UNIVERSITY of CALIFORNIA

Santa Barbara

Distributed coding of spatio-temporally correlated sources

A Dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy
in

Electrical and Computer Engineering

by

Ankur Saxena

Committee in charge:

Professor Kenneth Rose, Chair
Professor Jerry Gibson
Professor Upamanyu Madhow
Professor B. S. Manjunath
Professor Tor A. Ramstad

December 2008



UMI Number: 3342044

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3342044
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, M|l 48106-1346



The dissertation of Ankur Saxena is approved.

Professor Jerry Gibson

Professor Upamanyu Madhow

Professor B. S. Manjunath

Professor Tor A. Ramstad

Professor Kenneth Rose, Committee Chair

November 2008



Distributed coding of spatio-temporally correlated sources

Copyright (©) 2008

by

Ankur Saxena

1ii



v

To my brother and my parents.



Acknowledgements

First of all I would like to express my gratitude towards my advisor Prof
Kenneth Rose for his encouragement, patience and support during my graduate
studies. I am grateful to him for the right mix of guidance and freedom that I
received and have benefitted immensely from his sharp insight and ability to see

the bigger picture.

I would like to thank Prof Upamanyu Madhow and Prof Shiv Chandrasekaran
for teaching wonderful classes in communication theory and linear algebra. I am
also grateful to Prof Jerry Gibson, Prof B. S. Manjunath and Prof Tor Ramstad

for being on my doctoral committee.

The research presented here was supported by the National Science Founda-
tion (IIS-0329267 and CCF-0728986), and in part by the University of California
MICRO program, Applied Signal Technology Inc., Cisco Systems Inc., Dolby

Laboratories Inc., Qualcomm Inc., and Sony Ericsson, Inc.

A big thanks to Jayanth Nayak for his help and valuable advice in the early
research days. Thanks to Sumit Paliwal and Kaviyesh Doshi for encouraging me

throughout my graduate student life.

Thanks to Sharadh Ramaswamy for being a great friend and lab-mate in the
Signal Compression Lab. I would also like to thank Christan Schmidt, Jaspreet
Singh and Vinay Melkote for the numerous stimulating discussions in the lab and
during lunch time. Working in SCL. was always enjoyable due to the presence of

wonderful lab-mates: Hua, Sang, Alphan, Pakpoom, Jaewoo, Emre and Emrah.

I am thankful to the ECE support staff, especially Valerie de Veyra for the



much needed help in administrative work.

I would always cherish the great company of my friends Gaurav Soni and
Amitabh Virmani who were my family away from home in Santa Barbara. They
were always there to listen and help me in my endeavors. Special thanks to
Anshuman Maharana for lots of delicacies in this part of the world. For the great
fun and activities, I would also thank Anindya Sarkar, Raj Sau, Pratim Ghosh,
Anand Meka and Vineet Wason.

I thank my family for all the support and motivation throughout my studies,
particulary my younger brother Mohit, and most importantly my parents for

everything they have done for me.

vi



Curriculum Vitae

Ankur Saxena

Education

2008 Ph.D. in Electrical and Computer Engineering, University of
California, Santa Barbara.

2004 Master of Science in Electrical and Computer Engineering, Uni-
versity of California, Santa Barbara.

2003 B.Tech in Electrical Engineering, Indian Institute of Technology-

Delhi.

Research Experience

2004 — 2008 Graduate Research Assistant, University of California, Santa
Barbara.
Summer 2007 Student Research Intern, NTT Docomo Labs, Palo Alto, CA.
Summer 2002 Student Intern, Fraunhofer Institute of X-Ray Technology, Er-
langen, Germany.
Publications
1. Distributed predictive coding for spatio-temporally correlated sources

Ankur Sazxena and Kenneth Rose, under review in IEEE Transactions on Signal
Processing.

Optimized system design for robust distributed source coding
Ankur Sazxena, Jayanth Nayak and Kenneth Rose, under review in IEEE Trans-
actions on Signal Processing.

On scalable coding of correlated sources
Ankur Sazena and Kenneth Rose, to be submitted to IEEE Transactions on Signal
Processing.

Scalable distributed source coding
Ankur Saxena and Kenneth Rose (submitted to IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2009).

Optimization of correlated source coding for event-based compression in sensor
networks

Jaspreet Singh, Ankur Sazena, Kenneth Rose and Upamanyu Madhow (submitted
to IEEE Data Compression Conference, 2009).

vil



10.

11.

On distributed quantization in scalable and predictive coding
Ankur Sazena and Kenneth Rose (Proc. Sensor, Signal and Information Process-
ing, May 2008).

Distributed multi-stage coding of correlated sources
Ankur Saxena and Kenneth Rose (IEEE Data Compression Conference, March
2008).

Challenges and recent advances in distributed predictive coding
Ankur Sazxena and Kenneth Rose (Invited Paper) (IEEE Information Theory
Workshop, Sept 2007).

. Distributed predictive coding for spatio-temporally correlated sources

Ankur Sazena and Kenneth Rose (IEEE International Symposium on Information
Theory, June 2007).

A global approach to joint quantizer design for distributed coding of correlated
sources

Ankur Sazena, Jayanth Nayak and Kenneth Rose (IEEE International Conference
on Acoustics, Speech, and Signal Processing, May 2006 ).

On efficient quantizer design for robust distributed source coding
Ankur Sazena, Jayanth Nayak and Kenneth Rose (IEEE Data Compression Con-
ference, March 2006).

viil



Abstract

Distributed coding of spatio-temporally correlated sources

by

Ankur Saxena

This dissertation studies certain problems in distributed coding of correlated
sources. The first problem considers the design of efficient coders in a robust dis-
tributed source coding scenario. Here, the information is encoded at independent
terminals and transmitted across separate channels, any of which may fail. This
scenario subsumes a wide range of source and source-channel coding/quantization
problems, including multiple descriptions and the CEO problem. A global op-
timization algorithm based on deterministic annealing is proposed for the joint
design of all the system components. The proposed approach avoids many poor
local optima, is independent of initialization, and does not make any simplifying

assumption on the underlying source distribution.

