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ABSTRACT

This paper considers the problem of predictive fusion coding for
storage of multiple spatio-temporally correlated sources so as to en-
able efficient selective retrieval of data from subsets of sources as
designated by future queries. Only statistical information about fu-
ture queries is available during encoding. While temporal correla-
tions can be exploited by coding over large blocks, the growth in
encoding complexity renders this approach impractical and hence
the interest in a low complexity predictive coding approach. How-
ever, the design of optimal predictive fusion coding systems is con-
siderably complicated by the presence of the prediction loop, and
the potentially exponential growth of the query sets. We propose
a complexity-constrained predictive fusion coder and derive an it-
erative algorithm for its design, which is based on the ”Asymp-
totic Closed Loop” framework and hence, circumvents convergence
and stability issues of traditional predictive quantizer design. The
proposed predictive fusion coder optimizes the distortion - retrieval
rate tradeoff, given a fixed storage capacity, and provides significant
gains over storage schemes that perform only joint compression or
memoryless fusion coding of all sources.

Index Terms— Multisensor systems, Database query process-
ing, Linear predictive coding, Vector quantization, Data compres-
sion

1. INTRODUCTION

We are motivated by the problem of data storage for sensor networks.
As an illustrative example, suppose we consider a dense network
of sensors installed for surveillance/monitoring. The signals gen-
erated by these sensors are expected to be highly correlated, since
they are covering the same scene. This data is sent to a fusion cen-
ter to be stored for possible future analysis, possibly using efficient
distributed source codes (see [1], [2]). For the sake of clarity of ex-
planation, we assume that all sources are stored in a single fusion
center.

We would like to emphasize here that while we are motivated by
sensor networks, the problem generalizes to any collection of cor-
related sources. When the data from the fusion center is eventually
accessed by a user, it is very likely that the information from only
a small subset, and not all, sources will be requested at any given
time. An interesting tradeoff emerges between conflicting objec-
tives: On the one hand, the inter-source spatial and temporal cor-
relation may be exploited via joint (predictive) coding to minimize
the overall storage requirement and to minimize the retrieval bit rate
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Fig. 1. Fusion Storage vs. Selective Retrieval

(and hence time) required for retrieving highly correlated data. On
the other hand, the specific nature of the query may result in select-
ing only very few of the sources to be reconstructed, and it would
be wasteful to have to retrieve the entire compressed data only to re-
construct a small subset. Thus, the central issue in fusion coding for
storage is, given a fixed storage capacity and a query distribution,
how does one minimize the retrieval rate. In practice, where lossy
compression would be inevitable, one seeks to minimize the retrieval
rate given an additional constraint on the allowable distortion. Fig-
ure 1 is representative of the situation.

The problem was first identified in [3], where the authors also
provided information-theoretic (asymptotic) analysis to determine
an achievable rate region for lossless storage and reconstruction.
More recently, fusion coders that exploit inter-source correlation,
adapt to the query distribution and directly optimize the distortion
retrieval rate trade-off for i.i.d (memoryless) sources, were proposed
in [4]. However, streaming data such as video/sensor streams exhibit
significant temporal correlations and efficient storage and retrieval
would have to exploit these correlations as well. But, as we shall
show in subsequent sections, the design of optimal predictive fusion
coders is compounded both by the presence of the prediction loop
and the need to accommodate a (possibly exponentially) large query
set. We propose a complexity constrained approach, that still yields
huge gains over naive joint compression (vector quantization (VQ)
or predictive VQ) of all sources and memoryless fusion coding.

2. FUSION CODING PRELIMINARIES

Let us denote the M correlated sources as the set, {Xm, m = 1...M}.
We define a query as the subset of sources that need to be retrieved.
Employing binary variables qi ∈ {0, 1} to denote whether source Xi

is requested or not, we represent queries by M -tuples of the form

q = (q1, ..., qM ) ∈ Q (1)

where Q ⊆ {0, 1}M represents the domain-set of queries. We next
introduce notation for the query distribution, or the probability mass
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function (pmf),
P : Q → [0, 1] (2)

It is to be noted that there are conceivably 2M possible queries and�
q∈Q P (q) = 1. Without loss of generality, we assume that each

source is requested with positive probability (i.e., there exists some
query with positive probability whose requested subset includes the
source) and that a query always asks for a non-empty subset of
sources, i.e., P (0) = 0. It is to be noted that in our notation, bold-
face letters in lowercase and upper case represent vectors and ran-
dom vectors, respectively.

