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ABSTRACT Images are represented by feature vectors and the measure

We consider approaches for exact similarity search in a highf similarity between two images is assumed to be propor-
dimensional space of correlated features representing imadi@nal to the distance between their feature vectors. Recently,
datasets, based on principles of clustering and vector quanf- combination of texture features (extracted through Gabor
zation. We develop an adaptive cluster distance bound basétiers) and color features (histograms) have been found to
on separating hyperplanes, that complements our index in sée efficient descriptors of the underlying images and form a
lectively retrieving clusters that contain data entries closest tpart of the MPEG-7 multimedia standard (see [1]). Such fea-
the query. Experiments conducted on real data-sets confirtire vectors themselves are typically high-dimensional, such
the efficiency of our approach with random disk 10s reduceds the 60 dimensional texture descriptors [1] or the 256 di-
by 100X, as compared with the popular Vector Approximatiormensional color histograms of QBIC [2].

File (VA-File) approach, when allowed (roughly) the same  Similarity search is the search for elements in the database
number of sequential disk accesses, with relatively low premost similar to the query image. A popular query model is the

processing storage and computational costs. k-nearest neighbor (kNN) query, where given a query image,
Index Terms— Similarity search, multi-dimensional in- the & most similar images are extracted from the database.
dexing, retrieval, vector quantization, clustering Since, the feature vectors themselves are large in number and

of high-dimensionality, it is more cost effective to store them
on a hard-storage device, typically a hard disk. In the gen-
eral database search literature, several index structures exist

With the proliferation of digital multi-media devices, such asthat facilitate search and retrieval of multi-dimensional data,
digital cameras and video recorders, there has been an edch as the R-tree [3] and in low-dimensional spaces, these
plosive growth in multi-media data and new applications thaPutperform sequential scan. But it has been observed that the

handle these data, such as image search engines, bio-mediegfformance of many multi-dimensional index structures de-

imaging etc., hence necessitating efficient storage and dagkades as the dimensions of the features increase and after

mining solutions. Searching and indexing image databaséascertain dimension threshold, they underperform sequential
is a challenging task given the large number of elements t5¢a" [4]-
be handled and the high dimensionality of the search space. The time incurred in nearest neighbor search is largely
While searches based on keywords is the current paradigm ffominated by IO time, which is determined by the number
many search engines, keywords are not necessarily the mastsequential and random hard disk accesses. Irrespective of
efficient representatives of multimedia information. For ex-the access strategy, data are always stored and retrieved from
ample, it would be ineffective to mine databases of medicalhe disk in units odisk blocksor pages Random 10s would
images based on keywords or "metadata” if the goal is to disbe faster in retrieving pages that are spaced far apart while
cover hidden correlations that are unknown and hence havess costly sequential access of pages would optimal if the
not been quantified through metadata. Clearly, content-basd@equired pages are spaced close together (even if not contigu-
image search and retrieval (CBIR) would be the appropriateusly). However, due to the exponential growth of hypervol-
paradigm. ume with dimensionality ("the curse of dimensionality” [5]),
This work was supported in part by NSF, under grant [1S-0329267, thea Very I.arge portl_on Qf the space is actually empty and hence,
University of California MICRO program, Applied Signal Technology Inc., S€arching on naive index structures, leads to a large number
Dolby Laboratories Inc., and Qualcomm Inc. of needless and costly random disk accesses, making it slower
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Fig. 2. The Hyperplane Bound
than the simple sequential scan.

