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Abstract

Motivated by sensor networks, we consider the fusion storage of correlated sources
in a database, such that any subset of them may be efficiently retrieved in the future.
Only statistical information about future queries is available during encoding and stor-
age. Fusion coding of correlated sources poses new challenges due to the conflicting
objectives of exploiting inter-source correlations and enabling efficient selective re-
trieval. Practical signal compression imposes additional constraints on system com-
plexity. We propose a shared-descriptions approach for the design of lossy fusion
coding systems, to manage the precise tradeoffs between storage rate, retrieval rate,
distortion and system complexity, within one unified framework. An iterative descent
algorithm is derived for the design of such fusion coders. The optimized system pro-
vides significant gains over traditional quantization techniques that are not directly
optimized for fusion coding.

1 Introduction

This paper considers the problem of storing correlated sources in a database for future re-
trieval of any subset of them as queried by users. This problem differs from the well known
distributed source coding setting [1] in that all information about the sources is centrally
available during encoding for storage in the database. However, only statistical informa-
tion about future queries is available. Such database design introduces fundamentally new
and interesting challenges: On the one hand, inter-source correlations may be exploited via
joint coding to reduce the overall storage requirement and to potentially reduce the retrieval
time. On the other hand, a future query may select only few of the sources for retrieval,
and it would be wasteful to have to retrieve the entire (jointly) compressed data only to
reconstruct a small subset.

An example application of the proposed fusion coding of correlated sources is in the
arena of sensor networks, which has been the focus of extensive research in recent years.
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Much of the effort was dedicated to the development of device and communication tech-
nologies [2]. But in order to fully realize the potential of most such systems, it is necessary
to efficiently store the vast volumes of data generated by the network for future retrieval,
as needed for analysis or other uses. As an illustrative example, consider the installation
of a dense network of sensors for monitoring purposes. A fusion center stores the signals
generated by these sensors, which are expected to be highly correlated, as they cover the
same scene. Data from the fusion center are eventually accessed by users, who may be
interested in information from only a small subset of the sources at any given time. Figure
1 depicts the setting.

(a) A 2D sensor field: dots represent sen-
sors and boxes represent regions of interest
(queries)
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(b) Fusion storage and selective retrieval

Figure 1: Fusion coding of correlated sources

In fact, fusion storage of correlated sources has applications even in areas that are re-
mote from traditional signal processing and communications, such as storage and indexing
of stock market data streams [3]. The fusion coder problem was first identified in [4],
where the authors derived an information-theoretic characterization of an achievable rate
region, via reformulation as a multi-terminal source coding problem [5]. More recently,
lossy fusion coder design that directly optimizes the distortion-retrieval rate tradeoff for
memoryless sources was derived in [6]. The performance gains of such fusion coders in-
crease with storage (rate) capacity. However, the system complexity grows exponentially
with the storage rate and, consequently, the design methods of [6] do not scale to a large
number of sources. In this paper, we are concerned with the development of systems and
design algorithms for fusion coding at high storage rate and for many sources (sensors).
We propose a shared descriptions approach that enables constraining the system complex-
ity which can then be traded against distortion , retrieval rate and storage. It also subsumes
the fusion coder design of [6] as an extreme special case.

2 Fusion Coding Preliminaries

Let us denote the M correlated sources as the set, {Xm,m = 1...M}. A subset of sources
that need to be retrieved from the database is referred to as a query. Let binary variables
qi ∈ {0, 1} denote whether or not source Xi is called for by the query, i.e., queries are

263

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 20:22 from IEEE Xplore.  Restrictions apply.



represented by M -tuples of the form q = (q1, ..., qM) ∈ Q, where Q ⊆ {0, 1}M is the
domain-set of queries. A probability distribution is defined over all queries, P : Q → [0, 1],
where naturally

∑
q∈Q P (q) = 1. Without loss of generality, we assume that each source is

requested with positive probability (i.e., there exists some query with positive probability
that calls for this source) and that a query always asks for a non-empty subset of sources,
i.e., P (0) = 0. Boldface symbols in lowercase and uppercase represent vectors and random
vectors, respectively.

