2V(P;Q ;D )

min
Q 2C(Y jY )

Im(V kQ2j1;Q1;D2) (32)

where �(n) �! 0 as n �! 1.
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Proof: Let f : TnP ! f1; . . . ;M1g be defined as the smallest
i 2 f1; . . . ;M1g satisfying d1(xxx; yyy1(i)) � D1. Let

i� = argmax
i
jf�1(i)j

and let Q1 be the type of yyy1(i
�). Then since TnP = M

i=1 f
�1(i), we

have

M1 �
jT nP j

jf�1(i�)j
: (33)

Observe that since f�1(i�) � TnP \ S1(yyy1(i
�); D1), and

TnP \ S1(yyy1(i
�); D1) =

V 2V (P;Q ;D )

TnV (yyy1(i
�))

we have

f�1(i�) =
V 2V (P;Q ;D )

[T nV (yyy1(i
�)) \ f�1(i�)]:

Therefore,

jf�1(i�)j � (n+ 1)jXkY j max
V 2V (P;Q ;D )

jT nV (yyy1(i
�))j

which, together with (1), (2), and (33), implies

1

n
logM1 + jX j(1 + jY1j)�(n) � min

V 2V (P;Q ;D )
I(Q1; V )

� Im(PkQ1;D1)

proving (30).
According to the lemma hypothesis

TnP \ S1(yyy1(i
�); D1) �

M

j=1

S2(yyy2(jji
�); D2)

which, in turn, implies that for any V 2 Vn(P;Q1; D1)

TnV (yyy1(i
�)) =

M

j=1

[S2(yyy2(jji
�); D2) \ TnV (yyy1(i

�))]: (34)

Now, observe that S2(yyy2(jji
�); D2) \ TnV (yyy1(i

�)) is the set of
all xxx which are in some W -shell of (yyy1(i

�); yyy2(jji
�)) where W

is consistent with V and induces a second stage distortion of at
most D2. But if yyy2(jji

�) 2 TnQ (yyy1(i
�)), this translates to

W 2 Wn(V;Q2j1; Q1;D2), and therefore we obtain

S2(yyy2(jji
�); D2) \ T

n
V (yyy1(i

�))

=
W2W (V;Q ;Q ;D )

TnW (yyy1(i
�); yyy2(jji

�)) (35)

for any yyy2(jji
�) 2 TnQ (yyy1(i

�)). Using (34) and (35), we can write

jT nV (yyy1(i
�))j �M2(n+ 1)jXkY kY j

max
Q 2C (Y jY )

max
W2W (V;Q ;Q ;D )

jT nW j

where, jT nW j denotes the size of the W -shell of (any) pair
(yyy1 2 TnQ ; yyy2 2 TnQ (yyy1)). Hence, using (2), we obtain

1

n
logM2 + jX kY1j(1 + jY2j)�(n)

� min
Q 2C(Y jY )

Im(V kQ2j1;Q1; D2) (36)

for all V 2 Vn(P;Q1;D1). Equation (31) then follows by first max-
imizing RHS of (36) over V 2 Vn(P;Q1;D1), and then expanding
the domain of maximization from Vn(P;Q1;D1) to V(P;Q1; D1) at
the expense of another “vanishingly small” term on the left-hand side
(LHS).

B. Achievability of TP (D1;D2)

We now show that rates in TP (D1; D2) are asymptotically achiev-
able.

Lemma 4: If (R1; R2) 2 TP (D1;D2), then there exist codebooks
fyyy1(i)g

M
i=1 and fyyy2(jji)g

M
j=1 with

1

n
logM1 � R1 + �

1

n
logM2 � R2 + �

strongly (D1; D2)-coveringTnP , for arbitrary �>0 and large enoughn.
Proof: Using the fact thatMn(X�Y1�Y2) is dense inM(X�

Y1 �Y2), and also that I(Q1; V ) and I(Q2j1;W jQ1) are continuous
in all of their parameters, it follows that for large enough n, there must
exist Q1 2 M

n(Y1) such that

Im(PkQ1; D1) � R1 + �=2 (37)

and for all V 2 Vn(P;Q1;D1), there must exist Q2j1(V ) 2
CnQ (Y2jY1) such that

Im(V kQ2j1(V ); Q1;D1) � R2 + �=2: (38)

