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Abstract

This paper considers the problem of distributed scalable coding of corre-
lated sources that are communicated to a central unit. The general setting
is typically encountered in sensor networks. The conditions of communication
channels between the sensor sources and fusion center may be time-varying and
it is often desirable to guarantee a base layer of coarse information during chan-
nel fades. Specifically, we consider a multi-stage coding system to perform such
distributed scalable coding of correlated sources. This problem poses new chal-
lenges. We show that mere extensions of distributed coding ideas to include
multi-stage coding yield poor rate-distortion performance, due to underlying
conflicts between the objectives of scalable and distributed coding. An appro-
priate system paradigm is developed which allows such tradeoffs to be explicitly
controlled within joint optimization of all the system components. We propose
an iterative joint design technique and derive the necessary conditions for opti-
mality which yield its update rules. Simulation results show substantial gains
over single source (separate) multi-stage coding as well as naive extensions to
incorporate scalability in distributed scalable coding schemes.

1 Introduction

Distributed source coding (DSC)[1, 2] has witnessed a significant revival of interest
since the late nineties, with a growing focus on practical code design. The work of
Pradhan and Ramchandran [3] was a notable precursor and the field has eventu-
ally seen the emergence of various distributed coding techniques, mostly with an eye
towards sensor networks (see reviews in [4, 5]). The basic setting in DSC involves mul-
tiple correlated sources (e.g., spatially distributed sensors) transmitting information
to a fusion center without any inter-communication amongst themselves, as shown
in Fig. 1. The main objective in DSC is to exploit inter-source correlations despite
the fact that each sensor source is encoded without access to other sources. The only
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Figure 1: Distributed coding of two correlated sources

information available to a source encoder about the other sources is via joint statistics
(typically extracted from training data).

The communication channels in a sensor field may vary in capacity due to the
presence of obstacles or other phenomena such as fading. In such a scenario, it will
be beneficial to convey a minimal amount of information even when the channel de-
teriorates. This motivates the problem of distributed scalable coding or distributed
successive refinement, which generalizes the traditional problem of scalable coding
of single source [6, 7, 8]. Successive refinement for Wyner-Ziv coding (side informa-
tion at the decoder) was proposed in [9], and has been studied in [9, 10] from the
information-theoretic perspective of characterizing achievable rate-distortion regions.
In this paper, we derive practical iterative algorithms for the design of successive-
refinable system within the multi-terminal (distributed) setting. It should be noted
that distributed scalable coding is related to but differs from “robust distributed
source coding” [11, 12] or multiple descriptions coding [13]. For example, base layer
information is always required for reconstruction of the enhancement layer(s).

Various scalability structures may be implemented, such as tree-structured quan-
tizers or multi-stage quantizers [14]. In practice, multi-stage structures are often
preferred due to their reduced complexity and training data requirements. An exam-
ple is speech coding applications where multi-stage vector quantizers are heavily used.
In this work as well, we will primarily focus on the design of distributed multi-stage
coding (DMSC) schemes.

DMSC can be considered as a generalization of traditional distributed source
coding or traditional scalable coding. It may be tempting to assume that simple
combination of algorithms for distributed coding ([15, 16, 12]) and multi-stage quan-
tizer design ([14]), would yield a good DMSC coding scheme. However, as we will
see, there exists a fundamental tradeoff between exploiting inter-source correlation at
the base or intermediate layers, and better reconstruction in subsequent layers of the
DMSC. Moreover, by allowing for a slight but controlled mismatch between encoder
and decoder estimates and reconstructions, inter-source correlation can be exploited
more effectively.

The rest of the paper is organized as follows. In Sec. 2, we state the problem
formally, introduce notation and specify the components of the DMSC system. In
Sec. 3, we discuss a naive design that simply combines distributed coding and multi-
stage quantizer design algorithms. Sec. 4 describes the proposed iterative algorithm
for DMSC system design, along with necessary conditions for optimality which deter-
mine its update rules. Simulation results are summarized in Sec. 5, followed by the
conclusions in Sec. 6.
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Figure 2: Distributed multi-stage coding