The second problem considered is of scalable distributed source coding. This
is the general setting typically encountered in sensor networks. The conditions
of channels between the sensors and the fusion center may be time-varying and
it is often desirable to guarantee a base layer of coarse information during chan-
nel fades. This problem poses new challenges. Multi-stage distributed coding, a
special case of scalable distributed coding, is considered first. The fundamental

conflicts between the objectives of multi-stage coding and distributed quanti-
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zation are identified and an appropriate design strategy is devised to explicitly
control the tradeoffs. The unconstrained scalable distributed coding problem
is considered next. Although standard greedy coder design algorithms can be
generalized to scalable distributed coding, the resulting algorithms depend heav-
ily on initialization. An efficient initialization scheme is devised which employs
a properly designed multi-stage distributed coder. The proposed design tech-
niques for multi-stage and unconstrained scalable distributed coding scenarios
offer substantial gains over naive approaches for multi-stage distributed coding

and randomly initialized scalable distributed coding respectively.

The third problem considered is distributed coding of sources with memory.
This problem poses a number of considerable challenges that threaten the prac-
tical application of distributed coding. Most common sources exhibit temporal
correlations that are as important as inter-source correlations. Motivated by
practical limitations on both complexity and delay, especially for dense sensor
networks, the problem is re-formulated in its fundamental setting of distributed
predictive coding. The most basic tradeoff (and difficulty) is due to the con-
flicts that arise between distributed coding and prediction, wherein ‘standard’
distributed quantization of the prediction errors, if coupled with imposition of
zero decoder drift, drastically compromises the predictor performance and hence
the ability to exploit temporal correlations. Another challenge arises from in-
stabilities in the design of closed loop predictors in distributed coding setting.
These fundamental tradeoffs in distributed predictive coding are identified and a
more general paradigm, is proposed where decoder drift is allowed but explicitly
controlled. The proposed paradigm avoids the pitfalls of naive techniques and

produces an optimized low complexity and low delay coding system.
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Chapter 1

Introduction

Shannon’s seminal work in the middle of the previous century [47] started
the field of information theory. The two main sub-fields of information theory
are source coding and channel coding. Source coding primarily deals with com-
pression of signals by exploiting the redundancies within the source sequence.
Channel coding typically involves the use of error correcting codes to protect the

data during transmission over a noisy channel.

In source coding, the compression can either be lossless or lossy. Lossless
compression is used when exact reconstruction of the sources is required such as
in medical imaging, bank transactions, where all the source bits are important.
Lossy compression is used when some distortion in the source reconstruction
can be tolerated. For example, in practical multimedia compression scenarios
involving speech, audio, video and image signals, lossy compression schemes are

employed to reduce rate at the expense of introducing some distortion.

This dissertation considers lossy compression in the context of distributed



(multi-terminal) source coding, i.e, when multiple sources are communicated via
different channels to a fusion center. An application of distributed source coding
is in sensor networks, where different sensors may be designed to observe various
physical quantities, e.g., temperature, humidity, pressure, light, sound. We may
be interested in efficient reconstruction of one or more physical entities measured
at different, spatially separated locations. A figure with M sensors S1,Ss, ..., Sy
transmitting information to a fusion center is shown in Fig. 1.1. Sensors, in a
sensor network often have stringent power and bandwidth constraints that pre-
clude inter-sensor communication. However, the data communicated by networks
of sensors exhibit a high degree of correlation. Hence the design of encoders at
all sensor locations and decoders at the fusion center should be performed jointly
in order to achieve optimality. Further, the sensor (source) data will exhibit
temporal correlations as well, which may be at least as important as inter-source
correlations. A related issue is that of estimation of a source from another, cor-
related source. For example, if a sensor (or a transmission channel) fails, then to
obtain an estimate of data being (or that would be) measured by the sensor, we
can only utilize information acquired from the other sensors (or channels). This
work targets the objectives of (a) efficiently exploiting both the temporal and
inter-source correlation between sources to obtain the best possible compression
efficiency from independent encoders and (b) achieving system robustness for dif-

ferent source and channel conditions within various distributed coding paradigms.

The dissertation is divided into three main parts. In the first part, introduced
in Sec. 1.1, we propose a global design algorithm based on deterministic annealing
for distributed source coding system. The second part introduced in Sec 1.2 is

concerned with scalable distributed source coding. Here we identify the funda-
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Figure 1.1. A sensor network scenario, where different sensors are transmitting

information to a fusion center

mental conflicts between scalable coding and distributed quantization and devise
strategies for he special case of multi-stage distributed coding, and the general
scalable distributed coding systems. The third part introduced in Sec. 1.3 con-
siders distributed coding of sources with memory. This problem poses numerous
new challenges. We specifically employ predictive coding to exploit the temporal
redundancies and formulate the problem in its fundamental setting of distributed
predictive coding. We identify the fundamental conflicts that arise when dis-
tributed coding is naively combined with predictive coding and devise various

design strategies for the distributed predictive coding scenarios.

1.1 Globally optimal algorithms for distributed

source coding

The data communicated by various sensors (say, monitoring a physical phe-
nomenon such as temperature) in a sensor network typically exhibits a high degree

of correlation. The encoders at each sensor location function independently, but



joint design of various system components is necessary to achieve the highest
compression rate. To achieve the dual objectives of obtaining the best possible
compression efficiency from independent encoders and attaining system robust-
ness (in case of source or channel failure), it is necessary that the code design at
all the terminals be performed jointly for such a robust distributed source coding

system.

The robust distributed source coding model subsumes a variety of source cod-
ing problems ranging from distributed source coding [48, 56|, the CEO problem
2], to multiple description coding [29]. Estimating a source from another corre-
lated source (see e.g., [16, 33]) is another special case of the robust distributed

coding problem.

We focus on source coding methodologies to design a robust distributed coding
system. Greedy design approaches, such as those based on the Lloyd’s algorithm
[26] suffer from the presence of numerous ‘poor’ local minima on the distortion-
cost surface and thus will be critically sensitive to initialization. Clever initial-
ization as proposed, for example, in the context of multiple description scalar
quantizer design [53], can help mitigate this shortcoming. But such initialization
heavily depends on symmetries or simplifying assumptions, and no generaliza-
tions are available to vector quantization nor to more complicated scenarios such
as in robust distributed source coding. Alternatively, a powerful optimization
tool such as deterministic annealing (DA) provides the ability to avoid poor local
optima and is applicable to sources exhibiting any type of statistical dependen-
cies. In Chapter 3, we present a locally optimal Lloyd-based algorithm for robust
distributed coding design as well as the DA based scheme for robust distributed

coding design including the necessary rules for optimality.



1.2 Scalable distributed source coding

The second problem that we consider is that of scalable distributed coding
of correlated sources. The general setting is typically encountered in sensor net-
works. The conditions of communication channels between the sensors and fusion
center may be time-varying and it is often desirable to guarantee a base layer of
coarse information during channel fades. In addition, the desired system should
be robust to various scenarios of channel failure and should utilize all the available

information to attain the best possible compression efficiency.