The retrieval time, or the time required to retrieve a subset of sources, is proportional to
the number of bits retrieved. Let the retrieval bit rate for query q be Rq. Then, the average
retrieval rate is Rr =

∑

q∈Q
P (q)Rq = E[RQ].

2.1 Intuition: Lossless Storage and Retrieval

Let us consider two extreme cases, namely, minimum storage rate versus minimum retrieval
rate. It follows from Shannon’s basic result that given M sources X1, . . . , XM , the minimal
storage rate is Rs,min = H(X1, ..., XM ). In other words, joint compression is required to
minimize the storage rate. When it is time to retrieve information, however, regardless
of the query received, the entire (jointly) compressed description needs to be retrieved,
imposing a (high) retrieval rate of Rr = H(X1, ..., XM ).

If we denote the set of sources queried as

X(q) = {Xm,∀m : qm = 1},

the minimum conceivable number of bits required to reconstruct the sources queried by q
is H(X(q)). Hence, the minimum average retrieval rate is Rr,min =

∑

q
P (q) H(X(q)) ≤

H(X1, ..., XM ). This implies that in order to achieve the best retrieval speed, we need
to separately compress and store in the database each subset of sources corresponding
to a potential query. However, unless M is very small or the set of queries Q is severely
restricted, the storage requirement will quickly exceed practical limitations. In other words,
the database will have to individually accommodate a combinatorially large number of
queries, with storage rate Rs =

∑

q∈Q
H(X(q)) >> H(X1, ..., XM ) = Rs,min. We conclude

that the optimal storage technique severely compromises retrieval speed and the optimal
retrieval technique is highly wasteful in storage.

2.2 Fusion Coding for Selective Retrieval

In practice, signals are often further compressed by allowing for error or distortion in the
reconstruction. A block diagram representing a lossy fusion coder is given in Figure 2.
The fusion coder comprises three functional components. The encoder E compresses data
from M sources into Rs bits at every instant. The bit (subset) selector S is a look-up table
that indicates, for a given query q, which of the Rs stored bits to retrieve. The bits from
positions S(q) are retrieved and used by the decoder to reconstruct the relevant sources
X̂(q), where X̂ = D(E(X),S(q)). Mathematically,
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Figure 2: Fusion coder

E : RM → I = {0, 1}Rs

S : Q → B = 2{1,...,Rs}

D : I × B → X̂
where B is power set (set of all subsets) of the set {1, ..., Rs}, and X̂ ⊂ RM is the corre-
sponding codebook.

For query q, the encoded (stored) bits at positions S(q) are retrieved, i.e., Rq = |S(q)|
bits (per time instant) are retrieved. The average retrieval rate Rr and distortion D are given
by

Rr =
∑

q
P (q)|S(q)| = E[|S(Q)|] , D = E[dQ(X,D(E(X),S(Q)))],

where typically it is assumed that dq(x, y) =
∑

m qm(xm − ym)2.

2.2.1 Optimal Fusion Coder Design

Given M correlated sources and a storage constraint Rs, an optimal fusion coder is deter-
mined by the solution of

min
E,S,D

J = min
E,S,D

D(Rs) + λRr(Rs), λ ≥ 0, (1)

where λ is a Lagrange multiplier. In practice, expectations are often approximated by
averages over available training sets. Necessary conditions for optimality are obtained
by setting to zero the partial derivatives of the Lagrangian cost function. We introduce
additional notation: given index (or compressed description) i ∈ I and bit subset indicator
e ∈ B (e ⊆ {1, ..., Rs}), we use ie to denote the sub-index obtained by extracting the bits
at the positions indicated by e. The necessary conditions for optimality are:

• Optimal Encoder : E(x) = arg min
i∈I

∑

q
P (q)dq(x,D(i,S(q))),∀x ∈ X

• Optimal Bit Selector : S(q) = arg min
e∈B

{ 1

|X |
∑

x
dq(x,D(E(x), e)) + λ|e|},∀q ∈ Q

• Optimal Codevectors : X̂ (i, e) = 1
|F |

∑
x∈F x,∀e ∈ B, i ∈ I, where F = {x :

E(x)e = ie}.
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The design algorithm proposed in [6] consists of iteratively optimizing the encoder,
bit-selector and the codebooks.

