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Abstract� This paper investigates distributed predictive coding
of correlated sources with memory, which are communicated to a
central receiver. This is the setting typically encountered in sensor
networks. While source memory may be exploited by distributed
coding of large source blocks (vectors), the growth in complexity
(and delay) is often unacceptable in practice, hence the interest
in a low complexity predictive approach. We �rst consider the
inherent �con�ict� between distributed and predictive coding
due to the impact of distributed quantization on the prediction
loop. This is coupled with the effects of closed loop prediction,
which destabilize standard Lloyd-like code design methods. An
iterative algorithm is derived, which optimizes the overall system
while imposing zero decoder drift due to distributed quantization.
The approach circumvents convergence and stability issues of
traditional predictive quantizer design by employing an �Asymp-
totic Closed Loop� framework which is adapted for distributed
predictive system design. The scheme ef�ciently utilizes both
the temporal and inter-source correlations and subsumes as
extreme special cases both separate source predictive coding, and
distributed coding of memoryless correlated sources.

I. INTRODUCTION
Distributed source coding (DSC) has experienced signi�cant

revival in recent years, partly thanks to its relevance to sensor
network applications. The basic setting involves multiple cor-
related sources (e.g., data collected by a number of spatially
distributed sensors) which need to be transmitted to a central
data collection unit. The main objective of DSC is to exploit
inter-source (e.g., spatial) correlations despite the fact that each
source must be encoded without access to the other sources
(see Fig. 1). As will be brie�y summarized below, there is
a long history of research on the theoretical and asymptotic
limits of such systems, as well as on practical design and op-
timization. The main motivation for the work presented herein
is in the obvious observation that most correlated sources
of interest are in fact sources with memory, i.e., they also
exhibit temporal correlations. In particular, data collected from
sensors will often show signi�cant time correlations that are
at least as important as the spatial (inter-source) correlations.
We therefore consider the design of distributed predictive
coding (DPC) systems. Given the historical focus on inter-
source correlations, most existing work naturally addressed
memoryless sources where one need not worry about temporal
correlations.

We shall, however, see that in a DPC system, there are
con�icting objectives of distributed coding versus ef�cient
prediction. In other words, optimal distributed quantization

(in terms of current reconstruction quality) may severely
compromise the prediction loop at each source encoder. This
work is concerned with the theoretical and practical problems
that arise once one strives to ef�ciently exploit both temporal
and inter-source correlations while optimizing the inherent
tradeoffs between the two.

The �eld of DSC began in the seventies with the seminal
work of Slepian and Wolf [11]. They showed, in the context
of lossless coding, that side-information available only at the
decoder can nevertheless be fully exploited as if it were
available to the encoder, in the sense that there is no asymptotic
performance loss. Later, Wyner and Ziv [13] extended the
result to bound the performance of lossy coding with decoder
side information. In the late nineties, constructive and practical
code design techniques for distributed coding were proposed,
notably by Pradhan and Ramchandran in their DISCUS ap-
proach [7]. The �eld eventually saw the emergence of various
distributed coding techniques, most with an eye towards sensor
networks.

DSC techniques can be categorized into two �camps�, the
one adopting channel coding ideas, some of which exploit
long delays to achieve good performance, and the other builds
directly on source coding methodologies. The source coding
perspective will be most relevant to us here. Design of vector
quantizers for distributed coding has received some attention
in recent years. Algorithms for distributed vector quantizer
design have been proposed in [1], [2], [8]. The high sensitivity
of these algorithms to initialization and their susceptibility to
poor local optima was addressed in [10], and an extension
to robust DSC (accounting for possible channel failure) was
proposed in [9]. One may naturally account for time correla-
tions by blocking sources into large vectors for quantization,
but such a strategy suffers from severe complexity problems
and extremely exacerbates the sensitivity to initialization and
poor local optima [10], [12]. Motivated by this observation,
a notable approach to predictive coding of correlated sources
was proposed by Tuncel in [12] where a uniform quantization
grid was imposed on the product space (across sources) of
prediction errors, on which the main support of the joint dis-
tribution was identi�ed and a DSC code devised. The emphasis
in that paper's results was on the design of optimal predictor
�lters in such distributed setting and on how they deviate
from the case of non-distributed predictive coding. Our starting
premise is different and we propose a DPC system which seeks
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Fig. 1. Distributed coding of two correlated sources

to jointly optimize predictive and distributed coding and is
derived without recourse to any assumptions on the sources,
nor restriction of the quantizer to a prede�ned grid. Our DPC
coder design algorithm specializes to traditional predictive
coding and memoryless distributed coding as extreme special
cases.