We will first show for large n the existence of a codebook
fyyy1(i)g

M
i=1 � TnQ such that

TnP �

M

i=1

S1(yyy1(i);D1)

with

1

n
logM1 � Im(PkQ1; D1) + �=2: (39)

Then, for each i 2 f1; . . . ;M1g and each V 2 Vn(P;Q1; D1), we
will show for large n the existence of V -shell refinement codebooks
fyyy2(j; V ji)g

M (V )
j=1 � TnQ (V ) such that

TnV (yyy1(i)) �

M (V )

j=1

S2(yyy2(j; V ji); D2)

with

1

n
logM2(V ) � Im(V kQ2j1(V ); Q1; D1) + �=4:

Note that since

TnP \ S1(yyy1(i); D1) =
V 2V (P;Q ;D )

TnV (yyy1(i))

the union

V 2V (P;Q ;D )

fyyy2(j; V ji)g
M (V )
j=1

together with fyyy1(i)g
M
i=1, strongly (D1;D2)-covers TnP . The total

number of second-stage codevectors is

M2 =
V 2V (P;Q ;D )

M2(V )

and

1

n
logM2 � jXkY1j�(n) + max

V 2V (P;Q ;D )

1

n
logM2(V )

� max
V 2V (P;Q ;D )

Im(V kQ2j1(V ); Q1;D1) + �=2

(40)
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for large enough n. The proof will then be complete after combining
(39) with (37), and (40) with (38).

Denote by V0 be the conditional type that achieves
minV 2V (P;Q ;D ) I(Q1; V ). The first part of Lemma 1
shows that there exists a codebook fyyy1(i)g

M
i=1 that covers TnP with

V0-shells such that

1

n
logM1 � I(Q1; V0) + �=4 � Im(PkQ1; D1) + �=2

where the second inequality relies on the fact that Vn(P;Q1;D1) is
dense in V(P;Q1;D1). Since V0 2 V(P;Q1;D1); V0-shells are sub-
sets ofD1-spheres and this codebook also covers TnP withD1-spheres.

Although the first stage codebook guarantees the existence of
a codevector in the first stage that has joint type Q1 � V0, since
we only ask for a D1-match, the actual joint type of xxx and its
D1-matching codevector could be any Q1 � V; V 2 Vn(P;Q1;D1).
For every such V , letW0(V ) denote the conditional type that achieves
minW2W (V;Q (V );Q ;D ) I(Q2j1(V );W jQ1). By the second
part of Lemma 1, for every yyy1(i) and V 2 Vn(P;Q1;D1), there
exists a codebook fyyy2(j; V ji)g

M (V )
j=1 that covers TnV (yyy1(i)) with

W0(V )-shells such that

1

n
logM2(V ) � I(Q2j1(V ); W0(V )jQ1) + �=8

� Im(V kQ2j1(V ); Q1;D1) + �=4

where, again, we use in the second inequality the fact that
Wn(V;Q2j1(V ); Q1;D2) is dense in W(V;Q2j1(V ); Q1;D2).
This codebook also covers TnV (yyy1(i)) with D2-spheres since

W0(V ) 2 Wn(V;Q2j1(V ); Q1;D2):

The proof is now complete.

C. Example: Rates inRP (D1;D2) may not be Sufficient for Strong
Type Covering

Let X = Y1 = Y2 = f0; 1; 2g, and P (x) = 1=3 for all x 2 X .
Consider the distortion measure given by

d(x; y) =

0; y = x

0:1; y = x+ 1 mod 3

1; y = x� 1 mod 3

and let d1( �; � ) = d2( �; � ) = d( �; � ). This distortion measure, which is
said to be balanced since both rows and columns are permutations of a
single vector, was analyzed in [9] for its properties regarding successive
refinability. There, it was shown that the minimum value

min
Q 2M(Y )

min
V 2V(P;Q ;D )