2.3 Fusion Coder Performance and Scalability

Consider an experimental example of memoryless correlated Gaussian sources of unit vari-
ance Xm, 1 ≤ m ≤ M . The correlation between sources Xi and Xj is ρij = ρ|i−j|, where
−1 ≤ ρ ≤ 1. This correlation model is consistent with uniform sampling of a linear sensor
field [7]. Queries were assumed to be uniformly distributed over contiguous “neighbor-
hoods” of n sensors (see Figure 3). In our experiments, M = 50 sources and any n = 10
contiguous sources are queried, which implies that |Q| = 41. We chose ρ = 0.8 and
generated a database of 40,000 vectors.

Figure 3: Neighborhood queries on a linear sensor array

The fusion coder was designed at two storage rate constraints, Rs = 4 and Rs = 8.
The competing joint compression technique employed a vector quantizer (VQ), where the
compression rate Rs(= Rr) was varied from 1 to 8 bits per vector. Figure 4 provides the
performance evaluation (ignore the “shared descriptions” results which will be discussed
in the next subsection). It is clear from the figure that the fusion coder provides significant
selective retrieval gains over naive joint compression (vector quantization) of sources, and
these gains increase with the allowed storage rate. This is because at higher storage rates,
there are more degrees of freedom in the design of the bit-subset selector.
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Figure 4: Performance comparison of fusion coding for selective retrieval

It is, however, of considerable practical importance to note that the overall design com-
plexity of the optimal solution is O(2Rs). Given storage rate Rs, the encoding operation
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involves searching for the best index out of 2Rs , i.e. the index that minimizes the query av-
eraged distortion. Note further that this encoding complexity also arises during operation
of the fusion coder, not only during offline design. The design of the bit-subset selector
searches for the best subset of Rs bits, out of 2Rs − 1 candidates. The codebook update
operation and the codevector storage are also of O(2Rs) complexity. Thus, the system com-
plexity (design, operational and codevector storage) grows exponentially with storage rate.
This implies that system design and operation scale poorly with the allowed storage rate,
which itself grows with the number of sources. This represents a major practical concern.

3 The Shared Descriptions Approach

We reformulate the system and its design such that it enables explicit control of the com-
plexity. A structure needs to be imposed to constrain the complexity in a controlled way so
as to optimize tradeoff with performance. For example, in classical vector quantizer design,
the split VQ structure might be preferred over full-search VQ because of its lower codevec-
tor search complexity [8]. In an analogous fashion, we “split” the storage and spread the
complexity over a number of smaller (lower complexity) encoders. Since the complexity
is exponential in the storage rate this entails considerable complexity gains. Each encoder
now operates independently and we refer to the compressed bits produced by each encoder
as a shared description for reasons that will shortly become obvious.

We constrain the bit-selection module to select the subset of bits for a query from one
of the shared descriptions (see Figure 5). This restriction implies that each description is in
fact shared by a group of queries. Since each query is mapped to a particular description
and no query retrieves bits from two or more different descriptions, it follows that the
different encoders can operate independently of each other. If we employ two encoders
(two descriptions) which encode at rates R1

s and R2
s , then the net encoding complexity is

2R1
s + 2R2

s rather than 2R1
s+R2

s .
The space of queries is now partitioned into groups of queries, one per shared de-

scription, though each query in the group may still use a different subset of bits from their
shared description. The design complexity for the bit and description selection is 2R1

s +2R2
s .