A design dif�culty whose origins are in standard predictive
quantizer design [3] is exacerbated in the distributed setting.
On the one hand, open-loop design is simple and stable but
the quantizer is mismatched with the true prediction error
statistics (as the system operates in closed loop.) On the other
hand, closed-loop design is unstable and may not converge
since the training set of prediction errors keeps changing as
the quantizer (or predictor) is updated. To circumvent these
dif�culties we use the asymptotic closed loop (ACL) idea {[4],
[5]} which we derive for DPC system design. Within the ACL
framework, DPC system design operates in open-loop within
iterations but asymptotically, the prediction error statistics
converge to closed loop statistics, hence the prediction loop
is effectively closed at convergence.

The rest of the paper is organized as follows. In Section II,
we state the problem formally, introduce notation and specify
the components of the DPC system. Section III provides an
overview of ACL and presents the iterative algorithm for DPC
design. Simulation results are summarized in Section IV.

II. DISTRIBUTED PREDICTIVE CODING
A. Preliminaries

Consider the distributed source coding scenario of Fig. 1.
For brevity, but without loss of generality, we restrict the
presentation to two sources. Here X and Y are two continuous
valued, spatio-temporally correlated (possibly vector) sources,
i.e, in addition to the spatial correlation between the sources,
each source itself has some memory. The two source encoders
compress and transmit source information at rates R1 and R2

bits per sample, respectively. The decoder may reconstruct
either or both sources. The objective is to minimize the
following expected distortion:

E{αd(X, X̂) + (1− α)d(Y, Ŷ )}, (1)

where d(·, ·) is an appropriately de�ned distortion measure, X̂
and Ŷ are the reconstruction values for X and Y , respectively
and α ∈ [0, 1] accounts for the relative importance of the
sources at the decoder. We further assume that predictive
coding is employed to exploit temporal redundancies (We will
restrict the scope to linear prediction.).
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Fig. 2. Block diagram of a DPC encoder and a scalar example of WZ
mapping from prototypes (Voronoi regions) to indices.

The DPC encoder for X is shown in Fig. 2. Note that
prediction errors ex (for X) and ey (for Y ) are correlated.
Therefore, instead of the usual predictive quantizer, we need to
design a distributed coder to exploit inter-source correlations.

For the distributed coding modules we borrow the speci�c
notation from [9]. Let us temporarily assume a �xed training
set T ≡ {ex, ey}. (Of course predictive coding will necessitate
modi�cations to this assumption). High resolution quantizer
Qx assigns each training sample (prediction error) to one of
the K regions, Cx

k . The regions Cx
k form a Voronoi partition

of the ex source space and each is represented by a prototype
ex
k . Region Cx

k is mapped to one of I indices, via the mapping
v(k) = i, which we refer to as �Wyner-Ziv� (WZ) mapping,
since the mapping exploits inter-source correlations within a
lossy coding system. The index i is transmitted to the central
unit (decoder). An example of WZ mapping with K = 7 and
I = 3 is given in Fig. 2. The region associated with an index i
is Rx

i =
⋃

k;v(k)=i Cx
k . We similarly de�ne the quantizer Qy ,

regions Cy
l , Ry

j and prototypes ey
l in the Y domain. Here, the

L Voronoi regions are mapped to J indices via WZ mapping
w(l) = j.

The joint decoder receives an index pair (i, j) to generate
reconstruction values êx and êy , and calculates X̂ and Ŷ . We
next explain the functioning of the distributed predictive coder.