Our contribution to the problem is twofold. We begin by considering a multi-
stage distributed coding system, a special constrained case of scalable distributed
coding. This problem poses new challenges. We show that mere extensions of dis-
tributed coding ideas to include multi-stage coding yield poor rate-distortion per-
formance, due to underlying conflicts between the objectives of multi-stage and
distributed quantization. An appropriate system paradigm is developed which
allows such tradeoffs to be explicitly controlled within joint optimization of all
the system components. Next, we consider the unconstrained scalable distributed
coding problem. Although a standard Lloyd-like distributed coder design algo-
rithm can be generalized to scalable distributed coding, the resulting algorithm
depends heavily on initialization and will virtually always converge to a poor
local minimum on the cost surface. In Chapter 4, we propose an efficient initial-
ization scheme for such a system, which employs a properly designed multi-stage
distributed coder. We present iterative joint design techniques and derive the
necessary conditions for optimality for both multi-stage and unconstrained scal-

able distributed coding systems. Simulation results show substantial gains for



the proposed multi-stage distributed coding system over single source (separate)
multi-stage coding as well as naive extensions to incorporate scalability in multi-
stage distributed coding system. Further the performance of proposed efficiently
initialized scalable distributed coder is considerably better than randomly initial-

ized scalable distributed coder.

1.3 Distributed coding of correlated sources with

memory

In the third part of the dissertation, we study distributed source coding (DSC)
for sources with memory. In real world applications most sources exhibit tempo-
ral correlations. Examples range from simple sensors monitoring slowly varying
physical quantities such as temperature or pressure, to the extreme of video cam-

eras collecting highly correlated frame sequences.

Realizing the prevalence of sources with memory and the importance of ex-
ploiting both temporal and inter-source correlation, we reformulate the problem
within the representative setting of distributed predictive coding (DPC) systems.
Given the historical focus on inter-source correlations in DSC, most existing DSC
work naturally addressed memoryless sources where one need not worry about
temporal correlations. The implicit assumption may have been that predictive
coding per se is a largely solved problem, and that extending DSC results to
incorporate prediction would require a straightforward integration phase. (An al-
ternative argument may involve handling long blocks of source data, as in vector

quantization to exploit time correlations, but the cost in delay and complexity



may be considerable). We show that the generalization from DSC to DPC is
highly non-trivial due to conflicting objectives of distributed coding versus effi-
cient prediction in DPC. In other words, optimal distributed coding (in terms of
current reconstruction quality) may severely compromise the prediction loop at
each source encoder. We have proposed new DPC system paradigms and methods

to optimize their design in Chapter 5.

Another design difficulty whose origins are in traditional single-source predic-
tive quantizer design [17] is exacerbated in the distributed setting. On the one
hand, open loop design is simple and stable but the quantizer is mismatched with
the true prediction error statistics (as the system eventually operates in closed
loop). On the other hand, if a distributed quantizer is designed in closed loop, the
effects of quantizer modifications are unpredictable as quantization errors are fed
back through the prediction loop and can build up. Hence the procedure is unsta-
ble and may not converge. The effect is greatly exacerbated in the case of DPC.
To circumvent these difficulties, we have used the technique of asymptotic closed
loop (ACL) design [19, 20] which we re-derive for DPC system design. Within
the DPC-ACL framework, the design is effectively in open loop within iterations
(eliminating issues of error buildup through the prediction loop), while ensur-
ing that asymptotically, the prediction error statistics converge to closed loop

statistics. In other words, the prediction loop is essentially closed asymptotically.

In Chapter 5, we derive an overall design optimization method for distributed
predictive coding that avoids the pitfalls of naive distributed predictive quanti-
zation and produces an optimized low complexity and low delay coding system.
The proposed iterative algorithms for distributed predictive coding subsume tra-

ditional single-source predictive coding and memoryless distributed coding as



extreme special cases.



Chapter 2

Preliminaries and Background

In this chapter, we first explain the functioning of a vector quantizer (VQ),
provide background for distributed source coding, and introduce the main build-

ing blocks for the simplest quantization-based distributed source coding system.

2.1 Vector quantizer

In most lossy compression applications, the source is quantized or discretized
to a reduced number of reconstruction values. This operation is performed by
a quantizer (see Fig. 2.1). The earliest design method of a scalar quantizer is
due to Lloyd in an unpublished paper in 1957 (later published as [26] in 1982)
and Max in 1960, [27]. The vector quantizer is a straightforward extension of
the scalar quantizer and the corresponding design method called the Generalized
Lloyd Algorithm (GLA) was presented by Linde, Buzo and Gray in 1980 [24],

although it has earlier roots in both compression and pattern recognition. In
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Figure 2.1. Schematic of a vector quantizer

clustering, the k-means algorithm closely resembles the GLA algorithm for VQ
design. In general, the VQ design problem is NP-hard and all the afore mentioned
algorithms try to find a good locally optimal solution. In addition, annealing-
based algorithms inspired from concepts in statistical physics, which try to find

the global optimum have also been proposed for VQ design in [21],[36],[37].

Fig. 2.1 shows the simplest VQ implementation which subsumes the scalar
quantizer as special case. VQ consists of two modules, an encoder and a decoder.
Source signal X is input to a source encoder £. The encoder output is an index
i = £(X) which takes one of the values from the set {1../}. The decoder module
takes the index 7 as input and outputs an approximation X = D(i) for the source.
Possible reconstruction values X are called the codevectors, and the set of all
codevectors is called the codebook. It is desired that the source reconstruction
X closely resembles the original source X within a fidelity criterion, given by the

following expected distortion cost:

D = LEl(x, X)) (2.1)

n

for a given rate of the VQ given by:
1
R=—log, I (2.2)
n

bits per source sample. Here d(-, -) is an appropriately defined distortion measure
and n is the vector dimension. In most applications, the distortion measure d(-, -)

is assumed to be mean squared error (MSE) primarily because of its analytic
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simplicity and its interpretation as the energy of the error signal. Numerous
other distortion measures are used in the compression literature, see e.g., [12] in
which various quality measures for gray-scale image compression and the resulting

performance is presented.

VQ is, in fact, a generalization of almost all compression schemes, such as
predictive coding, transform coding etc. For sources with memory, VQ’s perfor-
mance is better than that of scalar quantizers, since VQ can exploit the corre-
lations between source samples. Even for a memoryless i.i.d. source, VQ can
perform better than scalar quantizers since a better covering can be devised for
a higher dimensional space (e.g., hexagonal partition in 2-d space is better than

the rectangular covering induced by scalar quantizer ([17], Chp. 11, Page 347)).

