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ABSTRACT

Motivated by the need to efficiently leverage user relevance
feedback in content-based retrieval from image databases, we
propose a fast, clustering-based indexing technique for exact
nearest-neighbor search that adapts to the Mahalanobis dis-
tance with a varying weight matrix. We derive a basic prop-
erty of point-to-hyperplane Mahalanobis distance, which en-
ables efficient recalculation of such distances as the Maha-
lanobis weight matrix is varied. This property is exploited
to recalculate bounds on query-cluster distances via projec-
tion on known separating hyperplanes (available from the un-
derlying clustering procedure), to effectively eliminate non-
competitive clusters from the search and to retrieve clusters in
increasing order of (the appropriate) distance from the query.
We compare performance with an existing variant of VA-File
indexing designed for relevance feedback, and observe con-
siderable gains.

Index Terms— Relevance feedback, similarity search, im-
age indexing, vector quantization, clustering

1. INTRODUCTION

Advancements in semiconductor technology, magnetic stor-
age hardware and the growth of the Internet has spawned new
database applications for multimedia data, such as Multime-
dia Information Systems, CAD/CAM, Geographical Informa-
tion systems (GIS), medical imaging that store large amounts
of data periodically in and later, retrieve it from databases.
Searching over such image and multimedia databases is pri-
marily performed under the content-based image search and
retrieval (CBIR) paradigm. Images are typically represented
by feature vectors and the measure of similarity between two
images is assumed to be proportional to the distance between
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their feature vectors. Recently, a combination of texture fea-
tures (extracted through Gabor filters) and color features (his-
tograms) have been found to be efficient descriptors for a
broad class of images and form a part of the MPEG-7 mul-
timedia standard (see [1]).

Useful feature vectors are often high dimensional, such as
the 60 dimensional texture descriptors of [1]. The search for
nearest neighbors in large, high dimensional data sets is chal-
lenging. The search time is overwhelmingly dominated by
IO operations (e.g., hard disk access times). Index structures
exist that facilitate search and retrieval of multi-dimensional
data, but it has been observed that the performance of many
such structures degrades with increase in dimensionality. In a
famous result, Weber et. al. [2] have shown that whenever the
dimensionality is above 10, these methods are outperformed
by a simple sequential scan. The reason for this degradation
in performance is attributed to Bellman’s celebrated ‘curse of
dimensionality’ [3], which refers to the exponential growth of
hyper-volume with dimensionality of the space.

1.1. Relevance Feedback in Image Retreival

While the Euclidean distance metric is popular within the
multimedia indexing community, it is by no means the per-
ceptually ”correct” distance measure. Hence, significant re-
search activity (in content-based image retrieval) has been di-
rected toward Mahalanobis (or weighted Euclidean) distances
(see [4]). The Mahalanobis distance measure has more de-
grees of freedom than the Euclidean distance and by proper
updation (or relevance feedback), has been found to be a much
better estimator of user perceptions (see [5, 6, 4]).

The goal in relevance feedback is to adapt the distance
measure to match user expectations, by making the search an
interactive process. Here, in each iteration a set of results is
retrieved and user provides feedback on the relevance of each
result. If Mahalanobis distance is employed, this is used to
update the weight matrix for the next iteration. Sometimes,
the query vector is also modified [5]. The process stops when
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Fig. 1. VA-File under an Unknown Linear Transformation

the user is satisfied with the results.

1.2. Efficiency of Indexing with Relevance Feedback

Multidimensional search indexes are typically designed as-
suming a fixed Mahalanobis distance measure that is known
in advance. The weight matrix is diagonalized and the data
are correspondingly rotated and scaled into a new set of di-
mensions, prior to indexing. However, in relevance feedback
applications, the weight matrix changes with time and renders
most standard indexes ineffective and very slow. Clearly, a
truly effective relevance feedback application requires a new
indexing approach.

A very popular and effective technique employed to over-
come the curse of dimensionality is the Vector Approximation
File (VA-File) [2]. VA-File partitions the space into hyper-
rectangular cells, aligned with the co-ordinate axes. Each di-
mension is quantized uniformly and the quantization indices
are stored of each feature vector in the so called approxima-
tion file, on the hard-disk. Upper and lower bounds on the
distance to the query from each cell are estimated and these
are used to prune the data-set of those vectors that are not
likely to be good candidates. The final set of candidate vec-
tors are read from the hard-disk and the nearest neighbor are
determined.