I(Q1; V )

which corresponds to the nonscalable rate-distortion function
RP;d (D1) (cf. (3)), is uniquely5 achieved by

Q1(y1) = 1=3; 8y1 2 Y1

5The uniqueness of V is generally known (e.g., see [4,, Problem 2.3.3]),
whereas that of Q follows from the discussion in [2, Sec. 2.6, Case 1] and
the invertibility of the matrix

1 s s10

s10 1 s

s s10 1

for all s < 1.

and

V0(xjy1) =
1

1 + s+ s10
�

1; x = y1
s10; x = y1 + 1 mod 3

s; x = y1 � 1 mod 3

where the parameter 0 � s � 1 is determined by the distortion value
D1 according to

D1 =
s10 + 0:1s

1 + s+ s10
:

We let D1 = 0:06, which yields s � 0:7121, and hence

V0(xjy1) �

0:57286; x = y1
0:01921; x = y1 + 1 mod 3

0:40793; x = y1 � 1 mod 3:

We also fix

R1 = I(Q1; V0) = log 3 +
x2X

V0(xjy1) log V0(xjy1) � 0:33778

so that (Q1; V0) becomes the unique pair satisfying I(Q1; V0) � R1

(with equality).
Now, (R1; R2) 2 RP (D1; D2) if and only if [cf. (4)]

min
Q 2C(Y jY )

Im(V0kQ2j1; Q1; D2) � R2:

On the other hand, sinceQ1 is also the unique choice that satisfies (28),
(R1; R2) 2 TP (D1;D2) if and only if [cf. (29)]

min
Q 2C(Y jY )

Im(V kQ2j1;Q1;D2) � R2

for all V 2 V(P;Q1; D1). Therefore, to prove that TP (D1; D2) is a
proper subset of RP (D1;D2), it suffices to find V 2 V(P;Q1; D1)
such that

min
Q 2C(Y jY )

Im(V0kQ2j1; Q1;D2)

< min
Q 2C(Y jY )

Im(V kQ2j1;Q1;D2):

Before proceeding with the demonstration of such V , let us point that
the expression

min
Q 2C(Y jY )

Im(V kQ2j1;Q1;D2)

= min
Q 2C(Y jY )

min
W2W(V;Q ;Q ;D )

I(Q2j1;W jQ1)

corresponds to the rate-distortion function when both the encoder and
the decoder have access to side information about the source ([2, Sec.
6.1.1, Case IV], [6]), where the joint distribution of the side information
Y1 and the source X is given by (Q1 � V )(y1; x). We can rewrite this
minimization as

min
Q ;W

y 2Y

Q1(y1)

�
x2X y 2Y

Q2j1(y2jy1)W (xjy1; y2) log
W (xjy1; y2)

V (xjy1)

subject to

y 2Y

Q2j1(y2jy1)W (xjy1; y2) = V (xjy1)

and

y 2Y

Q1(y1)
x2X y 2Y

Q2j1(y2jy1)W (xjy1; y2)d2(x; y2) � D2:
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We can look at this minimization problem in the context of optimal bit
allocation among three sources V (xj0); V (xj1), and V (xj2) subject
to the constraint that the average distortion does not exceed D2. Alter-
natively, recalling that Q1(y1) = 1=3, one can recognize the problem
as that of rate-distortion optimization for a product source

P 0(x0; x1; x2) = V (x0j0)V (x1j1)V (x2j2)

and a sum distortion measure

d((x0; x1; x2); (y20; y21; y22))

= d2(x0; y20) + d2(x1; y21) + d2(x2; y22)

as discussed in [2, Section 6.1.1]. It is shown by [2, Theorem 2.8.1] that
the rate-distortion curve in this problem is achieved by averaging the
rate and distortion coordinates of points at which the individual rate-
distortion functions (i.e., for V (x0j0); V (x1j1), and V (x2j2)) have
equal slopes. When V is a balanced backward channel, e.g., V = V0,
and the distortion measure is also balanced, e.g., d2(x; y2), all such
rate-distortion curves will be identical. Hence, one can equivalently
compute only one of them via

min
Q 2M(Y )

min
W 2V(P ;Q ;D )