As mentioned above, the objective of the VQ is to minimize the expected
distortion E[d(X, X )] for a given input distribution for source X via efficient
design of the encoder and decoder modules under prescribed rate constraints.
However, the optimal V(Q design problem is NP-hard and a closed form solution
is not available. Typical design procedures alternate between encoder and decoder
module design. Next we outline the necessary conditions for optimality of a VQ

system, followed by a sketch of the GLA algorithm for fixed-rate V@ design.

2.1.1 Necessary conditions for optimality

The necessary condition for optimal encoding is: a data point x gets mapped

to index ¢ and is reconstructed by z; if
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Figure 2.2. Voronoi regions induced by a 2-d VQ for squared error distortion

measure.

The points  which map to index ¢ will form a region R; = {x : d(z,2;) <
d(z,2;)}. The regions R; are disjoint and cover the entire source space, i.e., if X

is a n-dimension vector in R", then:
R =R" and R/ \R;=¢ V{ije{l.I},i#j} (2.4)

Further, for squared-error distortion measure, the regions R; are convex (these
regions are also called Voronoi regions). An example of a VQ of dimension 2 with

6 partitions is shown in Fig. 2.2.

The necessary condition for an optimal decoder is: choose ; such that
Z; = argmin F[d(X,y)|X € R;]. (2.5)
Yy

The reconstruction vector z; is the centroid of the cell R;. For the case of the

squared-error distortion measure, the above decoder rule simplifies to:

In the example shown in Fig.2.2, the black dots represent the centroid of the

different regions.
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2.1.2 The generalized Lloyd design algorithm

The GLA algorithm consists of finding an optimal encoder (for a given de-
coder) and an optimal decoder (for a given encoder). With the aforementioned
necessary conditions for optimality, the GLA can be concisely described by the

following steps:

1. Initialization: For a training set for source X, choose an initial codebook

of size I.

2. Encoder Update: Assign all source points X to codevectors using (2.5).

This will update the partitions R;.

3. Decoder codebook update: Use the centroid rule in (2.6) to update the

codebook entries.

4. Evaluate the distortion with the resulting partition and codebooks. If the

distortion has not reduced significantly, stop. Otherwise go to step 2

The design algorithm is iterative and involves updating encoder partitions
and decoder codebooks via steps 2 and 3. Both these steps result in a monotone
non-increasing distortion cost. Since the number of source points in the training
set is finite, the algorithm is guaranteed to converge to a local minimum on the
distortion cost surface in a finite number of steps. The performance of the GLA
algorithm is dependent on the initialization of the initial codebook. There have
been numerous clever initialization schemes in the context of vector quantizer
design which lead to good algorithm performance. More details can be found in

[17], Chapter 11. Note that in GLA, the data points are attached to a codevector
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with probability 0 and 1. In addition to GLA, there are various annealing based
algorithms (see e.g.,[21],[37]) for VQ design, inspired from concepts in statistical
physics. These annealing-based algorithms try to avoid poor local optima on the
distortion cost surface and lead to a much better solution than GLA for VQ de-
sign. We will describe a deterministic annealing algorithm for robust distributed

source coding later in Chapter 3.

2.2 Distributed source coding

2.2.1 Background

The basic setting in DSC (see Fig. 2.3) involves multiple correlated sources
(e.g., data collected by a number of spatially distributed sensors) which need to be
transmitted from different locations to a central data collection unit. Generally,
the sensors have limited processing power and there are stringent bandwidth
constraints on transmission channels from sensors to the fusion center. The main
objective of DSC is to exploit inter-source (e.g., spatial) correlations despite the
fact that each sensor source is encoded without access to other sources. The only
information available to a source encoder about other sources involves their joint

statistics (e.g., extracted from training set data).

The theoretical foundation of the field of DSC was laid in the early seventies
with the seminal work of Slepian and Wolf [48]. They showed, in the context
of lossless coding, that side-information available only at the decoder can never-
theless be fully exploited as if it were available to the encoder, in the sense that

there is no asymptotic performance loss. Specifically, if (X,Y’) represent a pair
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of correlated random variables, the minimum compression rate Rx of X with YV
as side information available at the decoder is Ry > H(X|Y') where H(X|Y') de-
notes the conditional entropy of X given Y [7] (Similarly H(X), H(Y") denote the
entropy of sources X and Y respectively. H(X,Y') denotes the joint entropy of
X and Y). In a distributed compression setting with two sources, the achievable

rate region is expressed as

Rx+ Ry > H(X,Y) (2.7)
Rx = H(X]Y) (2.8)
Ry > H(Y|X) (2.9)

Later, Wyner and Ziv [56] extended the result to bound the performance of lossy
coding with decoder side information. Flynn and Gray in [14] considered the
case of estimating a source from its noisy versions as observed by the sensors and
derived (a) the achievable communication rates and distortion when the source
encoders have unlimited complexity, from the information theoretic viewpoint
and (b) proposed an algorithm when the encoders have limited complexity (ob-

servations are quantized).

In the late nineties, constructive and practical code design techniques for
distributed coding using source and channel coding principles were proposed,
notably by Pradhan and Ramchandran in their DISCUS approach [32]. The
field has eventually seen the emergence of various distributed coding techniques,

mostly with an eye towards sensor networks (see e.g.,[30, 31, 57]).

Existing DSC research can be roughly categorized into two “camps”, one
adopting ideas from channel coding (see e.g., [28, 55]), some of which exploit

long delays to achieve good performance, (e.g. using turbo/LDPC like codes, see
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[15, 25]), and another building directly on source coding methodologies. From
the source coding perspective, algorithms for distributed vector quantizer design
have been proposed in [3, 13, 34] with major or exclusive focus on memoryless
sources. An interesting recent approach for distributed compressive sensing has
been proposed in [1, 10]. It builds on the principles of standard compressive sens-
ing [9] and exploits the joint sparsity of the signals for efficient compression. In
this dissertation, the main focus is on source coding methodologies for distributed

coding.

2.2.2 Distributed source coder

The simplest distributed source coding scenario is shown in Fig. 2.3. For
brevity, we will restrict the analysis to the case of two sources, but the model
can be extended in a straightforward fashion to an arbitrary number of sources.
Here (X,Y) is a pair of continuous-valued, i.i.d., correlated (scalar or vector)
sources which are independently compressed at rates Ry and R, bits per sample,
respectively. The encoded indices ¢ and j are transmitted over two separate
channels. The end-user reconstructs the sources as (X and Y) respectively. The

objective in the is to minimize the overall distortion:

A

E{ad(X,X) + (1 —a)d(Y,Y)} (2.10)

given rate allocations of R; and Ry. Here d(-,) is an appropriately defined
distortion measure and « € [0, 1] governs the relative importance of the sources

X and Y at decoder.