B. Distributed Predictive Encoder

The DPC encoder for source X is depicted in Fig. 2.
The input to the high resolution quantizer is ex = X − X̃
where X̃ is the predicted value of X . The output of the high
resolution quantizer is index k indicating the prototype region.
The WZ mapping block takes in k and outputs index i for
transmission over the communication channel, and an encoder
prediction error reconstruction value êx,enc for the prediction
loop. The variable êx,enc takes value in an encoder codebook
of I entries via a look-up operation given index i. The
reconstructed residual êx,enc is added to X̃ to obtain X̂enc, the
sample reconstruction value for the encoder prediction loop.
A linear predictor Px is used to predict the next sample of X
from X̂enc. A similar encoder with the obvious corresponding
notation handles the second source Y and transmits an index
j. The decoder has access to the pair of indices (i, j).
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Fig. 3. The DPC decoder reconstructing source X

C. Distributed Predictive Decoder
The DPC decoder modules in charge of reproducing X (see

Fig. 3) receive index i to reconstruct êx,enc. The decoder
mimics the encoder prediction loop to generate X̂enc and
produces X̃ using the predictor Px. Given index pair (i, j), the
decoder retrieves êx,dec from the decoder codebook, and adds
it to X̃ to obtain the decoder reconstruction X̂dec. Here C−1

i

and C−1
ij represent �inverse quantizers�, i.e., the corresponding

table look-up operation applied to the respective codebooks.
We should re-emphasize that X̂enc is a (coarse) recon-

struction of X which only serves the prediction loop, and is
generally different from X̂dec, the decoder reconstruction of
X . Also note that the �encoder codebook� C−1

i which is used
in the prediction loop at both the encoder and the decoder is,
in general, different from the �decoder codebook� C−1

ij (used
only at the decoder).

D. Components to Optimize
DPC design optimizes the predictors Px, Py, high rate quan-

tizers, Wyner-Ziv mappings, encoder codebooks and decoder
codebooks for all sources. For simplicity, we eliminate con-
sideration of the less critical components: we design the pre-
dictors in open-loop, similar to standard practice in predictive
quantization [3]. The high rate quantizers are then designed
using Lloyd's algorithm [6] given the open-loop prediction
error. These components are then kept �xed throughout the
design.

We derive update rules for the WZ mappings, the Encoder
and the Decoder code-books for both the sources and give
an iterative algorithm to minimize the overall distortion. For
conceptual simplicity, we analyze the DPC system assuming
�rst order linear prediction.

Note that the quantized error sample êx,enc at time n
impacts X̃ and X̂dec from time n + 1 onwards due to the
presence of prediction loop. On the other hand, êx,dec at time
n only impacts X̂dec at time n. This is explicit in Fig. 3.

However, if the DPC decoder were to perform in �open-
loop� as shown in Fig. 4, then a particular sample of êx,enc

will affect only the next sample of X̂dec and not all the samples
following it. This is our rationale of adopting the asymptotic
closed loop (ACL) approach for DPC system design. The
super-script p in Fig. 4 denotes a particular iteration of the
ACL and will made more clearer when we describe ACL in the
next section. In ACL, the coder design iteration is performed
in open-loop by keeping the X̃ sequence (for all n) �xed
throughout the iteration. A new X̃ sequence is then available
for the next iteration of ACL. An important characteristic of
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Fig. 4. DPC decoder in open loop during the design phase

the ACL technique is that the design is performed in open-
loop but as the algorithm converges, the prediction loop is
effectively closed and the operation mimics closed loop.

We next give a brief overview of ACL, cast the distributed
prediction problem within the ACL framework and give the
update rules (necessary conditions for optimality) for the WZ
mappings, and encoder and decoder codebooks. For detailed
treatment of ACL and its applications, see [4], [5].