A change in the Mahalanobis weight matrix is equiva-
lent to rotating and skewing the bounding rectangles into uni-
form hyper-parallelograms. The method of [7] fits minimum
bounding rectangles that contain these parallelograms. Note
that these hyper-rectangles are larger and overlapping. A new
set of distance bounds to these rectangles are evaluated and
used in spatial filtering (see Figure 1).

In this paper, we consider a clustering approach towards
similarity search. The data set is clustered using a standard
clustering or vector quantization (VQ) technique and only
relevant (“nearest”) clusters are retrieved during query pro-
cessing. Clusters are retrieved until the kth nearest neigh-
bor discovered so far is closer to the query than all remain-
ing clusters, which guarantees that the k nearest neighbors
have been discovered. We further note that with only one
cluster, the indexing technique degenerates to the sequential
scan i.e. sequential scan is a special case. Central to such a
search technique is the ability to tightly bound the distance
to a cluster, without accessing the elements of the cluster [8].

We show how effective estimates of query-cluster distances
can be performed while adapting to a changing weight matrix.
and how this filters out irrelevant regions of the database, thus
providing significant speed-ups over known techniques. Con-
sequently, the proposed clustering based approach is effective
for relevance feedback in image databases.

2. POINT-TO-HYPERPLANE DISTANCE

Let dW (x, y) =
√

(x− y)T W (x− y) be the distance be-
tween any two feature vectors x and y. Without loss of gen-
erality, we assume W is symmetric and positive definite i.e.
dW (·, ·) is a metric. Let H(a, b) = {x : aT x + b = 0} be a
hyperplane and y a point in the space outside of it. Then,

dW (y, H) = min
x∈H

dW (x, y) =
√

min
x∈H

dW (x, y)2

Using Lagrange multiplier λ, let J = (x− y)T W (x− y) +
λ(aT x + b).

∂J

∂x
= 0 ⇒ x∗ − y = −1

2
λW−1a

∂J

∂λ
= 0 ⇒ aT x∗ + b = 0

⇒ λ =
2(aT y + b)
aT W−1a

, x∗ − y =
−(aT y + b)W−1a

aT W−1a

⇒ (x∗ − y)T W (x∗ − y) =
(aT y + b)2

aT W−1a

⇒ dW (y,H) = dW (x∗, y) =
|aT y + b|√
aT W−1a

We note that if W were the identity matrix, then the formula
reduces to the known version for Euclidean distance. Next
consider two weight matrices W1 and W2, it is easy to note
that

dW1(y,H)
dW2(y,H)

=

√
aT W−1

2 a
aT W−1

1 a
(1)

In other words, the ratio of point-to-hyperplane distances un-
der differing weight matrices is independent of the point y (as
well as the fixed translation b).

3. ADAPTIVE CLUSTER DISTANCE BOUNDING

It is easy to show that for any positive definite W , the short-
est path between two points is along the straight line passing
through the two points. Now, given a cluster Xm, the query
q and a hyperplane H that lies between the cluster and the
query (a ”separating hyperplane”, see Figure 3), by simple
geometry it is easy to see that for any x ∈ Xm

dW (q, x) ≥ dW (q,H) + dW (x,H)
≥ dW (q,H) + min

x∈Xm

dW (x,H)

= dW (q,H) + dW (Xm,H)
⇒ dW (q,Xm) ≥ dW (q,H) + dW (Xm,H) (2)
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We focus on the second term, dW (Xm,H), the “support”.
Had W been known in advance, this could have been evalu-
ated offline and stored. Instead, let us denote the weight ma-
trix used during clustering as W0. Then, (1) implies

dW (Xm,H) =

√
aT W−1

0 a
aT W−1a

dW0(Xm,H) (3)

which demonstrates that it is unnecessary to reevaluate the
support due to change in weight matrix after the clustering
phase. Without loss of generality, in subsequent discussion,
we will assume that dW0(·, ·) is the Euclidean distance, and
drop the suffix W0.

If Hsep represents a countably finite set of separating hy-
perplanes (that lie-between the query q and the cluster Xm),

dW (q,Xm) ≥ max
H∈Hsep

{dW (q,H) + dW (Xm,H)} (4)

The second lower bound presented in (4) can be used to tighten
the lower bound on dW (q,Xm). Next, we note that the bound-
aries between clusters generated by the K-means algorithm
are linear hyperplanes. If c1 and c2 are centroids of two clus-
ters X1 and X2, and H12 the boundary between them, then
∀y ∈ H12

d(c1, y) = d(c2, y)
⇒ ‖c1‖22 − ‖c2‖22 − 2(c1 − c2)T y = 0

Therefore, the hyperplane H12 = H(−2(c1 − c2), ‖c1‖22 −
‖c2‖22) is the boundary between the clusters X1 and X2. We

emphasize that these hyperplane boundaries need not be stored,
as they can be generated during run-time from the centroids.
It is straightforward to show that: Given a query q and a hy-
perplane Hmn that separates clusters Xm and Xn, it lies be-
tween the query and cluster Xm if and only if d(q, cm) ≥
d(q, cn).