I(Q2;W
0) (41)

where P 0(x) = V (xj0). We compute this ordinary rate-distortion
curve for the choices of V = V0 and V = V1 (i.e., for P 0(x) =
V0(xj0) and P 0(x) = V1(xj0), respectively), where

V1(xjy1) =

0:49; x = y1
0:01; x = y1 + 1 mod 3

0:5; x = y1 � 1 mod 3

which is easily verified to be in V(P;Q1;D1). Instead of a painstaking
calculation of actual values of (41) for some D2, one can resort to
numerical computation via the Blahut-Arimoto algorithm [3]. Fig. 2
shows the resultant curves for all 0 � D2 � 0:06. Clearly, for a cer-
tain range of D2,

min
Q 2C(Y jY )

Im(V0kQ2j1;Q1; D2)

< min
Q 2C(Y jY )

Im(V1kQ2j1; Q1;D2):

This, in turn, proves that in this case TP (D1;D2) � RP (D1;D2).

V. ACHIEVABLE RATES IN WEAK TYPE COVERING

In this section, we derive necessary and sufficient rates for weak
(D1;D2)-covering of types. The following lemma proves that, unlike
for strong covering, all the points in the region of achievable rates in
scalable source coding are achievable for weak covering.
Lemma 5: If (R1; R2) 2 RP (D1;D2), then there exist codebooks

fyyy1(i)g
M
i=1 and fyyy2(jji)g

M
j=1 with

1

n
logM1 � R1 + �

1

n
logM2 � R2 + �

weakly (D1;D2)-covering TnP , for arbitrary �>0 and large enough n.
Proof: It follows from the same arguments as in the Proof of

Lemma 4 that there must exist

Q1 2M
n(Y1)

Q2j1 2 C
n
Q (Y2jY1)

V0 2 V
n(P;Q1; D1)

Fig. 2. Comparison of min I (V kQ ;Q ;D ) with
min I (V kQ ;Q ;D ). Clearly, the latter is strictly larger
for a certain range of D .

and

W0 2 W
n(V0; Q2j1;Q1;D2)

such that

I(Q1; V0) � R1 + �=2

I(Q1; V0) + I(Q2j1;W0jQ1) � R1 +R2 + �

for large enough n. The proof will, therefore, be complete once we
show the existence of fyyy1(i)g

M
i=1 and fyyy2(jji)g

M
j=1 weakly (D1;D2)-

covering TnP such that

1

n
logM1 � I(Q1; V0) + �=2 (42)

1

n
logM2 � I(Q2j1;W0jQ1) + �=2 (43)

as one can always transfer rate to the first layer from the second
layer: To transfer a rate of �R, simply repeat all the first-layer
codevectors yyy1(i) 2

n�R times, uniformly partition each fyyy2(jji)g
M
j=1

into 2n�R subcodebooks, and assign each subcodebook to a repeated
first-layer codevector. Existence of weakly covering codebooks with
rates as in (42) and (43) follows immediately from Lemma 1 and
the fact that a PXY Y -covering with V 2 Vn(P;Q1;D1) and
W 2 Wn(V;Q2j1;Q1;D2) is also a weak (D1; D2)-covering
of TnP .

Now, we turn to the converse result which states that, for weak
(D1; D2)-covering,RP (D1;D2) characterizes the necessary rates as
well.

Lemma 6: For any n > 0, if there exist codebooks fyyy1(i)g
M
i=1 and

fyyy2(jji)g
M
j=1 weakly (D1;D2)-covering TnP , then

1

n
logM1 + �(n);

1

n
logM2 + �(n) 2 RP (D1;D2);

where �(n) �! 0 as n �! 1.
Proof: The proof is almost identical to that of ( [13] Lemma 1).