2 Problem Statement and System Paradigm

Consider the successively refinable distributed coding scenario in Fig. 2. For brevity,
we will restrict the analysis to the case of two sources and to two-layers, but without
loss of generality since the model is trivially extendible to an arbitrary number of
sources or layers. Here (X,Y ) are two continuous amplitude, i.i.d., correlated (scalar
or vector) sources. The encoder Ex for source X compresses the data and transmits
an index pair {i1, i2} where i1 ∈ {1..2R1x} and i2 ∈ {1..2R2x}. Similarly the encoder
Ey for Y has an index pair {j1, j2} as output where j1 ∈ {1..2R1y} and j2 ∈ {1..2R2y}.
R1x and R1y correspond to the first (base) layer rates while R2x and R2y denote the
incremental second (enhancement) layer rates. We assume that the fusion center
obtains full information from the base layer while data from the enhancement layer
is lost with probability p ∈ [0, 1] (for presentation simplicity, we assume enhance-
ment layer information from both sources is lost simultaneously with probability p).
Depending on whether or not the enhancement layer information is lost, the fusion
center uses decoder D1 or D2 to reconstruct X as X̂1 or X̂2 (and similarly Ŷ1 or
Ŷ2). The objective of the distributed multi-stage coding problem is to minimize the
following overall distortion function given rate allocations R1x, R2x, R1y and R2y:

Dnet = E[p{αd(X, X̂1) + (1 − α)d(Y, Ŷ1)}
+ (1 − p){αd(X, X̂2) + (1 − α)d(Y, Ŷ2)]}, (1)

where d(·, ·) is an appropriately defined distortion measure and α ∈ [0, 1] governs the
relative importance of the sources X and Y at the decoder. The first two distortion
terms in (1) account for base layer distortion per source, while the last two terms
cover the case where enhancement layer information is also received. Note that the
above simplifying assumptions can be eliminated by simple modification of the weight
factors for these terms. Nevertheless, for simplicity, we use the cost (1) throughout
the paper.

Similar to the design of a multi-stage vector quantizer, we here emphasize on
an iterative design algorithm for distributed multi stage coder design for correlated
sources. We next explain the functioning of various components of the DMSC (dis-
tributed multi stage coding) system.
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Figure 3: DMSC Encoder

2.1 Distributed Multi Stage Encoder

The DMSC encoder for source X is shown in Fig. 3. The overall encoder Ex consists
of two stage encoders E1x and E2x. Input X is fed to the first stage encoder E1x

whose output is an index i1 and an encoder reconstruction value X̂1,enc. The residual,

ex = X− X̂1,enc is input to the second stage encoder E2x, whose output is an index i2.
Since the sources X and Y are correlated, the encoders E1x and E2x will differ from the
nearest-neighbor quantizers encountered in single-source multi-stage quantization. A
block diagram for E1x is shown in Fig. 4. High resolution quantization maps source
X to index k1 representing Voronoi region Cx

k1
. Next, a lossy mapping which we

refer to as Wyner-Ziv (WZ) mapping is employed (the name loosely accounts for the
fact that the scenario involves lossy coding with side information whose asymptotic
performance bound was given in [2]). The WZ mapping block takes in k1 and outputs
index i1 = v1(k1) representing region Rx

i1
=

⋃
k1;v1(k1)=i1

Cx
k1

, to be transmitted over
the channel. An example of WZ mapping for a scalar source with K1 = 7 and I1 = 3,
is also given in Fig. 4.

The encoder codebook C−1
1 takes index k1 as input and outputs X̂1,enc which

is used to compute the residual ex. Base layer encoder E1y for source Y is defined
similarly. Since the error residuals ex and ey obtained by the first encoding stage are
correlated, a distributed coder should be designed to exploit inter-source correlations.
The second stage encoders E2x and E2y similarly consist of a high rate quantizer
followed by WZ mapping. Since the second stage is the last stage in our setting here,
no encoder codebook is needed in E2x or E2y (in general all except the last DMSC
stage encoders contain an encoder codebook as in E1x ).

2.2 Distributed Multi Stage Decoder

The DMSC base and enhancement layer decoders for source X are depicted in Fig. 5.
Decoder D1x takes indices i1 and j1 from the first layer of the sources to reconstruct
X̂1 while D2x reconstructs X̂2 based on i1,i2,j1 and j2. Decoder D1x simply consists of
codebook C−1

2 as shown, while D2x consists of codebooks C−1
3 and C−1

4 which output
X̂1,dec and êx, respectively. Note that X̂1, X̂1,enc and X̂1,dec differ in general. In brief,
these entities can be interpreted as follows:

1. X̂1 is constructed using i1 and j1 to minimize the distortion of the base layer
reconstruction.
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Figure 4: DMSC base layer encoder and an example of Wyner Ziv mapping from
Voronoi regions to (transmitted) indices

2. X̂1,dec is also based on i1 and j1 and its sole objective is to aid the second layer

reconstruction, X̂2.

3. X̂1,enc, based on k1 is an encoder estimate of X at the base layer in order to
derive the residual for the enhancement layer.