III. DESIGN ALGORITHM
A. ACL Overview � Single Source

A predictive quantizer can be designed using an open-loop
(OL) or a closed-loop (CL) approach [3]. In OL the training set
of prediction errors for quantizer design is independent of the
quantizer and the design algorithm is stable and converges to a
local minimum. However, when the prediction loop is eventu-
ally closed for actual operation of the system, prediction error
statistics differ from those observed during design. Hence,
the system performance is suboptimal. In CL, the iteration
consists of two steps: �x the current quantizer and run the
system in closed loop to obtain a new training set of prediction
errors; design a new quantizer for this training set. However,
the training set keeps changing in an unpredictable fashion,
and every updated quantizer is applied to error statistics it
had not been designed for. Hence, there is no guarantee that
the algorithm will converge. Moreover, the procedure may be
unstable as errors build up through the prediction loop [3].

The ACL approach overcomes these shortcomings of tra-
ditional predictive coder design. The design is done in open-
loop, and each quantizer is designed for the statistics of the
exact signal it then quantizes to produce a new sequence of
reconstruction for the next iteration, thereby circumventing
stability problems. Asymptotically, when there is no improve-
ment in the cost, the reconstruction sequence is essentially
unchanged between iterations and the loop is effectively
closed.

More speci�cally, for a given quantizer Q(p−1) at iteration
p− 1 of ACL, a new training set of prediction errors T (p) =
{e(p)

n }N
n=1 is generated as:

e(p)
n = xn − Pxx̂

(p−1)
n−1 , (2)

where Px is the predictor coef�cient for �rst order linear
prediction. Note that the subscript n here denotes time (we
suppress the subscript x in ex for notational simplicity).



Quantizer Q(p) is designed for the training set T (p) and new
set of reconstruction values for x is obtained by applying Q(p)

to T (p) itself:

x̂(p)
n = Pxx̂

(p−1)
n−1 + Q(p)(e(p)

n ). (3)

Since the quantizer is applied to the exact training set for
which it was designed, it is the best quantizer for the job
and hence the cost will decrease. This will result in better
prediction. A new error training set T (p+1) is then obtained
and the procedure is performed until convergence. Since the
entire design is performed in open-loop, it is stable. At conver-
gence, the quantizer updates are vanishingly small Q(p+1) ≈
Q(p). Therefore, the reconstructed sequence is unchanged with
iterations, i.e., x̂

(p+1)
n ≈ x̂

(p)
n implying Px[x̂(p+1)

n−1 ] ≈ Px[x̂(p)
n−1]

which means that although the loop is open, we are effectively
predicting from the previous sample reconstruction in the
same iteration. Hence, the loop is asymptotically closing. In
summary, even though the algorithm is always running in open
loop, the design is asymptotically equivalent to closed loop.

B. ACL for Distributed Prediction
The ACL distributed predictive decoder for source X is

shown in Fig. 4. A similar decoder is derived for the second
source Y . During the design iteration, the prediction loop is
open as shown. The distortion cost to be minimized is:

E[α d(X, X̂
(p+1)
dec ) + (1− α) d(Y, Ŷ

(p+1)
dec )]. (4)

Note that during iteration p, we seek to minimize the cost
at iteration p + 1. Asymptotically, this makes no difference.
The reason behind this subterfuge is to obtain effective update
rules given that both ê

(p)
enc,n and ê

(p+1)
dec,n+1 affect X̂

(p+1)
dec,n+1. Note

further that in ACL, the design is actually in open-loop and
therefore ê

(p)
enc,n affects X̂

(p+1)
dec at time n + 1 only.

C. Update Rules
For simplicity, we assume mean-squared error distortion.

While for completeness we provide the precise update rules
below despite notational complexity, a high level and concise
description of the algorithm is given in the next subsection.

The decoder codebook, encoder codebook and Wyner Ziv
mappings are updated iteratively using the following steps:

1) Decoder Codebook: Entry (i, j), i = 1 : I and j = 1 :
J is given by:

êx,dec(i, j) = arg min
φ

∑

n:(e
(p+1)
x,n ,e

(p+1)
y,n )∈R

i
×R

j

d[e(p+1)
x,n , φ].