3.1. Reduced Complexity Hyperplane Bound

For evaluation of the lower-bound of (2) and (4), we would
need to pre-calculate and store d(Hmn,Xm) for all cluster
pairs (m,n). With K clusters, there are K(K − 1) distances
that need to be pre-calculated and stored, in addition to the
cluster centroids themselves. The total storage for all clus-
ters would be O(K2 + Kd). This heavy storage overhead
makes the hyperplane bound, in this form, impractical for a
very large number of clusters. However, we can loosen the
bound in (4) as follows:

dW (H,Xm) =

√
‖a‖22

aT W−1a
d(Xm,H)}

≥
√

‖a‖22
aT W−1a

min
H∈Hsep

d(Xm,H)}

⇒ dW (q,Xm) ≥ max
Hsep

{dW (q,H) +

√
‖a‖22

aT W−1a
dsep}

where dsep = min
H∈Hsep

d(Xm,H). This means that for every

cluster Xm we would only need to store one distance term
dsep, thus reducing the total storage to O(K(d + 1)). For the
special case when dW (·, ·) is itself Euclidean, i.e., no weight
adaptation, see [8]. For small M , even ‖a‖2, for all cluster
boundaries a, can be calculated offline and stored. Even oth-
erwise, we note that it is IO time (and not processor time)
which is the bottleneck in query processing.

4. EXPERIMENTAL RESULTS

We compared the performance of our index (henceforth re-
ferred to as ’VQ-Hyperplane’) with a well-known variant of
VA-File [7] that is adapted to leverage relevance feedback.
Our data-set BIORETINA1 consists of MPEG-7 texture fea-
ture descriptors extracted from 64×64 blocks generated from
images of tissue sections of feline retinas as a part of an on-
going project at the Center for Bio-Image Informatics, UCSB.
It is 208,506 elements long and 62 dimensional. We also as-
sumed a page size of 8kB. The query sets themselves were
generated by randomly selecting 100 elements from the rel-
evant data-sets. For each query, the 10 nearest neighbors
(10NN) were mined.

The weight matrix, typically a correlation matrix [5], was
modelled as W = UT ΛU . The orthonormal matrix U was

1Available for download from http://scl.ece.ucsb.edu/datasets/features.txt
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Fig. 4. IO Performance

generated randomly and the eigenvalues were uniformly dis-
tributed between 0 and 10. We present results from one such
realization of W , that is representative of general performance.
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Fig. 5. Preprocessing Storage

We evaluated the performance of VA-File at various quan-
tization levels (5-12 bits per dimension) and the VQ method
for varying numbers of clusters (10-300 clusters). We note
that our index ’VQ-Hyperplane’ is able to consistently reduce
the number of random IO reads as compared with VA-File,
when allowed (roughly) the same number of sequential disk
accesses. For BIO-RETINA (Figure 4), at 6 bit quantization
for VA-File, a nearly 3000X reduction in costly random disk
accesses is achieved by the vector quantization/clustering ap-
proach with 15 clusters.
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Fig. 6. Computational Cost

Since VA-File maintains a separate compressed represen-
tation for each element of the database, the approximation
file size grows with the size of the database. Secondly, in
order to reduce the number of costly random access reads,
the quantization resolution in each dimension needs to be in-
creased, which again results in larger approximation files. In
contradistinction, the VQ method reduces random IO reads
by reducing the number of clusters. Moreover, VA-File esti-
mates distance bounds to each element of the database, not to
each cluster as in our method. Hence, we note that the VQ
method has significantly (≈ 10X − 100X) lower storage and
lower computational costs (Figure 5 and 6).

5. CONCLUSIONS

We developed a cluster distance estimation technique that pro-
vides tight distance estimates while adapting to changes in the
distance metric, and achieves efficient spatial filtering (at low
storage and computation costs). The IO access times of our
index are significantly lower than VA-File and enables effec-
tive application of relevance feedback techniques.
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