Given a database of constant size, the retrieval time or the time
required to retrieve a subset of sources is proportional to the number
of bits retrieved per sample, which we term the retrieval rate. Let
the number of bits per sample answer retrieved for query q be Rq.
Then, the average retrieval rate is

Rr =
�

q∈Q
P (q)Rq = EQ[RQ] (3)

2.1. Lossless Storage and Retrieval

From Shannon’s basic result, it follows that the minimum number
of bits required to store M sources X1, . . . , XM , i.e. the minimal
storage rate is Rs,min = H(X1, ..., XM ) and hence joint compres-
sion is optimal in minimizing storage rate. However, for any query,
the entire compressed description needs to be retrieved imposing a
(high) retrieval rate Rr = H(X1, ..., XM ).

If we denote the set of sources queried as,

X(q) = {Xm, ∀m : qm = 1}

the minimum number of bits required to reconstruct the sources re-
quested in query q is H(X(q)) and hence, the minimum average
retrieval rate is Rr,min =

�

q

P (q) H(X(q)) ≤ H(X1, ..., XM )

(for any query distribution). This implies that in order to have the
fastest retrieval speed, we need to compress and store each subset of
sources that may be requested, separately.

However, unless M is very small or the set of queries Q is
severely restricted, the storage requirement would be impractically
high as it would have to individually accommodate a very large (pos-
sibly an exponential) number of queries, i.e. Rs =

�

q∈Q
H(X(q)) >>

H(X1, ..., XM ) = Rs,min. Clearly the optimum storage technique
is wasteful in retrieval speed and the optimal retrieval technique is
wasteful in storage.

2.2. Practical Fusion Coding for Memoryless Sources

In practice, compression of signals is impossible without allowing
for error or distortion in the reconstruction. A block diagram, rep-
resentative of a practical fusion coder, is given in Figure 2. Fusion
coders (without memory) are composed of an encoder E , that com-
presses data from M sources into Rs bits at every instant, a query
specific bit-subset selector S, which is a look-up table to decide
which set of bits to retrieve for a given query and the decoder D,
which reconstructs the sources. Mathematically,

E : RM → I = {0, 1}Rs

S : Q → B = 2{1,...,Rs}

D : I × B → X̂

QUERY − "q" ~ P(q)

BIT−FILE 1

R   S
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Fig. 2. Fusion Coder for Memoryless Sources

}

Q

SPZ
−1 D

E

X(Q)

Fig. 3. Optimal Predictive Fusion Coding: Encoder

where B is power set (set of all subsets) of the set {1, ..., Rs}, and
X̂ ⊂ RM is the corresponding codebook. It is to be noted that
S(q) ⊆ {1, . . . , Rs}, ∀q and D(E(x),S(q)) denotes the recon-
struction of input x for query q, using the bits at locations indicated
by S(q).

The distortion D is averaged across both the source and query
distributions i.e.

D = EX,Q[dQ(X,D(E(X),S(Q)))] (4)

where typically it is assumed that dq(x, y) =
�

m qm(xm − ym)2.
For query q, the encoded (stored) bits at locations indicated by S(q)
are retrieved i.e. Rq = |S(q)| bits per sample are retrieved, where
|A| denotes the cardinality of set A. Then, the average retrieval rate
is

Rr =
�

q

P (q)|S(q)| = EQ[|S(Q)|] (5)

Given M correlated sources and a storage constraint Rs optimal fu-
sion coders are solutions of

min
E,S,D

J = D(Rs) + λRr(Rs), λ ≥ 0 (6)

where λ is a Lagrange multiplier. In practice, since the database
designer has access to only training sets, and not actual distributions,
expectations are replaced by averages over the training sets. The
design algorithm proposed in [4] consists of iteratively optimizing
the encoding, bit-selection and the codebooks, till convergence.

3. OPTIMAL PREDICTIVE FUSION CODING

While time-correlations could conceivably exploited by fusion cod-
ing over larger blocks, this would be a high complexity approach.
Linear predictive coding, on the other hand, is attractive as a low-
complexity alternative that can yet exploit temporal correlations. We
first note that since all the sources Xm are available at the encoder,
they can be equivalently replaced by query-specific super sources i.e.
vector sources of the form X(q) = [..., Xm, ...]T , ∀m 	 qm = 1.