The design of a distributed vector quantizer consists of designing source en-

coders for X and Y and a joint decoder for the sources at the fusion center. Note
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Figure 2.3. Distributed coding of two correlated sources

that since X and Y are correlated, the designed system should exploit source
correlations to attain the best possible compression efficiency. Design strategies
and techniques to exploit the spatial correlation between the sources and tempo-
ral correlation within the sources for various distributed coding paradigms will

be the focus of the next three chapters.

2.3 Summary

This chapter describes the necessary conditions for optimality and modules
of a VQ as well as the Generalized Lloyd Algorithm for VQ design. We also
provided some history and background for distributed source coding and the

setup of simplest distributed source coder in this chapter.
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Chapter 3

Global optimization for

distributed source coding

In this chapter, we discuss the design of efficient quantizers for a robust dis-
tributed source coding system (see Fig. 3.1). The information is encoded at
independent terminals and transmitted across separate channels, any of which
may fail. The scenario subsumes a wide range of source and source-channel cod-
ing /quantization problems, including multiple descriptions and distributed source
coding. We show that greedy descent methods depend heavily on initialization,
and the presence of abundant (high density of) ‘poor’ local optima on the cost
surface strongly motivates the use of a global design algorithm. We then propose
a deterministic annealing approach for the design of all components of a generic
robust distributed source coding system. Our approach avoids many poor lo-
cal optima, is independent of initialization, and does not make any simplifying

assumption on the underlying source distribution.
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Figure 3.1. Block diagram for robust distributed source coding

3.1 Robust distributed source coding

The robust distributed source coding model (see Fig. 3.1) was first proposed
and studied in [18] and later in [5] and [6]. As pointed out in [6], the model
subsumes a variety of source coding problems ranging from distributed source
coding [48, 56], the CEO problem [2], to multiple description coding. Estimating
a source from another correlated source (see e.g. [16, 33]) is another special case of
the robust distributed coding problem. A good design for the robust distributed
coding system should be able to take into account the correlation between the

sources as well as the possibility of a component failure.

3.1.1 Design challenges and the need for global optimiza-

tion techniques

Constructive and practical code design techniques for distributed coding us-
ing source and channel coding principles were proposed, e.g., by Pradhan and

Ramchandran in [32]. The channel coding approaches (see Sec. 2.2.1) can con-
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ceivably be leveraged to address robust distributed vector quantizer (RDVQ)
design. However, current channel coding approaches appear most suitable when
the sources can be modeled as noisy versions of each other, where the noise is
unimodal in nature. Such approaches are of limited use wherever the simplifying
assumptions do not apply. An illustrative example is when, say, temperature and
humidity are drawn from a mixture of joint Gaussian densities, where the mix-
ture components are due to varying underlying conditions such as the time of day,
pressure, etc. On the other hand, approaches based on the Lloyd’s algorithm [26]
to design RDVQ will suffer from the presence of numerous ‘poor’ local minima
on the distortion-cost surface and thus will be critically sensitive to initializa-
tion. Clever initialization as proposed, for example, in the context of multiple
description scalar quantizer design [53], can help mitigate this shortcoming. But
such initialization heavily depends on symmetries or simplifying assumptions,
and no generalizations are available to vector quantization nor to more compli-
cated scenarios such as RDVQ. Alternatively, a powerful optimization tool such
as DA provides the ability to avoid poor local optima and is applicable to sources

exhibiting any type of statistical dependencies.

In [23], it has been shown that a DA based approach offers considerable gains
over extensions of Lloyd like iterative algorithm and various schemes employing
heuristic initialization for the case of generic multiple description vector quantizer
design. Numerous other applications where deterministic annealing outperforms
greedy iterative algorithms can be found in a tutorial paper [37] and references
therein. In this chapter, an iterative greedy algorithm for RDV(Q design is first
described which will underline the need for a global optimization approach. We

then derive and propose a DA approach for optimal RDVQ design.
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Figure 3.2. Breakup of encoder in robust distributed source coding

3.2 The RDVQ problem and iterative greedy

methods

3.2.1 Problem statement and design considerations

Consider the robust distributed source coding scenario in Fig. 3.1. For brevity,
we will restrict the analysis to the case of two sources, but the model can be ex-
tended in a straightforward fashion to an arbitrary number of sources. Here
(X,Y) is a pair of continuous-valued, i.i.d., correlated (scalar or vector) sources
which are independently compressed at rates R and R, bits per sample, respec-
tively. The encoded indices ¢ and j are transmitted over two separate channels,
which may or may not be in working order, and the channel condition is not
known at the encoders. The end-user tries to obtain the best estimate of the
sources depending on the descriptions received from the functioning channels.
Let (X°,Y0) denote the reconstruction values for sources (X,Y) which are pro-

duced by the central decoder Dy, i.e., when information is available from both
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channels. If only channel 1 (or 2) is working, then side decoder D; (or Dy) is used
to reconstruct (X', Y1) (or (X2,Y?2)). The objective of the robust distributed
vector quantizer (RDVQ) is to minimize the following overall distortion function

given rate allocations of R; and Ry:

Drpvg = E{Xo[aod(X, X°) + (1 — ao)d(Y,Y?)] +
Mond(X, XY + (1 — ay)d(Y, Y1)

Fhofad(X, X2) 4+ (1 — an)d(Y, Y?)]} (3.1)

where d(-,-) is an appropriately defined distortion measure and «,, € [0,1] {n =
0, 1,2} governs the relative importance of the sources X and Y at decoder n. The
first two terms in the RDVQ cost of (3.1) contribute to the central distortion
when both the channels work. Similarly, the remaining terms correspond to
the distortions for side decoders 1 and 2, when only one channel is in working
condition. The central distortion is weighted by Ay while the side distortions
are weighted by A; and Ay, whose specific values depend on the importance we
wish to give to the side distortions as compared to the central distortion. In a
practical system, \g, A\ and A\, will often be determined by the channel failure

probabilities.