A very popular and effective technique employed to over- 2. THE HYPERPLANE BOUND
come the curse of dimensionality is the Vector Approximation
File (VA-File) [4]. In the VA-File, the space is partitioned into L€t d(X,y) be a distance function that estimates the distance
a number of hyper-rectangular cells, which approximate th&etween vectors andy in the feature space.
data that resic_zle insi_de the cells. The non-empty cell locations d:R™ x R™ — [0, 00) @)
are encoded into bit strings and stored in a sepappeox-
imation file on the hard-disk. In the search for the nearestn subsequent discussion, we shall specialize to the Euclidean
neighbors, first, the vector approximation file is sequentiallydistance over (real vector spaces) as the feature similarity mea-
scanned and upper and lower bounds on the distance from tegre i.e. d(x,y) = [|X — y||2. We define the distance from
query vector to each cell are estimated. The bounds are usgderyq and a clustef’,, as
to prune the data-set of irrelevant vectors. The final set of can- d(q, X)) = min d(q, X) @)
didate vectors are then read from the hard-disk and the exact =S
nearest neighbors are determined. At this point, we note th
the name “Vector Approximation” is somewhat misleading
since what is actually being performedsisalar quantization
where each component of the feature vectaeigarately and
uniformly quantizedin contradistinction with vector quanti-
zation in the signal compression literature).

arthe distance of vectoq to a hyper planegZ(n,p) = {y :
'yI'n + p = 0} is defined in the normal fashion as

_la'n+p|
d(q7}{)‘7 HnH2

Given a clustett,,,, the queryg and a hyperplanél that lies
In this paper, we consider a clustering approach towardeetween the cluster and the query ¢eparating hyperplarie
similarity search as an alternative to the Vector Approximasee Figure 2), by simple geometry it is easy to see that for any
tion (VA) Files. The data set s clustered using a standard clus¢ € X,
tering or vector Quantization (VQ) technique, e.g., K-means

®3)

or Lloyd’s algorithm and during query processing, load the d(q,x) > d(q,H)+ d(>'<,H)

"nearest” clusters into the main memory. We motivate such > d(q,H)+ i d(x, H)

a solution since vector quantization, unlike the scalar quan- !

L X ! i . = d(q,H)+d(X,, H

tization of the VA-File, can exploit dependencies across di- (g, H) + d( )

mensions and hence, would be a more compact representation =d(q,Xy) > d(q,H) + d(Xn, H) (4)

of the database. We propose to retrieve clusters tillkfe ¢ H,., represents a countably finite set of separating hyper-

nearest neighbor discovered so far is closer to the query thajlanes (that lie-between the querand the clustei,,),
the remaining clusters, whicjuaranteesthat thek nearest

neighbors have been discovered. = d(@, Xm) 2 max {d(q, H) +d(Xn, H)} ()

While such a vector quantization and clustering approaciyhe second lower bound presented in (5) can be used to tighten
to search has been studied in the image database communiié [ower bound om(q, X,,). Next, we note that thbound-
(see [6, 7, 8]), the earlier approaches have focussed more @fies between clusters generated by the K-means algorithm
approximatenearest neighbor search. The distance boundgrelinear hyperplanesif ¢, andc, are centroids of two clus-

(based on bounding hyperspheres) derived in [7] are loosgrs x; and X», and);» the boundary between them, then
and hence the search strategy performs poorly when adaptegd c y,,

to exact nearest neighbor search. We next present an effec-
tive cluster distance bound that complements our branch-and- d(ci,y) = d(c,y)
bound search algorithm. = |lcil3 — le2ll3 — 2(ci — )Ty = 0
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Therefore, the hyperpland,, = H(—2(c; — C3), |lci||3 — 7000 EE—
llc2|3) is the boundary between the clustéfsand X,. What Ty spnere
is to be noted is that these hyperplane boundages! not be 6000 -
stored, rather they can bgenerated during run-time from
just the centroids {c,, }}/ themselves. It is straightforward
to show that: Given a querg and a hyperplandi,,,,, that
separates clusters,, and X,,, it lies between the query and
clusterX,, if and only if d(q,c,,) > d(q,c,).
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2.1. Reduced Complexity Hyperplane Bound 2000/
For evaluation of the lower-bound presented in (4) and (5), x\%% D\S\S\S\