Now in optimal (linear) predictive fusion coding, at every in-
stant, each such super source X(q) is predicted and all the prediction
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residuals are fusion coded to exploit spatial correlations efficiently
(see Figure 3). However, this imposes on the encoder the need to ac-
commodate the entire (possibly exponentially large) query set. This
would require |Q| prediction loops and the encoder would need to
handle input vectors whose size

�
q∈Q |q| grows with the query set

Q and hence, could be of impracticably high complexity.

4. CONSTRAINED PREDICTIVE FUSION CODING

Hence, we propose predictive fusion coding with constraints i.e.
where queries and sources share predictors. More specifically, we
shall consider the situation where all queries share a single predic-
tor. We assume one-step prediction and that the prediction matrix
P is estimated from open-loop statistics. Figure 4 represents our
predictive fusion coding encoder. We continue with the notations
developed in section 2.2 and introduce two new mappings.

SP : Q → B = 2{1,...,Rs}

DP : I × B → X̂P ⊂ RM

At each instant, the predictor returns an estimate of all sources, based
on a subset SP of the immediately past encoding bits. The prediction
error is fed as input to the encoder E , where the error residuals are
compressed to the best possible index (set of encoding bits) E(e),
that are then stored in the database. The compressed error residual
ê = DP (E(e),SP ) is fed as input to the prediction filter.

}

STORED BITS

X e
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Fig. 4. Constrained Predictive Fusion Coding: Encoder
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Fig. 5. Constrained Predictive Fusion Coding: Decoder

During query processing, the process is reversed. For all queries,
the stored bits from the locations given by SP are extracted and the
reconstructed residual ê is fed into the prediction filter. For each
query q, additional bits are extracted (if necessary) and the output
of the prediction filter X̃ is augmented by êQ = D(E(x),S(q)), to
reconstruct the queried-sources X̂(Q). At this point, we note that the
retrieval rate per sample for query q is Rq = |S(q) ∪ SP | bits.

5. DESIGN BY ASYMPTOTIC CLOSED LOOP

The design of predictive coding systems is complicated by the feed-
back loop of the prediction filter [5]. As a result, quantizer design in
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Fig. 6. Decoder: Design by Asymptotic Closed Loop

open loop, while stable, is sub-optimal, while closed-loop design is
inherently unstable (except at high rates), as the training set of vec-
tors changes within every iteration. The asymptotic closed loop de-
sign principle [6], however, designs the system always in open loop,
using the same training set within each iteration to design all compo-
nents and hence, is stable. However, from one iteration to the next,
the training set of error residuals is gradually modified till asymptot-
ically they match the true residuals generated by the prediction loop.
In other words, asymptotically the prediction loop is closed. We ex-
tend the asymptotic closed loop (ACL) design principle towards the
design of predictive fusion coding systems in the following manner.

In subsequent discussion, the superscript p denotes the iteration
number, while n denotes time. If I ∈ {0, 1}Rs is a typical encoding
index and f ⊂ {1, ..., Rs}, we use the notation If to denote the
sub-index formed by the bits in I at the locations in f . The error
residuals at iteration p, {ep(n)} are encoded to the indexes (stored
vectors of bits) {Ip(n)}. {ep(n)} form the training set at iteration p
and are computed as

ep(n) = x(n) − x̃p(n) = x(n) − P x̂p−1(n − 1)

⇒ ep(n) = x(n) − P [êp−1(n − 1) + x̃p−1(n − 1)]

The ACL predictive fusion decoder is shown in Figure 6. Note
that x̂p

q(n) = x̃p(n) + êpq(n), where êp(n) = DP (Ip(n),SP ) and
êpq(n) = D(Ip(n),S(q)). During iteration p − 1, we seek to min-
imize the cost at iteration p. Asymptotically this does not matter,
but this subterfuge is useful in obtaining effective update rules for
SP and DP , since both êp−1(n− 1) and êpq(n) affect x̂p

(q) at time n.
The design algorithm that minimizes J = D+λRr cost (for a given
Lagrange multiplier λ) is presented in the following sub-section.

