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ABSTRACT
We consider approaches for exact similarity search in a high
dimensional space of correlated features representing image
datasets, based on principles of clustering and vector quanti-
zation. We develop an adaptive cluster distance bound based
on separating hyperplanes, that complements our index in se-
lectively retrieving clusters that contain data entries closest to
the query. Experiments conducted on real data-sets confirm
the efficiency of our approach with random disk IOs reduced
by 100X, as compared with the popular Vector Approximation-
File (VA-File) approach, when allowed (roughly) the same
number of sequential disk accesses, with relatively low pre-
processing storage and computational costs.

Index Terms— Similarity search, multi-dimensional in-
dexing, retrieval, vector quantization, clustering

1. INTRODUCTION

With the proliferation of digital multi-media devices, such as
digital cameras and video recorders, there has been an ex-
plosive growth in multi-media data and new applications that
handle these data, such as image search engines, bio-medical
imaging etc., hence necessitating efficient storage and data
mining solutions. Searching and indexing image databases
is a challenging task given the large number of elements to
be handled and the high dimensionality of the search space.
While searches based on keywords is the current paradigm in
many search engines, keywords are not necessarily the most
efficient representatives of multimedia information. For ex-
ample, it would be ineffective to mine databases of medical
images based on keywords or ”metadata” if the goal is to dis-
cover hidden correlations that are unknown and hence have
not been quantified through metadata. Clearly, content-based
image search and retrieval (CBIR) would be the appropriate
paradigm.
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Images are represented by feature vectors and the measure
of similarity between two images is assumed to be propor-
tional to the distance between their feature vectors. Recently,
a combination of texture features (extracted through Gabor
filters) and color features (histograms) have been found to
be efficient descriptors of the underlying images and form a
part of the MPEG-7 multimedia standard (see [1]). Such fea-
ture vectors themselves are typically high-dimensional, such
as the 60 dimensional texture descriptors [1] or the 256 di-
mensional color histograms of QBIC [2].

Similarity search is the search for elements in the database
most similar to the query image. A popular query model is the
k-nearest neighbor (kNN) query, where given a query image,
the k most similar images are extracted from the database.
Since, the feature vectors themselves are large in number and
of high-dimensionality, it is more cost effective to store them
on a hard-storage device, typically a hard disk. In the gen-
eral database search literature, several index structures exist
that facilitate search and retrieval of multi-dimensional data,
such as the R-tree [3] and in low-dimensional spaces, these
outperform sequential scan. But it has been observed that the
performance of many multi-dimensional index structures de-
grades as the dimensions of the features increase and after
a certain dimension threshold, they underperform sequential
scan [4].

The time incurred in nearest neighbor search is largely
dominated by IO time, which is determined by the number
of sequential and random hard disk accesses. Irrespective of
the access strategy, data are always stored and retrieved from
the disk in units ofdisk blocksor pages. Random IOs would
be faster in retrieving pages that are spaced far apart while
less costly sequential access of pages would optimal if the
required pages are spaced close together (even if not contigu-
ously). However, due to the exponential growth of hypervol-
ume with dimensionality (”the curse of dimensionality” [5]),
a very large portion of the space is actually empty and hence,
searching on naive index structures, leads to a large number
of needless and costly random disk accesses, making it slower
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than the simple sequential scan.

A very popular and effective technique employed to over-
come the curse of dimensionality is the Vector Approximation
File (VA-File) [4]. In the VA-File, the space is partitioned into
a number of hyper-rectangular cells, which approximate the
data that reside inside the cells. The non-empty cell locations
are encoded into bit strings and stored in a separateapprox-
imation file, on the hard-disk. In the search for the nearest
neighbors, first, the vector approximation file is sequentially
scanned and upper and lower bounds on the distance from the
query vector to each cell are estimated. The bounds are used
to prune the data-set of irrelevant vectors. The final set of can-
didate vectors are then read from the hard-disk and the exact
nearest neighbors are determined. At this point, we note that
the name “Vector Approximation” is somewhat misleading,
since what is actually being performed isscalar quantization,
where each component of the feature vector isseparately and
uniformly quantized(in contradistinction with vector quanti-
zation in the signal compression literature).