(5)
2) Encoder Codebook: Entry i, i = 1 : I is given by:

êx,enc(i) = arg min
ψ

∑

n:e
(p)
x,n∈R

i

d
(p+1)
n+1 , (6)

employing compact notation for

d
(p+1)
n+1 = α d[e(p+1)

x,n+1, êx,dec(i
(p+1)
n+1 , j

(p+1)
n+1 )]

+(1− α) d[e(p+1)
y,n+1, êy,dec(i

(p+1)
n+1 , j

(p+1)
n+1 )], (7)

where the resulting prediction error of source X de-
pends on ψ: e

(p+1)
x,n+1 = xn+1 − Px[x̃(p−1)

n + ψ], and
(i(p+1)

n+1 , j
(p+1)
n+1 ) is the index pair received at time n + 1

in iteration (p + 1).
3) WZ Mappings: For k = 1, . . . , K, assign region k to

index i = v(k) such that:

v(k) = arg min
i∈{1..I}

∑

n:e
(p)
x,n∈Ck or

e
(p+1)
x,n+1∈Ck

d
(p+1)
n+1 . (8)

The update rules for WZ mappings, the encoder codebook and
the decoder codebook for source Y are similarly obtained.
Note that i and j point to codebook entries, subscript n
indicates time, and superscript p indicates the ACL iteration.
To reduce clutter, superscripts were omitted where obvious,
e.g., Ri for Rx

i .

D. Design Algorithm Summary
The overall algorithm for distributed predictive coding sys-

tem design is described as follows:
1) Design predictors Px and Py and high rate quantizers Qx

and Qy , e.g., via classical predictive quantizer algorithm
(see [3]).

2) Initialize (e.g., randomly) the WZ mappings, the encoder
and the decoder codebooks for the sources. Set iteration
counter p = 1.

3) Update the WZ mappings, the encoder and decoder
codebooks.

4) Evaluate system performance. Check for convergence
to STOP. Otherwise, calculate the new training set of
errors for ex (and ey) using similar expressions applied
on X (and Y ) as in Eqn. 2. Increment p. Go to step 3.

IV. SIMULATION RESULTS
We use the following Gauss-Markov source model for the

simulations:

Xn = βXn−1 + wn and Yn = γYn−1 + un. (9)

where wn, un are i.i.d., zero-mean, unit variance, jointly Gaus-
sian scalar sources with correlation coef�cient ρ. A training
set of size 5000 scalars is generated. The predictors Px (and
Py) are �rst-order linear predictors designed using X (and Y ).
In our simulations, we have taken β = γ = 0.8 and ρ = 0.95.
The weighting coef�cient of (1) is set to α = 0.5 which
implies that equal importance is given to both the sources at
the decoder. The number of prototypes is 60 for each source.

Simulation results are depicted in Fig. 5. In the �rst ex-
periment, we encoded both sources at the same rate and
measured the weighted distortion at the decoder versus the
number of transmitted bits for each source. We compare
the three schemes: (a) non-distributed predictive coding, i.e.,
each source is compressed using standard predictive coding
independently; (b) memoryless distributed coding, i.e., no pre-
diction is performed; (c) distributed predictive coding (DPC).
DPC clearly outperforms the other two compression schemes
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Fig. 5. Performance comparison: distributed predictive coding, non-distributed predictive coding, and memoryless distributed coding. In the left �gure, both
sources are encoded at the same rate. In the right �gure, source Y is encoded at �xed rate of 1 bit per sample.

and gains of ∼ 0.75 dB are achieved (e.g., at R1 = R2 = 2
bits/sample). In the second experiment, the transmission rate
for Y was �xed at 1 bit/sample while the rate of X was varied.
Here again, DPC is superior to either extreme special case
(predictive but not distributed, or distributed but memoryless).

It should be mentioned that we have run the distributed
prediction design algorithm multiple times since it is an
iterative technique and susceptible to fall in a local minima
trap depending on initialization. To circumvent this problem,
less greedy techniques such as in [9] may be employed but
fall outside the scope of this paper. Also, the predictors for
the sources have been designed in open-loop and kept �xed
throughout the system design without further optimization (as
is often done in classical predictive quantizer design). This
simpli�cation may be revisited in future work. Further, to save
in transmission rate, one can and probably should use entropy
coding.
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