The only difference here is that, the hypothesis of the lemma claims the
existence of a weak (D1;D2)-covering of only type P , instead of that
of the high probability set around TnP (i.e., the typical set.)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER 2005 4415

VI. REINVESTIGATION OF GUESSING EXPONENTS

In [12], the authors showed that a guessing exponent of

max
P 2M(X )

[�K(D1; D2; P
0)�D(P 0kP )]

is achievable through strong (D1;D2)-covering of the type Pxxx, which
was assumed to be known beforehand. However, that result needs to
be restated so as to reflect the true region of achievable rates derived
in Section IV. The achievable �th-order guessing exponent obtained
through strong type covering must be stated as

max
P 2M(X )

[�L(D1;D2; P
0)�D(P 0kP )]

where

L(D1;D2; P )
4
= min

Q 2M(Y )
max Im(PkQ1;D1);

max
V 2V(P;Q ;D )

min
Q 2C(Y jY )

Im(V kQ2j1;Q1;D2) :

(44)

We now formally prove that L(D1;D2; P ) � K(D1;D2; P ),
which does not follow immediately from (44).

Lemma 7: L(D1;D2; P ) � K(D1;D2; P ) for all P 2 M(X ).
Proof: Let

L(D1;D2; P jQ1)
4
= max Im(PkQ1;D1);

max
V 2V(P;Q ;D )

min
Q 2C(Y jY )

Im(V kQ2j1;Q1;D2) (45)

and

K(D1;D2; P jQ1)
4
= min max I(Q1; V ); I(Q2j1;W jQ1)

= min
V 2V(P;Q ;D )

max I(Q1; V );

min
Q 2C(Y jY )

Im(V kQ2j1;Q1;D2)

where the latter equality follows from the general identity

min
x

maxfc; f(x)g = maxfc;min
x

f(x)g

when c is a constant. It suffices to show

L(D1;D2; P jQ1) � K(D1;D2; P jQ1)

because then

min
Q 2M(Y )

L(D1;D2; P jQ1) � min
Q 2M(Y )

K(D1;D2; P jQ1)

proving the lemma.
If L(D1;D2; P jQ1) = Im(PkQ1;D1), then for all V 2

V(P;Q1;D1)

I(Q1; V ) � L(D1;D2; P jQ1)

� min
Q 2C(Y jY )

Im(V kQ2j1;Q1; D2)

which implies

K(D1;D2; P jQ1) = min
V 2V(P;Q ;D )

I(Q1; V )

= Im(PkQ1; D1)

= L(D1;D2; P jQ1):

On the other hand, if

L(D1;D2; P jQ1)

= max
V 2V(P;Q ;D )

min
Q 2C(Y jY )

Im(V kQ2j1;Q1; D2)

then for any V 2 V(P;Q1;D1)

K(D1;D2; P jQ1) � max I(Q1; V );

min
Q 2C(Y jY )

Im(V kQ2j1;Q1; D2)

� max I(Q1; V ); L(D1;D2; P jQ1) :

Choosing V such that

I(Q1; V ) = Im(PkQ1; D1) � L(D1;D2; P jQ1)

we obtain K(D1;D2; P jQ1) � L(D1;D2; P jQ1).

Now, based on the example in Section IV-C, we will demonstrate
that there exist cases where L(D1;D2; P ) > K(D1;D2; P ). To that
end, we lower bound K(D1;D2; P ) as follows:

K(D1;D2; P ) � min I(Q1; V )

= min I(Q1; V )

= RP;d (D1):

This inequality is satisfied with equality if and only if for all
(Q1; V ) achieving RP;d (D1), there exists Q2j1 2 C(Y2jY1) and
W 2 W(V;Q2j1;Q1;D2) such that I(Q2j1;W jQ1) � RP;d (D1),
i.e.,

min
Q 2C(Y jY )

Im(V kQ2j1;Q1;D2) � RP;d (D1): (46)

Recall that in the example in Section IV-C, we set D1 = 0:06 so that
there is a unique pair of (Q1; V ) achieving I(Q1; V ) = RP;d (D1) �
0:33778 (i.e., Q1(y1) = 1=3 and V = V0). From Fig. 3, which is
a closeup of Fig. 2, we can deduce that when D2 = 0:016, (46) is
satisfied for this (Q1; V ). Therefore, K(D1;D2; P ) = RP;d (D1)
when D1 = 0:06 and D2 = 0:016. Further, the minimum in