For source Y , we have similar decoders D1y and D2y. Note that the base layer
decoder D1 of Fig.2, actually contains D1x and D1y. Similarly, D2 contains D2x and
D2y.

2.3 Components to Optimize

Distributed multi-stage coding design optimizes the high rate quantizers, WZ map-
pings, encoder and decoder codebooks for all layers and all sources. We will restrict
the scope here to the design of all codebooks and WZ mappings. (For simplicity,
we will assume that high rate quantizers are independently designed using standard
Lloyd’s algorithm [17]. Additional gains due to their joint optimization with the rest
of the system are expected to be small).

3 Naive Design Scheme

We first discuss the design scheme which emerges when distributed coding is directly
combined with multi-stage coding. As it ignores the potential conflict in objectives
we refer to it as “naive” design. In the naive scheme, a first-layer distributed coder
is designed to minimize the distortion for the base layer using a distributed coder
design algorithm such as in [12], while ignoring the enhancement layer and the role of
p. Consequently, the estimates X̂1,enc and X̂1,dec are calculated only based on index

i1. (Note that there is no encoder-decoder mismatch in this scheme and X̂1,enc(i1) =

X̂1,dec(i1) = E[X|X ∈ Rx
i1
]). The residual ex is calculated as ex = X − X̂1,enc and
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Figure 5: DMSC decoder

similarly for ey. The resulting training set for {ex, ey} is used to design a distributed
coder for the enhancement layer to minimize the enhancement layer distortion given
the fixed base layer coder. Note that the naive scheme will approach optimality only
at high probability of loss at the enhancement layer (in which case, only the base
layer is of interest).

4 Distributed Multi Stage Coding Algorithm

4.1 Motivation and Design

The most fundamental deviation of this work from the “natural” approach to DMSC
is in the use of different codebooks for constructing X̂1,enc and X̂1,dec. At the decoder,

both indices i1 and j1 can be utilized to construct X̂1,dec. However, the encoder

for source X only has access to index i1 to construct X̂1,enc, and does not know j1.

Obviously, there will be a mismatch between X̂1,enc and X̂1,dec. A possible way to

match X̂1,dec with X̂1,enc will be to make X̂1,dec a function of i1 alone, but this will
defeat the purpose of distributed coding (utilizing inter-source correlation) in the first
layer.

The idea, is therefore to allow for some mismatch between the first layer estimates
at the encoder and decoder and optimize so that efficient distributed coding at first
layer will more than compensate for any allowed mismatch. Another crucial point to
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note is that, the source encoder has complete knowledge of the source itself or effec-
tively index k1 (which is the output of the high resolution quantizer used primarily to
discretize the source), while the decoder has additional knowledge from the correlated
source Y , in the form of index j1. This implies that there may exist some (elusive)
additional information at both ends that could be exploited, if an appropriate means
were devised.

We therefore use different codebooks for calculating X̂1,dec and X̂1,enc at the de-
coder versus encoder. The encoder codebook (C−1

1 ) can have k1 as input, and the
decoder helper codebook C−1

3 has inputs i1 and j1. This flexibility enables optimiza-
tion of the tradeoff between better exploitation of inter-source correlations, and the
cost of some mismatch in the system. Appropriate design of encoder and decoder
codebooks (as well as WZ mappings) will optimize the precise overall performance
while accounting for the mismatch.

Note that the scheme subsumes single source multi-stage quantizer design as a
special case. Also, when the sources X and Y are uncorrelated, then WZ mappings
for the base layer will converge to a union of contiguous cells (the encoder E1x will
act as a fine-coarse quantizer) and both the encoder and decoder codebooks will
effectively be the same and depend on i1 only.

4.2 Update Rules

Herein we assume mean-squared error distortion for simplicity. The notation in what
follows is heavy due to the multiple indexing involved. But in a nutshell, we alternate
between optimization of the various codebooks and WZ mappings at different layers
while fixing all other parameters.

The following necessary conditions for optimality determine the update rules in
terms of the subset of distortion terms to be minimized (i.e., those that depend on
the parameters being updated) while avoiding detailed notation.

1. First Layer Decoder Codebook (C−1
2 ): Entry (i1, j1), i1 = 1 : I1 and

j1 = 1 : J1 is obtained by minimizing

x̂1(i1, j1) = arg min
φ

∑

(x,y)∈Ri1
×Rj1

d(x, φ). (2)

2. Second Layer Decoder Codebook (C−1
4 ) (for residuals): Entry (i2, j2), i2 =

1 : I2 and j2 = 1 : J2 is obtained by minimizing

êx(i2, j2) = arg min
φ

∑

(ex,ey)∈Ri2
×Rj2

d(x, x̂1,dec + φ). (3)

3. Encoder Codebook (C−1
1 ): Entry k1, k1 = 1 : K1 is given by minimizing:

x̂1,enc(k1) = arg min
φ

∑

x∈Ck1

d(x, x̂1,dec + êx), (4)
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where the dependence on φ comes from êx, which is the reconstructed value of
ex at the second layer and ex = x− φ.