The RDVQ problem comprises the design of mappings from the sources X and
Y to indices at the respective encoders and of the corresponding reconstruction
values at the three decoders. To minimize the overall distortion for given trans-
mission rates, the correlation between the sources must be exploited. This may
be done by sending the same index for many, possibly non-contiguous regions of
the source alphabet on a channel and then using the information from the other

source to distinguish between index-sharing regions. In the case that only one
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channel is functioning, the RDV(Q problem reduces to estimating a signal from
another correlated source. On the other hand, if both the channels work and the
central decoder is used, the problem reduces to that of correlated source coding.
Locally optimal quantizer design techniques for general networks (which encom-
pass the RDVQ model as well) and correlated source coding have been proposed
in the literature in [13] and [3, 34|, respectively. We next adopt this framework
and describe a locally optimal algorithm using multiple-prototypes (MP) for the
design of a generic RDVQ system. The MP approach can be viewed as combin-
ing histogram or kernel based techniques for source distribution estimation and

quantizer design.

Specifically, we have a training set 7 which consists of N data pairs for
(possibly scalar or vector) correlated sources (X,Y). Each source is assumed to
be i.i.d. We design a high-rate vector quantizer ); for X using a standard VQ
design algorithm such as Lloyd’s algorithm [26] or DA [37]. @ assigns training
set data points to one of the K regions, Ci. The disjoint Voronoi regions C}
span the source space and a prototype x; is associated with each of them. Next,
each Voronoi region is mapped to one of the Z = {1, .., I'} indices, via a mapping
v(k) = i, to which we refer as Wyner-Ziv (WZ) mapping (the name loosely
accounts for the fact that the scenario involves lossy coding with side information
whose asymptotic performance bound was given in [56]). The index i is then
transmitted across the channel. An example of WZ mapping for a scalar source
X with =7 and Z = 3, is given in Fig. 3.3. The region associated with index
i is denoted R} = Uy, 4)=i Ci-

We similarly define quantizer )2, regions C7, R]'y- and prototypes y; in the YV

domain. Here, the £ Voronoi regions are mapped to J indices via WZ mapping
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Figure 3.3. An example of Wyner-Ziv mapping from prototypes (Voronoi regions)

to indices.

w(l) = j. At the central decoder, we receive indices in Z x J, and generate
reconstruction values 7; and gy; (where 27, € X9, (i,7) € T x J etc.) . At the
side decoder 1 (or 2), the received index is in Z (J), and reconstruction values
are &} (%) and g (97). Note that we use uppercase letters for a random variable

and lowercase letters to denote their particular realization.

The distortion for a data pair (z,y) and corresponding index pair (i,7) is

given by:

Daer(, 4,1, ) = Xoovod(x, 27;) + Mand(z, &) + Apod(x, 23) +

Ao(1 — ap)d(y, 33?]) + (1 = a)d(y, 5;) + Ao(1 — az)d(y, 1332) (3.2)

The net distortion in (3.1) which we seek to minimize simply averages the
distortion from all the source data points. In the next sub-section, we outline an
iterative greedy strategy for the design of a RDV(Q system. The design strategy
is based on the multiple prototype framework and is similar in spirit with the
algorithms presented in [3],[13] and [34] for various versions of correlated source

coding.

3.2.2 Greedy iterative design strategy

The high-rate quantizers )1 and )5 for X and Y may be designed using a

standard quantizer design algorithm such as Lloyd’s algorithm [26] or DA [37]
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(to minimize the distortion between the source and the prototypes). Note that
the actual objective is to minimize the distortion between the sources and their
reconstruction values and the primary task of the high rate quantizers is to dis-
cretize the source. As long as the output rate of these quantizers is sufficiently
high (in comparison to the transmitted rate), the performance loss due to such
discretization will be marginal. Although the output of the high rate quantizer is
not directly transmitted over the channel, large number of prototypes can incur
a significant overhead in terms of the processing and storage complexity of the
encoder. This limits the allowable rate of these quantizers in practice. In such
circumstances, careful design of the quantizer modules will be critical for the
overall system performance. A design strategy for the case of limited encoder-
storage/processing complexity where the quantizer modules are optimized for the

distributed source coding scenario was presented in [39].

We focus on the setting where storage at the encoders is not a critical issue,
and the quantizer modules )7 and )5 may simply have high rate. Given fixed ¢,
and Qs (see Fig. 3.2), the WZ mappings v and w, as well as the reconstruction
values at various decoders can be optimized iteratively by using a Lloyd-like

iterative algorithm. The equations for updating the various entities are as follows:

1. WZ Mapping for X: For k =1,...,K, assign k to index i, such that:

(k) =i=argmin Y Dyu(z,y,i',j). (3.3)
' (z,y)€T;
zeCf

2. WZ Mapping for Y: For [ =1,..., L, assign [ to index 7, such that:

w(l) =j=argmin Y Dye(,y,i, 7). (3.4)
7 (@yer;
yecy
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3. Reconstruction Values for X: Foralli=1,...,Zand j=1,...,7, find

igj, #} and 3?7]2 such that:

~0 o .
&j; = argmin Z d(z, ap), (3.5)
(x,y)€T;x€R?,
yeR]y.
#; = argmin Z d(x,ay), (3.6)

ai
(x,y)€T;x€R?

= argmin Z d(x,as). (3.7)

az
(z.y)eTWER]

=
<L

The corresponding update equations for the reconstruction values of Y have not

been reproduced here, but can be trivially obtained by symmetry.

At this point, we re-emphasize that it is the WZ module that exploits the
correlation between the quantized versions of source. The above technique opti-
mizes the WZ mappings from prototypes to indices for X and Y, and the final
reconstruction values at the various decoders in an iterative manner. We will thus
refer to the above design algorithm as the Lloyd Approach (LA). LA inherits from
the original Lloyd’s algorithm the inter-related shortcomings of getting trapped
in poor local minima, and dependence on initialization. The sub-optimality of
LA will be observed experimentally in the results section. These issues call for
the use of a global optimization scheme, such as DA. We next present the DA

algorithm and the necessary conditions for optimality in RDV(Q design.

3.3 The deterministic annealing approach

Deterministic annealing (DA) is motivated by the process of annealing in sta-

tistical physics but is founded on principles of information theory. It is indepen-
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dent of the initialization, does not assume any knowledge about the underlying
source distribution and avoids many poor local minima of the distortion-cost sur-
face [37]. In DA, a probabilistic framework is introduced via random encoding
where each training sample of the input source is assigned to a reproduction value
wn probability. The optimization problem is recast as minimization of the expected
distortion subject to a constraint on the level of randomness as measured by the
Shannon entropy of the system. The Lagrangian functional can be viewed as
the free energy of a corresponding physical system and the Lagrangian param-
eter as the ‘temperature’. The minimization is started at a high temperature
(highly random encoder) where, in fact the entropy is maximized and hence all
reproduction points are at the centroid of the source distribution. The minimum
is then tracked at successively lower temperatures (lower levels of entropy), by
re-calculating the optimum locations of the reproduction points and the encod-
ing probabilities at each stage. As the temperature approaches zero, the average
distortion term dominates the Lagrangian cost and a hard (non-random) encoder
is obtained. More detailed derivation and the principle underlying DA can be
found in [37].