K(D1;D2; P ) = min
Q 2M(Y )

K(D1;D2; P jQ1)

is also uniquely achieved by the same Q1. Since L(D1;D2; P jQ1) �
K(D1;D2; P jQ1) for all Q1 2 M(Y1), it then suffices to show

L(D1;D2; P jQ1) > RP;d (D1)

for Q1(y1) = 1=3 in order to show L(D1;D2; P ) > K(D1;D2; P ).
But from (45), this implies either

Im(PkQ1; D1) > RP;d (D1)
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Fig. 3. Closeup of Fig. 2 around D = 0:016.

which is impossible (since Im(PkQ1; D1) = RP;d (D1)), or

min
Q 2C(Y jY )

Im(V kQ2j1; Q1; D2) > RP;d (D1)

for some V 2 V(P;Q1; D1). From Fig. 3, we observe that the
latter is true for D2 = 0:016 and V = V1, proving that, in general
L(D1;D2; P ) is larger than K(D1;D2; P ).

The broader problem of proving the existence of cases where

max
P 2M(X )

[�L(D1;D2; P
0)�D(P 0kP )]

> max
P 2M(X )

[�K(D1; D2; P
0)�D(P 0kP )]

remains open even after the demonstration of L(D1;D2; P ) >
K(D1;D2; P ). More specifically, if the optimal P 0 in (22) sat-
isfies L(D1;D2; P

0) = K(D1;D2; P
0), then the two maxima

shown become identical. However, it will be extremely surprising if
both maxima are not achieved by the uniform distribution, e.g., by
P (x) = 1=3 in our example in Section IV-C, when the distortion
measures are balanced. If, indeed, the uniform distribution achieves
the maximum on the RHS, then the inequality immediately follows
from the discussion.

In a related problem, where the data xxx is not created by a DMS, but
is randomly drawn with a uniform distribution over a known type class
TnP , then with our modification in Section II-E, the converse in [12]
naturally extends to

lim inf
n�!1

1

n
min
G ;G

logEfG(XXX)�g � �J(D1;D2; P ):

However, the strong type covering strategy will not achieve this lower
bound, as we have proven that the achieved exponent in that case is
given instead by �L(D1; D2; P ). Furthermore, even if (18) is truly
a converse,6 implying �K(D1;D2; P ) as a converse for the scenario
under consideration, there still remains a gap between the achievable
and converse guessing exponents.

Let us now consider a modification of the hierarchical guessing
problem, where the goal is still guessing data xxx drawn with a uniform
distribution over a known type class TnP within distortion (D1;D2),
but Bob can inform Alice whether her guesses are of a certain pre-
specified joint-type PXY Y with his observed vector: Alice presents
Bob with a sequence of guesses from Yn1 till Bob declares he has

6Recall that we only invalidated the current proof of (18). In particular, we
did not show an example where we achieve a guessing exponent lower than the
RHS of (18).

found a guess yyy1(i) whose joint type with his observation is PXY .
Alice then presents Bob with a another sequence of guesses from Yn2
depending on the winning index in the first round i till Bob finds a
guess yyy2(jji) such that the joint type of (xxx; yyy1(i); yyy2(jji)) is PXY Y .
Suppose the joint type being checked is P �XY Y , the distribution
that achieves K(D1;D2; P ), then the joint type covering lemma for
P �XY Y implies that �K(D1;D2; P ) is achievable, unlike in the
original problem.

APPENDIX A

In this Appendix, we prove that R0P (D1;D2) 6= RP (D1;D2) in
general.

