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Abstract—This correspondence presents a novel application of the theta
function defined by Lovász. The problem of coding for transmission of a
source through a channel without error when the receiver has side infor-
mation about the source is analyzed. Using properties of the Lovász theta
function, it is shown that separate source and channel coding is asymptot-
ically suboptimal in general. By contrast, in the case of vanishingly small
probability of error, separate source and channel coding is known to be
asymptotically optimal. For the zero-error case, it is further shown that the
joint coding gain can in fact be unbounded. Since separate coding simplifies
code design and use, conditions on sources and channels for the optimality
of separate coding are also derived.

Index Terms—Graph homomorphisms, Lovász theta function,
source–channel separation, zero-error coding.

I. INTRODUCTION

An information-theoretic result that has had a profound impact on
practical communication system design is the separation theorem,
which says that source and channel code design can be separated
without any asymptotic loss of optimality. The first theorem of this
kind was proved by Shannon [1] who considered the case where a
discrete memoryless source needs to be communicated over a discrete
memoryless channel and a nonzero reconstruction error that asymp-
totically vanishes as the code block length increases is allowed. This
theorem has since been shown to hold for most analytically tractable
single-user source–channel scenarios with a few exceptions under the

Manuscript received March 3, 2005; revised April 26, 2006. This work
was supported in part by the National Science Foundation under Grant
EIA-0080134, the University of California MICRO Program, Applied Signal
Technology, Inc., Dolby Laboratories, Inc., Mindspeed Technologies, Inc., and
Qualcomm, Inc. The material in this correspondence was presented in part at
the IEEE International Symposium on Information Theory, Yokohama, Japan,
June/July 2003.

J. Nayak is with INRIA/IRISA, Campus Universitaire de Beaulieu, 35042
Rennes, France (e-mail: jnayak@irisa.fr).

E. Tuncel is with the Department of Electrical Engineering, University of
California, Riverside, CA 92521 USA (e-mail: ertem@ee.ucr.edu).

K. Rose is with the Department of Electrical and Computer Engineering, Uni-
versity of California, Santa Barbara, CA 93106 USA (e-mail: rose@ece.ucsb.
edu).

Communicated by R. J. McEliece, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2006.881718

asymptotically vanishing error constraint described previously [2].
Note that separation theorems are asymptotic results and make no
claims about the behavior at finite block lengths.

A study of communication systems under the more stringent
error-free constraint was also initiated by Shannon [3]. He charac-
terized the zero-error capacity of the discrete memoryless channel
both with and without feedback and established that the zero-error
regime is different from the asymptotically vanishing error regime.
For the source–channel pair of [1], the separation theorem trivially
holds even under a zero-error constraint. The question of optimality
of source–channel separation in the zero-error case becomes far more
interesting when the decoder has access to side information about the
source. For this communication scenario we resolve the question and
demonstrate that zero-error behavior and the asymptotically vanishing
error behavior differ substantially.

Let C be a discrete memoryless channel with transition probability
pY jX(yjx), x 2 X , y 2 Y , where X and Y are finite sets. With
an asymptotically vanishing error requirement, the capacity of this
channel is C = maxp (x) I(X;Y ), where I(X;Y ) is the mutual
information between X and Y . The zero-error capacityC0, which was
characterized by Shannon [3], will be discussed in detail in Section II.

Let (SU ;SV ) be a pair of memoryless correlated sources producing
realizations of a pair of random variables (U; V ) from a finite setU�V
at each instant. Alice, “the sender,” has access to U while Bob, “the re-
ceiver,” has access to V . Alice and Bob are connected by the channel C.
Alice employs (m;n) codes that map m realizations of U to n-length
blocks of the channel input alphabet in order to noiselessly convey U .
We wish to determine the minimum amount of channel resources re-
quired for Alice to convey U to Bob. We quantify the efficiency of a
code by its rate n

m
channel uses per source symbol.