3.3.1 Derivation for RDVQ setup

Given the RDVQ setup, we separately design quantizers (); and ()5 for the
two sources using DA [37]. As mentioned earlier in Sec. 3.2.2, the rationale for
this separate design is that as long as the number of prototypes per index is
large, the correlation between the quantized versions of the sources can be fully

exploited within the WZ mapping modules of the encoders. This means that
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efficient WZ mappings from prototypes to indices is crucial for the overall system
performance. The DA approach for RDVQ optimizes these mappings and the
reconstruction values jointly, is independent of the initialization, and converges

to a considerably better minimum.

The high-rate quantizer )1 for source X assigns each data point in the training
set for source X to a prototype x,. We define binary variables that specify the

deterministic quantizer rule:

if —k
Chln = b ifG) (3.8)

0 otherwise.

The random WZ mapping is specified by the probability variables r;, = Pr[i|k] =
Pr[x), € RY], i.e., the probability that the k' prototype z;, falls in the (random)
cell R?. The effective probability that a point x belongs to the random cell R?
is thus given by:

i = Prlz € R?] = kack‘x (3.9)
Similarly in the ¥ domain, we define:

" _
Cly = e = (3.10)

0 otherwise,

i = Pr[j|l] = Prly, € RY] and pj, = Prly € RY] = >, 7;ucyyy- Note that

=1 and » ap=1 (3.11)

k l

since a data point is associated with only one prototype.

The probabilistic equivalent of the net distortion function Dgpyg in (3.1)
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which we seek to minimize is:

b= Z Zpuxpﬂy net (2, Y, 4, j) (3.12)

ZIH ZIH

Z Z Ck|:pCl\y7"z|k7";|anet($ Y,i,7) (3.13)

z,y)€T klij
subject to a constraint on the joint entropy H of the system. Here N is the
number of data points in the training set. This is equivalent to the following
Lagrangian minimization:
min {L=D-TH} (3.14)
U RGNV IRCH R USREA R,

where the “temperature” T plays the role of Lagrange parameter.

The joint entropy of the system is H = H(X,Y,K,L,I,J) = H(X,Y) +
H(K,I|X)+ H(L,J|Y), since by construction, the source variables X and Y/,
prototypes K and L and the transmitted indices I and J form a Markov chain:
J—L-Y —-X—K-—1. Also, H(X,Y) is the source entropy and is unchanged
by the encoding decisions for a given training set. The solution will therefore
depend on the conditional entropy terms H (K, |X) and H(L,J|Y). H(K,I|X)
is given by:

—1
H(K, [|X) - Z Z Cl|z T4k IOg Ck|xT1|k)

(xy VET ki

- _Wl > cupriplog(ri) (3.15)

(x,y)eT kyi
using the fact that cg, in (3.8) can take values 0 and 1 only. Here the base of

logarithm is 2. Similarly H(L, J|Y) is given by:

H(L,J|Y) = _Wl Z ch|y7“j|llog(rj|l). (3.16)

(z,y)€T 1j
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Next we derive the necessary conditions for minimizing the Lagrangian cost

in (3.14).

3.3.2 Update Equations for RDVQ Design

At a fixed temperature 7', the objective function in (3.14) is convex in terms

of the probabilities r;, and r;;. The optimal expressions for r;;, and r;; are given

by:

—Dy;/T —Dy;/T

e

Z o~ Drit /T

1;/

e

Z e—Dlj//T7

5/

J

Tije = and 1 = (3.17)

where

Dy = E[Dpet(X,Y, 4, J)|X € CF] and Dy = E[Dn(X,Y, 1, 7)Y € CY].

(3.18)
The distortion term Dy; can be interpreted as the average distortion for the data
points which belong to the k* prototype region (for source X) and are being
mapped to the 7" transmitted index. The encoding probability 7, follows a
Gibbs distribution. At a particular temperature T, the k* prototype region will
be most associated with the i** index for which the average distortion Dy; is
minimum ( for a fixed %, 7y, will be maximum for the it" index when Dy; <
Dy, Vi’ # i). Note that the k" prototype region is still associated with the other
indices but at lower probabilities. However, at the limit 7" — 0, these association

probabilities become either 1 or 0 and a hard mapping rule is obtained.

We next give the expressions for the reconstruction values in the case of the

squared-error distortion measure. The general approach is clearly not restricted
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to this choice of distortion measure.

i), = E[X|X € R,Y € RY], &l =FE[X|X € R!], & =E[X|Y € RY.(3.19)

J K3

These update rules are relatives of the standard centroid rule and are simply
weighed by the various association probabilities. Also note that side decoder 2
does not have access to X and the reconstruction of X is done solely based on
the information received from source Y. By the symmetry in the problem, the

decoding rules for Y can be trivially obtained, and will not be reproduced here.

At a fixed temperature T, the free energy in (3.14) is minimized using the

following two steps:

1. fix the reconstruction values in (3.19) to compute the encoding probabilities

using (3.17);

2. fix the encoding probabilities and optimize the reconstruction values using

(3.19).

Both the above steps are monotone non-increasing in the cost. At the limit of

zero temperature, the algorithm will reduce to the locally optimal algorithm for

RDVQ design described in Sec. 3.2.2.

In the annealing process, we begin at a high temperature and track the op-
timum at successively lower temperatures. At high temperature, all the repro-
duction points are at the centroid of the source distribution and a prototype
is associated with all the indices with equal probability. More specifically, at
high temperature minimizing the Lagrangian L implies maximizing the entropy
H. This is achieved by assigning all the reproduction points to the centroid of

source distribution (which results in maximum randomness and hence maximum
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entropy) and thus the global minimum is achieved at high temperature. As the
temperature is lowered !, a bifurcation point is reached, where the existing so-
lution is no longer an “attractor” solution, in the sense that small perturbation
may trigger the discovery of a new solution where reproduction points are now
grouped into two or more subsets. Intuitively, at this particular temperature the
original system configuration (which was a minimum at higher temperatures) be-
comes a saddle point. To minimize the Lagrangian cost, it is therefore beneficial
to move to a newer minimum by slightly perturbing the reproduction points. We
refer to this process of bifurcation as the first phase transition in analogy to sta-
tistical physics. The corresponding temperature is called “critical temperature”.
The subsets of reconstruction points further bifurcate at lower temperatures and
each bifurcation can be considered as a phase transition that occurs at the cor-
responding critical temperature. The expression for the critical temperature for
the first phase transition is derived in Appendix A. This generalizes the criti-
cal temperature results for the cases of (a) multiple-description vector quantizer

([23]) and for (b) single-source vector quantizer ([37]).