Let the source and reproduction alphabets be X = f0; 1; 2; 3g and
Y1 = Y2 = fa; bg. Also let P = fp0; p1; p2; p3g and

d1(x; y1) =

a b

0 0 1

1 1 0

2 1 0

3 0 1

and

d2(x; y2) =

a b

0 0 1

1 0 1

2 1 0

3 1 0

:

If we set D1 = D2 = 0, the only (Q1;Q2j1; V;W )-quadruple
satisfying the consistency and distortion constraints W 2
W(V;Q2j1; Q1;D2) and V 2 V(P;Q1;D1) is given by

Q1(y1) =
p0 + p3 y1 = a

p1 + p2 y1 = b

Q2j1(y2jy1) =

p

p +p
y1 = a; y2 = a

p

p +p
y1 = a; y2 = b

p

p +p
y1 = b; y2 = a

p

p +p
y1 = b; y2 = b

V (xjy1) =

a b

0 p

p +p
0

1 0 p

p +p

2 0 p

p +p

3 p

p +p
0

W (xjy1; y2) =

aa ab ba bb

0 1 0 0 0

1 0 0 1 0

2 0 0 0 1

3 0 1 0 0

from which we can deduce

I(Q1; V ) = H(Q1) (47)

I(Q2j1;W jQ1) = H(V jQ1)

= H(P )�H(Q1) (48)
I(Q1; V ) + I(Q2j1;W jQ1)

2
=
H(P )

2
: (49)

Choosing the uniform distribution p0 = p1 = p2 = p3 = 1=4 in (47)
and (48) yields I(Q1; V ) = I(Q2j1;W jQ1) = log 2, implying that
(R1 = 2 log 2; R2 = 0) falls inside of RP (D1; D2) but outside of
R0P (D1;D2).
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APPENDIX B

Recall that since K(D1; D2; P ) � J(D1;D2; P ), the RHS of (18)
is greater than or equal to that of (20). To eliminate the remote pos-
sibility that these two guessing exponent converses might in fact be
identical, we construct a counterexample where the inequality is strict.
Toward this end, we use the same setting in Appendix A, but set p0 =
p3 = 0:1 and p1 = p2 = 0:4.

Now, let us fix � = 1 and evaluate

max
P 2M(X )

[K(D1;D2; P
0)�D(P 0kP )]

= max
P 2M(X )

maxff(p00; p
0
1; p

0
2; p

0
3); g(p

0
0; p

0
1; p

0
2; p

0
3)g

�
i

p
0
i log

p0i

pi

= max
P 2M(X )

max f(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi
;

g(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi

= max max
P 2M(X )

f(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi
;

max
P 2M(X )

g(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi

where we employ (47) and (48) in defining f and g as

f(p00; p
0
1; p

0
2; p

0
3) = �(p00 + p

0
3) log(p

0
0 + p

0
3)

� (p01 + p
0
2) log(p

0
1 + p

0
2)

and

g(p00; p
0
1; p

0
2; p

0
3) = �

i

p
0
i log p

0
i + (p00 + p

0
3) log(p

0
0 + p

0
3)

+ (p01 + p
0
2) log(p

0
1 + p

0
2):

We will easily evaluate

max
P 2M(X )

f(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi

since the argument is a concave function of P 0. However, evaluation
of the second maximum could be more cumbersome. We recourse to
lower bounding that maximum, thereby lower bounding the overall
guessing exponent.

For the first maximum, forming the Lagrangian as

f(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi
+ �

i

p
0
i

and setting its derivative w.r.t. p00 to zero, we obtain

log
p00(p

0
0 + p03)

p0
= �� 2

or

p
0
0(p

0
0 + p

0
3) = �

0
p0:

Repeating the same for p01; p
0
2, and p03 yields

p
0
1(p

0
1 + p

0
2) = �

0
p1

p
0
2(p

0
1 + p

0
2) = �

0
p2

p
0
3(p

0
0 + p

0
3) = �

0
p3:

One can then extract the solution to be p00 = p03 =
1
6

and p01 = p02 = 1
3
.