1000 =

we would need to pre-calculate and std(él,,,,,, X,,) for all e * *® No. of Random 10s (log scale) * +e
cluster pairgm,n). With M clusters, there ar&/ (M — 1)
distances that need to be pre-calculated and stored, in addi- Fig. 3. 10 Performance - AERIAL

tion to the cluster centroids themselves. The total storage for

all clusters would be&O(M> + Md), whered is the dimen- that our index 'VQ-Hyperplane' is able to consistently reduce
sionality. This heavy storage overhead makes the hyperplan yperp y

bound, in this form, impractical for a large number of clusters;[:ﬁ:le m:}r(r;t:ﬁr ‘,)\j ra_lgd?]mr I,Ov\r/t:la(r:i]s ﬁsv\tlsodmpr)areilwng] the \r;A'
We can loosen the bound in (5) as follows: €a € 'VQ-Sphere’, when allowed (roughly) the same

number of sequential disk accesses. For BIO-RETINA (Fig-

d(Q,X,) > max {d(q,H)+d(H, X,,)} ure 4), at 3 bit quantization for the VA-File, a neaB§00.X
HEM sep reduction in random disk accesses is possible with the vector
> max d(q,H) + Hrenin d(H, Xy) quantization/clustering approach with 60 clusters. A nearly
sep sep

100X reduction in 10O reads is possible over the VA-File at 5-
This means that for every clustét,, we would only need to  bits per dimension quantization (30 clusters in our method).

store one distance term We notice similar large reductions ef 100X in random 1O
) reads for the AERIAL data-set (Figure 3), at 5-bit per di-
dm = i d(Hypn s Xm) mension quantization for the VA-File. We also note that the

'VQ-Sphere’ method [7underperformghe VA-File on the
AERIAL dataset and outperforms the VA-File on the BIO-
RETINA dataset.

We compared the performance of our index (henceforth re-

ferred to as 'VQ-Hyperplane’) with that of the VA-File and ssoor
clustering based search technique presented in [7] (henceforth ...l
referred to as 'VQ-Sphere’) on two real image data-sets. Our
feature vectors were MPEG-7 texture feature descriptors ex-
tracted from64 x 64 blocks of the images. The first data-set
AERIAL was extracted from 40 large aerial photographis
60-dimensional and consists of 275,465 vectors. The second
data-set BIO-RETINA was generated from images of tissue
sections of feline retinas as a part of an ongoing project atthe =
Center for Bio-Image Informatics, UCSB. It is 208,506 ele- 0
ments long and 62 dimensional. We also assumgabe size

of 8kB. The query sets themselves were generated by ran-
domly selecting 1000 elements from the relevant data-sets. Fig. 4. 10 Performance - BIO-RETINA
For each query, the 10 nearest neighbors (LONN) were mined.

3. EXPERIMENTAL RESULTS
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3.1. 10 Performance Comparison 3.2. Computations and Pre-processing Storage Cost

We evaluated the performance of the VA-File at different quanye also compared the pre-processing storage and average com-
tization levels (3-8 bits per dimension) and the VQ methodgytation costs (distance evaluations) of the different methods
for different numbers of clusters (10-600 clusters). We notgrigures 5 and 6). Since the VA-File maintains a separate
LAvailable for download from http://vision.ece.ucsb.edu/datasets compressed representation for each element of the database,
2Available for download from http://scl.ece.ucsb.edu/datasets/features.tthe approximation file size grows with the size of the database.




Secondly, in order to reduce the costly random access readmd vector quantization. The image feature vectors are clus-
the quantization resolution in each dimension needs to be inered and during query processing, the nearest clusters are
creased, which again results in larger approximation files. Howisited in order. We developed an adaptive cluster distance
ever,, in the VQ methods, random 10 reads are reduced Hyound, based on separating hyperplanes, that complements
reducingthe number of clusters. Hence, we note that theour branch-and-bound search. Our index has low storage and
VQ methods have significantly( 10X — 100X) lower stor-  computation costs and is able to provide significant reduction
age. And between the two VQ-methods, our index 'VQ-in random disk accesses over known methods.

Hyperplane’ generates lower number of random IOs given the

same pre-processing storage. 5. ACKNOWLEDGEMENTS
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