5.1. ACL algorithm for Predictive Fusion Coder Design

1. Initialize (e.g. randomly) all query-codebooks and predictor-
codebooks, bit-selectors SP , S, design prediction matrix P ,
set p = 0

2. Increment p

3. Compute the new training set of residuals ep(n)

4. Update encoding indexes : ∀n
Ip(n) = E(ep(n)) = arg min

I∈I
EQ[dQ(ep(n),D(I,S(Q)))]

5. Update query bit-subset selection : ∀q ∈ Q
S(q) = arg min

f∈B
λ|f∪SP |+ 1

N

�

n

dq(ep(n),D(Ip(n), f))

6. Update query-codebooks : ∀I ∈ I, f ∈ B
X̂ (I, f) = 1

|F |
�

n:n∈F

ep(n), where F = {n : Ip
f (n) = If}
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7. Update predictor bit-subset selection :
SP = arg min

f∈B
EQ[λ|S(q) ∪ f | +

�

n

1

N
dQ(ẽ(n), êpQ(n))],

where ẽ(n) = x(n)−P [DP (Ip−1(n−1)), f)+x̃p−1(n−1)]
and êpQ(n) = D(Ip(n)),S(Q))

8. Update predictor codebooks : ∀I ∈ I, f ∈ B
X̂P (I, f) = arg min

φ
EQ[
�

n∈G

1

N
dQ(ẽφ(n), êpQ(n))],

where G = {n : Ip−1
f (n − 1)) = If} and

ẽφ(n) = x(n) − P [φ + x̃p−1(n − 1)]

9. Close the loop and evaluate the Lagrangian Jp = Dp +λRp
r .

If |Jp−1−Jp|
Jp−1 < ε, STOP. Else go to step 2.

6. SIMULATION RESULTS

We used the first order Gauss-Markov source model for our simula-
tions i.e. Xm(n) = βmXm(n − 1) + Wm(n), where {Wm(n)}M

1

are i.i.d, zero-mean, unit variance jointly Gaussian random variables
with the pairwise correlation coefficient ρjk = E[Wj(n), Wk(n)]

= ρ|j−k|. In all our simulations, βm = 0.8, ∀m and ρ = 0.95. This
model would be representative of a linear sensor array. Our query
distribution was a uniform distribution over contiguous ”neighbor-
hoods” of n sensors (see Figure 7). In our experiments, M = 100
sources and any n = 10 contiguous sources are queried, which im-
plies that |Q| = 91 and

�
q |q| = 910 >> M = 100. In all our

experiments, the maximum allowed storage capacity was Rs = 6
bits per sample and a training set of length 3000 samples was used.

Fig. 7. Neighborhood Queries on a Linear Sensor Array

We compared the final closed-loop performance of the predictive
fusion coder, with three competing techniques - (memoryless) vec-
tor quantizer (VQ) and predictive VQ (which compress all sources
jointly i.e. they are joint compression techniques) and (memoryless)
fusion coder (FC). The joint compression (here, VQ) techniques are
compelled to retrieve all the compressed data i.e. Rr = Rs and can
reduce retrieval rate (time) only by reducing the compression (stor-
age) rate.
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We note significant gains of the predictive fusion coding over
the three competing methods. We obtain distortion gains about 2
dB over VQ, 1.5 DB over the FC and 1 dB over predictive VQ
at Rr = 2 bits per sample.The bigger gains over VQ and FC are
possible because time-correlations were exploited by the predictive
FC. A nearly 1.5X reduction in retrieval rate was achieved over the
predictive vector quantizer, given the same distortion of D = 10.5
dB. In the very low rate region, we note that the FC has a slightly
better performance than predictive FC. Since we constrained the
predictive FC to have only prediction loop, in the low rate region
|SP ∪ S(q)| = |SP | = 1, ∀q. As we allow more prediction loops,
there would be greater freedom in designing the query bit-selector
S(q), and the performance gets better. We show a performance plot
with 6 prediction loops, but the description of the algorithm (for mul-
tiple predictors) is beyond the scope of this paper.

7. CONCLUSIONS

We have proposed a complexity constrained approach toward predic-
tive fusion coding or predictive coding for storage of many correlated
sources in a database. The design of optimal predictive fusion coders
is compounded by the need to accommodate the entire query set and
the prediction loop. In our approach, queries and sources share a sin-
gle predictor, thereby reducing complexity of encoding, and the sta-
bility issues of design are circumvented by an ”Asymptotic Closed
Loop” algorithm. By exploiting spatio-temporal correlations effi-
ciently, our predictive fusion coder provides significant gains over
competing techniques i.e. joint compression (VQ) techniques and
memoryless fusion coding. However, the cost surface is riddled with
local optima and while the design complexity is O(2Rs). In future
work, we shall study intelligent initialization heuristics along with
multiple predictors and complexity constrained designs.
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