Similarly, the net codevector update and storage complexity is 2R1
s +2R2

s . Thus the net sys-
tem complexity is O(2R1

s + 2R2
s) << O(2R1

s+R2
s) = O(2Rs). The performance of this

“split encoder”/“shared description” formulation is presented in Figure 4. There is a small
performance loss relative to the unconstrained fusion coder, of about 0.2dB. However, the
“shared description” setup considerably reduces system complexity from O(256) to O(32).
It also has significant performance advantages over joint compression.

In general, let K be the number of descriptions/encoders. The kth encoder compresses
the M-dimensional input vector x to Rk

s storage bits at each instant. The total storage would
be Rs =

∑
k Rk

s . Correspondingly, we introduce notation

Ek : RM → Ik = {0, 1}Rk
s ,∀k = 1, ..., K (2)

for the K encoders.
For the kth description, we have the corresponding bit-selector as

Sk : Q → Bk = 2{1,...,Rk
s} (3)
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Figure 5: Shared Description Fusion Coder for Memoryless Sources

Next, we use β : Q → K = {1, ..., K} to denote the description selector i.e. for query
q, bits are retrieved from description β(q).

The decoder is now modified to be the map

D :
K⋃

k=1

Ik × Bk × {k} → X̂ (4)

Given β(q) = k for some q, the decoder accesses the bits specified by Sk(q) in de-
scription k and estimates X̂ = D(Ek(X), Sk(q), k). (Consequently, reconstruction of the
relevant sources is X̂(q), where we use the subscript q to indicate the relevant sources.) If
we denote the set of queries that are mapped to the kth description as Ak = {q : β(q) = k},
the average distortion is evaluated as

D =
K∑

k=1

∑

q∈Ak

P (q)
1

|X |
∑

x∈X
dq(x,D(Ek(x),Sk(q), k)) (5)

where X is the training set. Likewise, the average retrieval rate is evaluated as

Rr =
K∑

k=1

∑

q∈Ak

P (q)|Sk(q)| (6)

Let Ek =
⋃

Ak

Sk(q). Ek represents the bits within description k that are actually used.

Clearly, Rk
s,util = | ⋃

q∈Ak

Sk(q)| = |Ek| and the true complexity of the kth encoder is

O(2Rk
s,util). Hence, the total storage and system complexity are evaluated to be

Rs,net =
K∑

k=1

Rk
s,util Cnet =

K∑

k=1

2Rk
s,util
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Given a total storage capacity Rs, allowed average retrieval rate Rret, allowed system com-
plexity C and K shared descriptions, the optimal shared description fusion coder is the
solution to

arg min
E,D,S

D 	 Rs,net ≤ Rs, Cnet ≤ C,Rr ≤ Rret (7)

Equivalently, we seek solutions of

arg min
E,D,S

J = arg min
E,D,S

D + λRr 	 Cnet ≤ C,Rs,net ≤ Rs (8)

where λ ≥ 0 is a Lagrange multiplier. Now, it can be clearly seen that fusion coding [6] is
actually a special case of shared descriptions fusion coding (when C = ∞, K = 1).

3.1 Necessary Conditions for Optimality

The Lagrangian cost J can now be written as

J =
K∑

k=1

[
∑

q∈Ak

P (q){ 1

|X |
∑

x∈X
dq(x,D(Ek(x),Sk(q), k)) + λ|Sk(q)|}] (9)

Optimal Encoders : Given all the other mappings, it follows from (9) that the optimal
encoding index produced by encoder k for input vector x is

Ek(x) = arg min
i∈Ik

∑

q∈Ak

P (q)dq(x,D(i,Sk(q), k)),∀x (10)

Optimal Codevectors : For k ∈ K, i ∈ Ik, e ∈ Bk, we define Fk = {x : (Ek(x))e = (i)e},
and the optimal codevector is