In this paper, we consider a clustering approach towards
similarity search as an alternative to the Vector Approxima-
tion (VA) Files. The data set is clustered using a standard clus-
tering or vector Quantization (VQ) technique, e.g., K-means
or Lloyd’s algorithm and during query processing, load the
”nearest” clusters into the main memory. We motivate such
a solution since vector quantization, unlike the scalar quan-
tization of the VA-File, can exploit dependencies across di-
mensions and hence, would be a more compact representation
of the database. We propose to retrieve clusters till thekth

nearest neighbor discovered so far is closer to the query than
the remaining clusters, whichguaranteesthat thek nearest
neighbors have been discovered.

While such a vector quantization and clustering approach
to search has been studied in the image database community
(see [6, 7, 8]), the earlier approaches have focussed more on
approximatenearest neighbor search. The distance bounds
(based on bounding hyperspheres) derived in [7] are loose
and hence the search strategy performs poorly when adapted
to exact nearest neighbor search. We next present an effec-
tive cluster distance bound that complements our branch-and-
bound search algorithm.

HYPER−PLANE 

����

����

���� ����

����

����
����

����

����
CLUSTER

A B

C D

E

QUERY

AB + CD < AD

DATA
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2. THE HYPERPLANE BOUND

Let d(x, y) be a distance function that estimates the distance
between vectorsx andy in the feature space.

d : Rn ×Rn → [0,∞) (1)

In subsequent discussion, we shall specialize to the Euclidean
distance over (real vector spaces) as the feature similarity mea-
sure i.e. d(x, y) = ‖x − y‖2. We define the distance from
queryq and a clusterXm as

d(q,Xm) = min
x∈Xm

d(q, x) (2)

The distance of vectorq to a hyper planeH(n, p) = {y :
yT n + p = 0} is defined in the normal fashion as

d(q,H) =
|qT n + p|
‖n‖2 (3)

Given a clusterXm, the queryq and a hyperplaneH that lies
between the cluster and the query (a ”separating hyperplane”,
see Figure 2), by simple geometry it is easy to see that for any
x ∈ Xm

d(q, x) ≥ d(q,H) + d(x, H)
≥ d(q,H) + min

x∈Xm

d(x,H)

= d(q,H) + d(Xm, H)
⇒ d(q,Xm) ≥ d(q,H) + d(Xm, H) (4)

If Hsep represents a countably finite set of separating hyper-
planes (that lie-between the queryq and the clusterXm),

⇒ d(q,Xm) ≥ max
H∈Hsep

{d(q, H) + d(Xm,H)} (5)

The second lower bound presented in (5) can be used to tighten
the lower bound ond(q,Xm). Next, we note that thebound-
aries between clusters generated by the K-means algorithm
arelinear hyperplanes. If c1 andc2 are centroids of two clus-
tersX1 andX2, andY12 the boundary between them, then
∀y ∈ Y12

d(c1, y) = d(c2, y)
⇒ ‖c1‖22 − ‖c2‖22 − 2(c1 − c2)T y = 0



Therefore, the hyperplaneH12 = H(−2(c1 − c2), ‖c1‖22 −
‖c2‖22) is the boundary between the clustersX1 andX2. What
is to be noted is that these hyperplane boundariesneed not be
stored, rather they can begenerated during run-time from
just the centroids {cm}M

1 themselves. It is straightforward
to show that: Given a queryq and a hyperplaneHmn that
separates clustersXm andXn, it lies between the query and
clusterXm if and only if d(q, cm) ≥ d(q, cn).

2.1. Reduced Complexity Hyperplane Bound

For evaluation of the lower-bound presented in (4) and (5),
we would need to pre-calculate and stored(Hmn,Xm) for all
cluster pairs(m,n). With M clusters, there areM(M − 1)
distances that need to be pre-calculated and stored, in addi-
tion to the cluster centroids themselves. The total storage for
all clusters would beO(M2 + Md), whered is the dimen-
sionality. This heavy storage overhead makes the hyperplane
bound, in this form, impractical for a large number of clusters.
We can loosen the bound in (5) as follows:

d(q,Xm) ≥ max
H∈Hsep

{d(q,H) + d(H,Xm)}
≥ max

H∈Hsep

d(q,H) + min
H∈Hsep

d(H,Xm)

This means that for every clusterXm we would only need to
store one distance term

dm = min
1≤n≤M,n 6=m

d(Hmn,Xm)