Suppose we wish to design a source–channel code for the source
U with side information V and channel C. The celebrated results
of Shannon [1] and Slepian and Wolf [4] imply that communication
is possible using separate source and channel codes if the rate is
at least H(UjV )

C
. On the other hand, Shamai and Verdú [5] have

shown that codes with rate less than H(UjV )
C

cannot exist even if
joint source–channel coding is employed. Hence, separate source and
channel coding is asymptotically optimal when a vanishingly small
probability of error is allowed.

In this correspondence, we focus on the zero-error setting for the
problem of source–channel coding with side information. Section III
presents our main results—the suboptimality of separate coding and
the gains by joint coding. Our main tool in analyzing these problems is
the theta function, a graph functional shown by Lovász to be an upper
bound on the Shannon capacity of a graph [6]. Lovász employed the
theta function to characterize the Shannon capacity of the pentagon
graph, a problem that had remained open for more than two decades.
To quantify the gains, we employ a graph construction by Alon that
was used by him to disprove a conjecture of Shannon regarding the
additivity of zero-error capacity with respect to channel sums [7]. In
Section IV, we turn to the question of when separate coding is indeed
optimal and present sufficient conditions on sources and channels. In
Section V, we present some comments on the complexity of code de-
sign before concluding in Section VI. Since results in zero-error coding
for the source and channel that we consider are not widely known, we
first survey relevant aspects of this area in Section II.

II. PRELIMINARIES AND NOTATION

The imposition of zero-error constraints naturally leads to problem
formulations in terms of graphs and we begin this section with some
useful graph-theoretic definitions.

0018-9448/$20.00 © 2006 IEEE
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A. Graph-Theoretic Preliminaries

An (undirected) graph G = (V;E) is defined by a vertex set V =
fvi; i = 1; . . . ; jV jg and a set of edges E � V

2
. The complement of

a graph G = (V;E) is the graph �G = (V; �E) where �E = V

2
nE.

A coloring is a mapping of vertices to “colors” such that connected
vertices receive distinct colors. The chromatic number of G, �(G),
is the minimum number of colors that are required for coloring G. A
complete graph is one where every pair of vertices is connected by an
edge. The complete graph on m vertices will be denoted by Km. A
clique of G is a complete subgraph of G. The clique number !(G) is
the cardinality of the largest clique in G. An independent set of G is a
subgraph whose complement is a clique.

We now define the various products for a pair of graphsG = (V;E)
and H = (V 0; E0). A pair of distinct vertices (v1; v

0
1) and (v2; v

0
2)

from V �V 0 form an edge in the OR productG�H if either (v1; v2) 2
E or (v01; v

0
2) 2 E

0. The AND product of the two graphs, denotedG�H
is defined as the complement of �G � �H . The n-fold OR and AND prod-
ucts of a graph G with itself are denoted G(n) and Gn, respectively.

Given two graphsG = (V;E) andH = (V 0; E0), a homomorphism
is said to exist fromG toH , denotedG! H , if there exists a mapping
� : V ! V 0 such that if fv1; v2g 2 E then f�(v1); �(v2)g 2 E0. The
relation “!” is reflexive (G ! G) and transitive (G ! H and H !
F ) G ! F ) but not symmetric (G ! H H ! G). Homomor-
phisms from G to H can be considered as generalizations of colorings
of G since the set of vertices in G that are mapped to a given vertex
in H must be an independent set. Clearly, G ! Km if and only if
m � �(G). Also, Km ! G if and only if 1 � m � !(G).

B. Channel Coding

A channel is specified by a finite input alphabet X , an output al-
phabet Y , and a transition probability function pY jX(yjx). Y n(xn)
denotes the random channel output when xn 2 Xn is the input. The
fanout set Fx � Y of x 2 X is the set of output letters such that
pY jX(yjx) > 0. With every channel, we can associate a characteristic
graph GX with vertex set X where two vertices x; x0 2 X are con-
nected by an edge if their respective fanout sets Fx and Fx do not
intersect.