Therefore,

max
P 2M(X )

f(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi
= 2 log 3� log 5

� 0:5878:

For the second maximum, we choose p00 = p03 = 0:1 and p01 = p02 =
0:4, and obtain

max
P 2M(X )

g(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi
� log 2 � 0:6931:

Therefore, we have

max
P 2M(X )

[K(D1; D2; P
0)�D(P 0kP )] � 0:6931: (50)

We now turn to the evaluation of

max
P 2M(X )

[J(D1; D2; P
0)�D(P 0kP )]

= max max
P 2M(X )

f(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi
;

max
P 2M(X )

h(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi

where, using (49)

h(p00; p
0
1; p

0
2; p

0
3) = �

1

2
i

p
0
i log p

0
i:

We already evaluated the first maximum to be 2 log 3 � log 5. The
second maximum is also easily found since its argument is concave
in P 0. Using the same Lagrangian analysis as above, we obtain

(p00) = �
0
p0

(p01) = �
0
p1

(p02) = �
0
p2

(p03) = �
0
p3:

The solution then becomes

p
0
0 = p

0
3 =

1

2(1 + 16 )

and

p
0
1 = p

0
2 =

16

2(1 + 16 )

yielding

max
P 2M(X )

h(p00; p
0
1; p

0
2; p

0
3)�

i

p
0
i log

p0i

pi
� 0:6248

and therefore

max
P 2M(X )

[J(D1; D2; P
0)�D(P 0kP )] � maxf0:5878;0:6248g

= 0:6248: (51)

Comparing (50) and (51) yields the desired result.
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Computing the Channel Capacity and Rate-Distortion
Function With Two-Sided State Information

Samuel Cheng, Member, IEEE, Vladimir Stanković, Member, IEEE,
and Zixiang Xiong, Senior Member, IEEE

Abstract—In this correspondence, we present iterative algorithms that
numerically compute the capacity-power and rate-distortion functions for
coding with two-sided state information. Numerical examples are provided
to demonstrate efficiency of our algorithms.

Index Terms—Blahut–Arimoto algorithm, channel capacity, coding with
side information, Gel’fand–Pinsker problem, rate-distortion function,
Wyner–Ziv problem.

I. INTRODUCTION

Coding with side information has gained increased research interest
recently due to its great practical potentials. For example, source coding
with side information at the decoder (a.k.a. Wyner–Ziv coding [1]) is
recognized as an important component in emerging wireless sensor net-
works; on the other hand, channel coding with side information at the
encoder (a.k.a. Gel’fand–Pinsker coding [2]) can be used to model the
digital watermarking problem [3] and also applies to broadcast channel
coding [4]. However, very often, it is necessary to use a more general
setup with two-sided state information where both the encoder and the
decoder have the access to (possibly different) side information. The
capacity-power and the rate-distortion functions in this case are given
by [5]

C(P )= max
q (xju;s )q(ujs ):E[ (S ;S ;X)]�P

I(U ; Y; S2)�I(U ;S1) (1)

and

R(D)= min
q(ujs ;x)q (x̂js ;u):E[ (X;X̂)]�D

I(U ;X;S1)�I(U ;S2) (2)

respectively, where independent and identically distributed (i.i.d.)
random variables X and Y are the channel input and output in the
channel coding problem, X and X̂ are the source input and the
reconstructed output in the source coding problem, S1 and S2 are side
information at the encoders and the decoders, respectively, and U is an
auxiliary random variable. P and D are the power and distortion con-
straints for the respective channel coding and source coding problems
with (�; �; �) and (�; �) being the power and distortion measures. The
expressions in both (1) and (2) are optimized over valid conditional
probability mass functions (PMFs) q(�j�) and q0(�j�).

Calculations of capacity-power and rate-distortion functions are
difficult optimization problems. For conventional source and channel
coding, Blahut–Arimoto algorithms [6], [7] provide efficient numer-
ical solutions for memoryless channels and general i.i.d. sources
with arbitrary power and distortion measures. These optimization
techniques were later generalized in [8]. Extensions to channels and
sources with memory were given in [9] and [10].

However, when side information is present at the encoder and/or the
decoder, calculation of channel capacity and rate-distortion function

Manuscript received August 17, 2004; revised May 31, 2005.
The authors are with the Department of Electrical Engineering, Texas A&M

University, College Station, TX 77843 USA (e-mail: phsamuel@ee.tamu.edu;
stankovi@ee.tamu.edu; zx@ee.tamu.edu).

Communicated by R. W. Yeung, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2005.859248

0018-9448/$20.00 © 2005 IEEE