3. EXPERIMENTAL RESULTS

We compared the performance of our index (henceforth re-
ferred to as ’VQ-Hyperplane’) with that of the VA-File and
clustering based search technique presented in [7] (henceforth
referred to as ’VQ-Sphere’) on two real image data-sets. Our
feature vectors were MPEG-7 texture feature descriptors ex-
tracted from64 × 64 blocks of the images. The first data-set
AERIAL was extracted from 40 large aerial photographs1, is
60-dimensional and consists of 275,465 vectors. The second
data-set BIO-RETINA2 was generated from images of tissue
sections of feline retinas as a part of an ongoing project at the
Center for Bio-Image Informatics, UCSB. It is 208,506 ele-
ments long and 62 dimensional. We also assumed apage size
of 8kB. The query sets themselves were generated by ran-
domly selecting 1000 elements from the relevant data-sets.
For each query, the 10 nearest neighbors (10NN) were mined.

3.1. IO Performance Comparison

We evaluated the performance of the VA-File at different quan-
tization levels (3-8 bits per dimension) and the VQ methods
for different numbers of clusters (10-600 clusters). We note

1Available for download from http://vision.ece.ucsb.edu/datasets
2Available for download from http://scl.ece.ucsb.edu/datasets/features.txt

0.5 1 1.5 2 2.5 3 3.5 4 4.5
1000

2000

3000

4000

5000

6000

7000
AERIAL 64x64, 10NN

No
. o

f S
eq

ue
nti

al 
Pa

ge
s

No. of Random IOs (log scale)

VA − File
VQ − Sphere
VQ − Hyperplane

Fig. 3. IO Performance - AERIAL

that our index ’VQ-Hyperplane’ is able to consistently reduce
the number of random IO reads as compared with the VA-
File and the ’VQ-Sphere’, when allowed (roughly) the same
number of sequential disk accesses. For BIO-RETINA (Fig-
ure 4), at 3 bit quantization for the VA-File, a nearly3000X
reduction in random disk accesses is possible with the vector
quantization/clustering approach with 60 clusters. A nearly
100X reduction in IO reads is possible over the VA-File at 5-
bits per dimension quantization (30 clusters in our method).
We notice similar large reductions of≈ 100X in random IO
reads for the AERIAL data-set (Figure 3), at 5-bit per di-
mension quantization for the VA-File. We also note that the
’VQ-Sphere’ method [7]underperformsthe VA-File on the
AERIAL dataset and outperforms the VA-File on the BIO-
RETINA dataset.
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Fig. 4. IO Performance - BIO-RETINA

3.2. Computations and Pre-processing Storage Cost

We also compared the pre-processing storage and average com-
putation costs (distance evaluations) of the different methods
(Figures 5 and 6). Since the VA-File maintains a separate
compressed representation for each element of the database,
the approximation file size grows with the size of the database.



Secondly, in order to reduce the costly random access reads,
the quantization resolution in each dimension needs to be in-
creased, which again results in larger approximation files. How-
ever,, in the VQ methods, random IO reads are reduced by
reducing the number of clusters. Hence, we note that the
VQ methods have significantly (≈ 10X − 100X) lower stor-
age. And between the two VQ-methods, our index ’VQ-
Hyperplane’ generates lower number of random IOs given the
same pre-processing storage.
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Fig. 5. Pre-processing Storage Cost - AERIAL

For each element of the data set the VA-File needs to com-
pute an upper and a lower bound, hence the computational
costs double with the data-set size. Since vector quantiza-
tion exploits correlation across dimensions, it is a much more
compact representation of the database. Additionally, as seen
before, the filtering in our VQ method is tighter. Hence less
number of vectors need to be tested, leading to (≈ 10X) lower
number of distance evaluations, given the same number of
random disk accesses. We also note that our method has lower
computational cost as compared with the VQ-Sphere method.
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4. CONCLUSIONS

We proposed an image database indexing technique for exact
nearest neighbor search, based on the principles of clustering

and vector quantization. The image feature vectors are clus-
tered and during query processing, the nearest clusters are
visited in order. We developed an adaptive cluster distance
bound, based on separating hyperplanes, that complements
our branch-and-bound search. Our index has low storage and
computation costs and is able to provide significant reduction
in random disk accesses over known methods.
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