X̂ (i, e, k) =
1

|Fk|
∑

x∈Fk

x,∀i ∈ Ik,∀e ∈ Bk,∀k ∈ K (11)

Optimal Bit-subset Selectors : Let B̃k = {e ∈ Bk : |e ⋃
Ek|+

∑

k′ �=k

|Ek′| ≤ Rs, 2
|e

⋃
Ek| +

∑

k′ �=k

2|Ek′ | ≤ C}. B̃k represents the valid set of bit-selections that do not violate the storage

and complexity constraints. Hence, the optimal bit-subset selection, given the encoding
indices and the codebook, is the rule

Sk(q) = arg min
e∈B̃k

λ|e| + 1

|X |
∑

x
dq(x,D(Ek(x), e, k)),∀q, k (12)

Optimal Description Selector : By reordering the terms of the Lagrangian, the optimal
description for a particular query q, given the encoding indices and the codebook, is

β(q) = arg min
k∈K

min
e∈B̃k

λ|e| + 1

|X |
∑

x
dq(x,D(Ek(x), e, k)),∀q (13)

If β(q) = k, we update Ek = Ek
⋃Sk(q), before optimizing for the next query. We also

note that the Ek update is necessary before the bit-selector optimization for the next query.
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3.2 Design Algorithm

A natural design algorithm is to iteratively enforce the optimality conditions i.e. optimize
each mapping separately, while assuming that the remaining mappings are optimal (and
given). There exist only finite number of partitions of a finite training set and there are
only finite number of ways to partition bits and queries. As each step of the iteration is
monotone non-increasing in the cost, the algorithm must converge to a locally optimal
design in a finite number of iterations. However, since the cost is not convex, this simple
design approach is dependent on initialization, and multiple runs with different (possibly
random) initializations may be necessary to obtain a good solution.

4 Simulation Results

For the same experimental model we considered before, we performed Shared Descriptions
Fusion Coding (SDFC) at a storage rate of Rs = 24, with K = 3 descriptions. The overall
complexity constraint imposed was C = 768. The SDFC performance was compared with
two naive compression techniques that scale well with storage rate - scalar quantization (at
1 bit per source) and split VQ. Since each query consists of 10 sources, scalar quantization
is forced to retrieve 10 bits for every query. Split VQ is a standard scheme in speech coding
for scaling VQ to high dimensions (equivalent to a large number of sources in our case)
which translate into high rates. Here, we perform split VQ by splitting the M = 50 sources
into (roughly) equal sized groups and compressing each group separately, where the total
storage rate Rs = 24 is divided equally among all the groups. The number of groups was
varied over 24, 12, 8, 6 and 4. For each such grouping of sources, we obtain a point on the
retrieval rate-distortion curve.
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Figure 6: SDFC vs. split VQ (joint compression) vs. Scalar Quantization

From Figure 6, we note significant performance gains of SDFC over both scalar quanti-
zation and split VQ. At the same retrieval rate, SDFC offers from 0.5dB to 1.6dB decrease
in distortion relative to split VQ. At the same level of distortion, SDFC provides retrieval
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rate reduction by factors of 1.25X to 2X over split VQ and 2.5X over scalar quantization.
We also note that scalar quantization of sources (at 1 bit per source) requires more than
twice the storage of SDFC and split VQ.

5 Conclusions

This paper considered the fusion coding of multiple correlated sources given only statis-
tical prior information on queries. Scalability of the unconstrained fusion coder design is
compounded by exponential growth of system complexity with storage rate. We proposed
a shared-descriptions approach where multiple queries share a description, and where the
different descriptions are encoded separately. Moreover, the system makes it possible to
manage the precise tradeoffs between distortion, storage rate, retrieval rate and complex-
ity within the same framework. An iterative descent algorithm for the design of shared
descriptions fusion coders was derived. The gains offered by shared descriptions fusion
coding over other known quantization techniques, at high storage rates, confirm the appli-
cability and scalability of the proposed approach.
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