4. First Layer Helper Decoder Codebook (C−1
3 ): Entry (i1, j1), i1 = 1 : I1

and j1 = 1 : J1 is obtained by minimizing

x̂1,dec(i1, j1) = arg min
ψ

∑

(x,y)∈Ri1
×Rj1

d(x, êx + ψ). (5)

5. WZ Mappings (Layer 2): For k2 = 1 : K2, assign region k2 to index i2 =
v2(k2) such that:

v2(k2) = arg min
i2∈{1..I2}

∑

ex∈Ck2

d(x, x̂1,dec + êx(i2, j2)). (6)

6. WZ Mappings (Layer 1): For k1 = 1 : K1, assign region k1 to index i1 =
v1(k1) such that:

v1(k1) = arg min
i1∈{1..I1}

∑

x∈Ck1

[pd(x, x̂1(i1, j1)) + (1 − p)d(x, x̂1,dec(i1, j1) + êx(i2, j2))]. (7)

The update rules for the second source Y are straightforward to specify from the
above. Also, to reduce clutter, superscripts and arguments were omitted where obvi-
ous, e.g., Ri1 rather than Rx

i1
; êx rather than êx(i2, j2).

5 Simulation Results

Two examples are provided to demonstrate the gains of the proposed distributed
multi-stage coding. In our simulations, the sources X and Y are assumed to be
jointly gaussian with zero means, unit variances and correlation coefficient ρ = 0.95.
A training set of 5000 scalars is generated. Simulation results are depicted in Fig. 6.
In the simulations, the weighting coefficient of (1) is set to α = 0.5 so that equal
importance is given to both sources at the decoder. The number of prototypes is 60
for the high rate quantizers which are designed using Lloyd’s algorithm [17].

In the first experiment, the same transmission rate is allocated to each layer of
each source, i.e., R1x = R2x = R1y = R2y = R. The probability of enhancement
layer loss is p = 0.2. The weighted distortion (1) at the decoder is plotted versus
the rate R. We compare: (a) non-distributed multi-stage coding, i.e., each source
is compressed using a standard multi-stage scalar quantizer; (b) naive distributed
multi-stage coding, and (c) proposed distributed multi-stage coding (DMSC). DMSC
clearly outperforms the other compression schemes and gains of up to ∼ 2.2 dB are
achieved (e.g., at rate of 2 bits). Note that the naive distributed scalable coding
underperforms separate scalable coding, which is evidence for the significance of the
underlying conflict between objectives. These must be explicitly resolved as is indeed
done by the proposed approach.
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In the second experiment, the transmission rates for the different layers and sources
are all fixed at 2 bits/sample. The weighted distortion is plotted vs. the probability
of enhancement layer loss, p. Here when p is high, the naive scheme performs better
than separate multi-stage coding since it simply minimizes the expected weighted
distortion at the base layer before proceeding to the enhancement layer. Note that
in the naive scheme, p only plays the role of a weighing factor in computing the to-
tal distortion (1). The enhancement layer distortion in naive scheme is considerably
higher than the base layer distortion (since scalability is ignored in order to do effi-
cient distributed coding at base layer) and this is an evidence of the inherent conflict
between distributed and scalable coding. Hence, the performance of naive scheme
approaches DMSC only for higher values of p. However, the DMSC scheme consis-
tently outperforms both the naive scheme and separate multi-stage coding for all p.
It should also be mentioned that the various algorithms were run multiple times to
mitigate concerns about susceptibility to local minimum traps depending on initial-
ization. (Optimization using global variants of the technique is beyond the scope of
this paper).
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Figure 6: Performance comparison: distributed multi stage coding (DMSC), separate,
non-distributed multi-stage coding and naive design scheme. In the left figure, the
x-axis represents transmission rates (R1x = R2x = R1y = R2y = R); while in the right
figure, the x-axis denotes the probability of enhancement layer loss

6 Conclusions

In this paper, we have proposed an iterative algorithm for the design of multi-stage
distributed coders. Our scheme allows a controlled mismatch between the encoder
and decoder reconstruction for estimating the enhancement layer residual and jointly
optimizes all the components in the DMSC system. Simulation results show that
the DMSC scheme consistently outperforms other naive schemes and single source
(separate) distributed multi stage coding schemes.
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