A channel code of block length n is a pair of mappings: an encoder
�nc : f1; . . . ; 2nCg ! Xn and a decoder  nc : Yn ! f1; . . . ; 2nCg.
A zero-error code is one where

 
n
c (Y

n(�nc (i))) = i; 8i 2 f1; . . . ; 2nCg

with probability 1. For a scalar (block length 1) code to be zero-error,
the fanout sets of the symbols in the image of �1c(�) must be pair-
wise disjoint. This implies that these symbols form a clique inGX and
log!(GX) bits1 can be transmitted in one channel use. Similarly, in n
uses of the channel,!(G(n)

X ) messages can be transmitted.G(n)
X gener-

alizes the characteristic graph to block coding since we can distinguish
two vectors in Xn on the basis of their outputs if and only if along at
least one coordinate they cannot result in the same output. We see that
the zero-error capacity of the channel depends only on its characteristic
graphGX . The Shannon capacity of the graphGX (in bits per channel
use) is defined as [3]

C(GX) = lim
n!1

1

n
log!(G

(n)
X ): (1)

The limit in (1) exists due to the supermultiplicativity of !(G(n)
X )

(using Fekete’s lemma [8]).
For example, the n-fold OR product of the complete graph Km,

K
(n)
m , is Km . Therefore, C(Km) = logm. Another interesting ex-

1All logarithms are to base 2.

ample is the pentagon C5. Finding the capacity of this graph remained
an open problem for more than two decades since the problem was first
posed by Shannon [3]. Shannon showed that !(C(2)

5 ) = 5, which im-
plies that the capacity of C5 is lower-bounded by 1

2
log 5. By using

a graph functional called the theta function, Lovász [6] showed that
1
2
log 5 is in fact the capacity of the C5. Lovász’s theta function gives

a polynomially computable upper bound on the capacity of a graph. It
is defined as follows.

Consider a graphG = (V;E). To each vertex vi, assign a unit vector
ui from a fixed d-dimensional space such that the vectors associated
with unconnected vertices are orthogonal. Let h, the handle, be an ar-
bitrary unit vector from the same space. (u1; . . . ; ujV j; h) is called an
orthonormal representation with handle. Let UG be the set of all or-
thonormal representations with handle associated with the graph G.
The Lovász theta function of G is

#(G) = min
(u ;...;u ;h)2U

max
i2f1;...;jV jg

1

(hTui)2
: (2)

Of the several interesting properties of the theta function, most useful
for this correspondence are the following [6], [9]. For graphs G;H

!(G) �#( �G) � �(G) (3)

C(G) � log#( �G) (4)

#(G�H) =#(G �H) = #(G)#(H): (5)

C. Source Coding With Side Information at the Decoder

SU and SV are a pair of memoryless correlated sources producing
Ui and Vi according to the joint distribution pUV (u; v). Alice, who has
access to SU needs to transmit her information to Bob, who has access
to SV . For zero-error encoder design and, hence, minimum asymptotic
rate calculation, we can reduce the source to its confusability graphGU

on U where u; u0 2 U are connected if and only if there exists v 2 V
such that pUV (u; v) > 0 and pUV (u0; v) > 0.

A source code of block lengthm consists of an encoder �ms : Um !
f1; . . . ; 2mRg and a decoder  ms : f1; . . . ; 2mRg � Vm ! Um. A
zero-error code is one where  ms (�ms (Um); V m) = Um with prob-
ability 1. For scalar coding, only independent sets in GU can be as-
signed the same codeword and the minimum rate of a scalar code is
�(GU). While encoding a block of length m, two realizations of Um,
uuu = (u1; . . . ; um) and uuu0 = (u01; . . . ; u

0
m), are confusable given the

side information if they are confusable in every coordinate. Therefore,
the confusability graph for m instances is the m-fold AND power of
GU , Gm

U . The asymptotic rate (in bits per source symbol), called the
Witsenhausen rate of a graph, is given by [10]

Rw(GU ) = lim
m!1

1

m
log(�(Gm

U )): (6)

The limit in (6) exists due to the submultiplicativity of �(Gm
U ).

Kn
m is also Km and, hence, Rw(Km) is logm as well. For the

pentagon example, the results of Lovász [6] on its capacity combined
with the results of Witsenhausen [10] imply that Rw(C5) =

1
2
log 5.

We note in passing that computation of Shannon capacity and Wit-
senhausen rate for an arbitrary graph remains an open problem.

III. SOURCE–CHANNEL CODING:
MAIN RESULTS

In this section, we define zero-error source–channel codes and
present our results.

A source–channel (m;n)-code is again a pair of mappings: the en-
coder �(m;n)sc : Um!Xn and the decoder  (m;n)

sc : Yn�Vm!Um:
Using the side information and the output of the encoder, the decoder
produces  (m;n)

sc (Y n(�
(m;n)
sc (Um)); V m) = Ûm. Of a zero-error
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code, we require Ûi = Ui with probability 1, 8i. This means that
m-length vectors of the source alphabet that are not distinguishable
on the basis of the side information must be distinguishable through
the channel outputs they induce. For the case where m = n = 1
this implies that if two nodes are connected in GU , their images
under �11sc must also be connected in GX . In other words, we seek
homomorphisms from GU to GX . The source confusability graph
and the channel characteristic graph capture all the information in a
source–channel pair required for zero-error source–channel coding.

In the sequel, we represent the source–channel pair by the corre-
sponding graph pair. Further, in this section we shall restrict our at-
tention to cases where the source and channel graphs are identical. By
doing so, we ensure that a joint code at rate 1, namely the identity map-
ping, always exists. To show the suboptimality of separate coding, we
present cases where joint rate 1 codes exist at block length 1, but no
separate rate–1 codes exist at any block length.

If source and channel coding are done separately, we have a composi-
tion of maps �ms :Um!f1; . . . ; 2mRg and �nc : f1; . . . ; 2

nCg!Xn

at the encoder. The zero-error constraint implies that a one-to-one map-
ping should exist between source encoder output and channel encoder
input which in turn implies mR � nC . Note that R � Rw(GU ) and
C � C(GX). Therefore, for a separate rate-1 code to exist at some
block length, the minimum asymptotic rate for the source should not
be greater than the capacity of the channel.

A. Separate Coding is Asymptotically Suboptimal

An (m;n)-code is a homomorphism �
(m;n)
sc :Um ! Xn from the

m-fold AND product of the source confusability graphGm
U to then-fold

OR product of the channel characteristic graph G(n)
X .

If source and channel coding are done separately, the source can be
encoded using block coding to any rate greater than Rw(GU ). There-
fore, separate rate-1 codes cannot exist if C(GX) < Rw(GU ).

Our approach here is to find an appropriate graph G and let GU =
GX = G. We employ the result that the logarithm of the Lovász theta
function #( �G) is sandwiched between the Shannon capacity of G and
the Witsenhausen rate ofG. The fact that log#( �G) is a lower bound on
Rw(G) is implicit in a paper by Marton [11]. Our next lemma makes
this relation explicit.

Lemma 1: For any graph G = (V;E)

log#( �G) � Rw(G) (7)

Proof:

#(Gn)
(a)

� �(Gn)

(#( �G))n
(b)

� �(Gn)

#( �G) � (�(Gn)) :

Here (a) and (b) follow from (3) and (5), respectively. Taking loga-
rithms and the limit as n ! 1

log#( �G) � lim
n!1

1

n
log(�(Gn)) = Rw(G):

Haemers [12] presents an example where C(G) < log#( �G)—the
Schläfli graph. The Schläfli graph G27 is a strongly regular graph on
27 vertices. Let both the source and channel graphs GU and GX be
G27. Haemers proved that C(GX) � log 7 < log#(GX) = log 9.
Therefore, by Lemma 1, C(GX) < Rw(GU ), although transmission
is possible using scalar joint source–channel coding.

B. How Large is the Joint Source–Channel Coding Gain?

Given a source–channel pair (GU ; GX), let us rephrase the problem
as: what is the minimum rate required for zero-error communication?
With separate coding, the minimum rate is rw(GU ; GX) = R (G )

C(G )
.

However, there is no expression known for the corresponding quantity
in the joint coding case. Let us focus on the special case where GU =
GX , where we are guaranteed that the minimum rate is at most one
channel use per source symbol. Using a recent result by Alon [7], we
show in Corollary 1 that rw(GU ; GX) can be arbitrarily large even
in this restricted scenario. Hence, the joint coding gain is generally
unbounded.

Lemma 2: For every k, there exists a graph G such that C(G) <
log k and

#( �G) � k
(1+o(1)) (8)

with the o(1)-term tending to zero as k tends to infinity.

A formal proof of Lemma 2 is omitted since it uses the same con-
struction as in the proof of Theorem 1.1 in [7]. For every k, that con-
struction, which is based on algebraic and number-theoretic arguments
yields a graph H on n vertices such that C(H) and C( �H) are both

less than log k while n � k
(1+o(1)) . Since for any graph

F = (V;E),!(F � �F ) � jV j, the standard properties of the � function
can be used to show that at least one of the graphsH and �H satisfies (8).

Corollary 1: Given any l, we can find a graph G such that

Rw(G)

C(G)
� l:

Proof: Fix k and let G be as in Lemma 2. Then

Rw(G)

C(G)

(a)

�
log#( �G)

C(G)

(b)

�
(1 + o(1)) log k

8 log log k

where (a) follows from Lemma 1, and (b) follows from Lemma 2.
Examining the right-hand side of (b), we see that we can always find
a k that makes it greater than the given l.

IV. WHEN IS SEPARATE CODING OPTIMAL?

Our main result was that separating source and channel coding was
suboptimal. However, separate coding offers the advantage of reusing
the code design. One could design the source code and use the same
code for more than one channel. One could similarly reuse the channel
code for various sources. So it is of interest to characterize source
(channel) graphs such that separate coding is optimal for all channel
(source) graphs. The following proposition specifies conditions on
graphs that are sufficient for optimality of source–channel separation.

Proposition 1: Asymptotic optimality is achievable by separate
coding if one of the following two conditions is satisfied:

i) the channel graph GX satisfies �(GX) = !(GX);
ii) the source graph GU satisfies �(GU) = !(GU).

Proof: We prove that the existence of a source–channel code im-
plies the existence of separate source and channel codes. The analysis
is most direct in terms of graph homomorphisms. We rely on the fol-
lowing string of inequalities: For any graph G

!(G)n =!(Gn) � !(G(n)) � #( �G)n

��(Gn) � �(G(n)) � �(G)n: (9)

Let (GU ; GX) be an arbitrary source–channel pair such that GX satis-
fies condition i) of the theorem. If an (m;n)-code exists,Gm

U ! G
(n)
X .
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If a = �(GX), (9) with G = GX implies �(G(n)
X

) = !(G
(n)
X

) =

an. Now G
(n)
X

! Ka , which implies Gm

U ! Ka . Therefore,
�(G

(m)
U

) � an that is, �(Gm

U ) � !(G
(n)
X

) implying that a separate
code exists.

Now, we consider the case where GX is arbitrary and GU satisfies
condition ii). If an (m;n) code exists,Gm

U ! G
(n)
X

. If b = �(GU), (9)
with G = GU implies �(Gm

U ) = !(Gm

U ) = bm. Now Kb ! Gm

U ,
which implies Kb ! G

(n)
X

which implies !(G(n)
X

) � bm that is,
!(G

(n)
X

) � �(Gm

U ) implying that a separate code exists.

The conditions of Proposition 1 are satisfied by an important class
of graphs, called perfect graphs [13]. Proposition 1 implies that
source–channel separation is optimal for the following point-to-point
communication scenarios.

a) No side information available at either end: This case can be con-
sidered as a special case of the source coding with decoder side-
information scenario where the confusability graph is the com-
plete graph. Since complete graphs are perfect, source–channel
separation is optimal as mentioned in Section I.

b) Source side information available at both the encoder and the de-
coder: This case is equivalent to the case where the source that
Alice needs to communicate to Bob is the pair (SU ;SV) and Bob
has access to the side information SV . The source confusability
graph on the vertex set Un � Vn is the vertex disjoint union of
jVnj complete graphs: to each element vn 2 Vn corresponds the
clique fun � vn : un 2 Un; pUV (u

n; vn) > 0g. Since the dis-
joint union of complete graphs is a perfect graph, source–channel
separation is asymptotically optimal.

If both the conditions in Proposition 1 are satisfied, then not only is
separate coding optimal, but separate scalar coding (possibly followed
by a mapping between blocks of the intermediate indices) achieves the
optimal rate.

V. COMPLEXITY OF SCALAR CODE DESIGN

Consider the following decision problem

Instance: Graphs G and H .
Question: Is there a zero-error source–channel (1; 1)-code from

source G to channel H?

This problem is easily shown to be NP-complete, since the K-col-
oring problem [14] reduces to it when the channel graph H is the
complete graph on K vertices. However, in typical applications, the
channel is fixed and the question that needs to be answered is whether
some given source can be transmitted over this channel using a scalar
source–channel code, i.e., the decision problem is the following.

Instance: Graph G.
Question: Is there a zero-error source–channel (1; 1)-code from

source G to channel H?

This problem is much harder to classify. However, scalar code design
is equivalent to finding a homomorphism from G to H . In this guise,
the above problem has been extensively studied by graph theorists. In
1990, Hell and Nešetřil [15] showed that deciding whether there is a
graph homomorphism from a given G to a fixed H is polynomial if
H is bipartite2 and is NP-complete for all other H . Therefore, if the
widely held conjecture P 6= NP is true, no polynomial time optimal
code design algorithm exists for most channels and we can only hope
for efficient approximate algorithms.

2A graph G = (V;E) is bipartite if there exist disjoint sets V and V such
that V = V [ V and E � ffv ; v g : v 2 V ; v 2 V g, that is, all edges
in G have one end in V and the other in V . Another characteristic of bipartite
graphs is that their chromatic number is at most 2.

VI. SUMMARY AND CONCLUSION

The main objective of this correspondence was to show the asymp-
totic suboptimality of separate source and channel coding for zero-error
transmission of a discrete memoryless source through a discrete mem-
oryless channel when there is source side information solely at the
decoder. We observed that not only is separate source and channel
coding suboptimal, the gains from joint coding can be unbounded in
the following sense: There exists a sequence f(GUi; GXi)g

1
i=1 of

source–channel pairs such that there exist joint source–channel codes
of rate less than 1 for all i while the minimum rate for separate source
and channel coding tends to 1 as i tends to 1. This is surprising
in two respects: 1) separate source and channel coding is optimal in
most other point-to-point communication scenarios that have been
studied; 2) for the very same setup as the one we considered in this
correspondence, if an asymptotically vanishing error is allowed,
separate source and channel coding is again optimal. The interesting,
if challenging, problem that our result opens up, namely, finding the
minimum rate necessary for zero-error joint source–channel coding is
left for future work.

The convenience that separate coding affords led us to investigate
conditions for optimality of separate coding. The sufficient conditions
that we arrived at in Proposition 1 are identical to those for the
achievability of channel capacity (condition i) or the Witsenhausen
rate (condition ii) by scalar codes. All these results are a consequence
of the basic inequality chain (9). Finally, the equivalence between joint
source–channel codes and graph homomorphisms led to the following
code design complexity result: for all nonbipartite channel graphs,
scalar source–channel code design is NP-hard even for a fixed channel
graph.
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