While the method is motivated by the ability of annealing procedures in
physics/chemistry to find the global minimum (or ground state), it is not a
stochastic procedure, such as “simulated annealing” [21]. The costly compu-
tation involved in simulating the random evolution of the system is replaced by
minimization of an expected functional, namely the free energy. This is, in fact,

a deterministic procedure.

In our simulations, we used the exponential cooling schedule T « 6T, 8 < 1.
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3.4 Simulation results

We give examples for various settings in a RDV(Q system to demonstrate the
gains of the deterministic annealing approach over the iterative greedy method
described in Sec. 3.2.2. The greedy method is referred as LA since it inherits
the inter-related shortcomings of getting trapped in poor local minima and de-
pendence on initialization similar to the original Lloyd’s algorithm [26] and its
vector extension [24] for quantizer design. The first two examples are for a RDVQ
setting and the last two examples are for distributed vector quantizer (when both
the channels function with probability 1). To avoid any potential fairness issues,
we decided to design the high-rate quantizers ), and ()5 using DA for both com-
peting approaches. This design could obviously have been done using Lloyd’s
algorithm for the LA contender, but we prefer to eliminate concerns regarding
poor minima in the quantizer design. The focus here is on Wyner-Ziv mappings
optimization (and reconstruction values) given fixed high-resolution quantizers.
In all the simulations, the LA algorithm was run 20 times with different initial-
izations while DA was run only once (DA is independent of initialization). The

training set consisted of 4000 samples while the test set had size 40000.

In the first three examples, X and Y are assumed to be drawn from a jointly
Gaussian source with zero means, unit variances and correlation coefficient 0.9.
In the first two examples, a scalar RDVQ is designed. For the first case, the dis-
tortion weighting parameters \; and Ay for the side decoders are both set to 0.01
while Ag is set to 1. The rates R; and Rs are 3 and 4 bits per source sample (bps)
while the number of prototypes for X and Y are 64 and 128, respectively. The

source weight parameters are ag = 0.5, 3 = 1 and ay = 0 i.e., each side decoder
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reconstructs its corresponding source; decoder 1 reconstructs X and decoder 2
reconstructs Y, while at the central decoder both the sources are reconstructed
with equal importance. The results depicting optimization performance on the
training set are shown in Fig. 3.4. Here DA outperforms the best solution ob-
tained by LA by ~1.3 dB. The difference between the best and worst distortions
of LA is ~2.9 dB, which illustrates the fact that greedy methods are heavily de-
pendent on initialization and are highly likely to get trapped in a local minimum.
For the test set, the net distortion obtained by the best LA (by best we mean the
initialization which led to the best training set data performance) versus single

run DA was -15.18 and -15.95 dB (gain of 0.77 dB), respectively .

In the second example, the distortion weighting parameters Ao, A\; and As
are set to be 1, 0.005 and 0.01 while the rates R; and Ry are 2 and 3 bps
respectively. The number of prototypes for both X and Y is 64. The source
weight parameters are oy = a3 = ay = 0.5 to give equal importance to each
source at all the decoders. The results are shown in Fig. 3.5. The net distortion
obtained for the test set for best LA versus single run DA was -12.06 and -13.08

dB (gain of 1.02 dB), respectively.

A distributed quantizer of dimension 2 is designed in the next example (i.e.,
Ao = 1 and A\; = Ay = 0, implying that both the channels function and only the
central decoder is used at the receiver). Both the sources are transmitted at rates
2 bps and given equal importance (i.e., ag = 0.5). The simulation result is given
in Fig. 3.6. The distortion achieved by DA and best run LA approach are -12.75
and -10.85 dB respectively. The theoretically achievable (asymptotic) distortion

at the corresponding rates and correlation coefficients as promised in [54] is -15.61
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Figure 3.4. Comparison between LA and DA approaches for Ry =3, Ry =4, K
=064, L=128, ag = 0.5, a1 = 1, as = 0, A\g =1, Ay = A3 = 0.01. Net distortion
from DA is -16.98 dB while LA gives best and worst distortion as -15.69 and
-12.77 dB, respectively. For ease of comparison, a line along which constant D,

= -16.98 dB is drawn.

dB.2 Here the DA approach is roughly 2.86 dB away from the asymptotic bound
of the distortion and the greedy LA approach is a further 1.9 dB away. Note that
the distortion from the LA and DA approaches can be further reduced if entropy

coding is employed or the dimension of the quantizers is increased.

In the next example (see Fig. 3.7)), X and Y are drawn from a mixture of four
joint Gaussians. Such a situation can arise, for example, when sources correspond
to the temperature and humidity readings and the different mixture components

are due to varying underlying conditions such as the time of day, pressure, etc.

2To calculate the distortion bounds from [54], we have assumed that the individual source
distortions will be approximately the same and hence equal to the average distortion, since
both the sources have similar statistics, are encoded at the same rate, and are given equal
importance at the decoder.
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Figure 3.5. Comparison between LA and DA approaches for Ry = 2, Ry = 3, K
= L = 64, ag=a1=as= 0.5, \y =1, Ay = 0.005 , Ay = 0.01. Net distortion from
DA is -13.44 dB while LA gives best and worst distortion as -12.18 and -10.54 dB,
respectively. For ease of comparison, a line along which constant D,,.; = -13.44

dB is drawn.

Here A\ = Ay = 0, ap = 0.5 and the source rates are 3 bps. In our simulations,
the mixtures components are assumed to be equiprobable. The means for X,
Y and correlation coefficients for the four components are taken as {0, 0, 0.87},
{1, 0.5, 0.9}, {-1, 1, -0.92} and {2, -1, -0.95} respectively. The variance of X
and Y in all the components of the mixture was taken to be 1. The distortion
values achieved by DA and from the best and worst LA algorithm are —13.59,
—12.74 and —9.87 dB (DA gains 0.85 dB and 3.72 dB over best and worst LA) |

respectively.

The next simulation result (see Fig. 3.8), depicts the variation in weighted

distortion for the LA (best of 20 runs) and DA approaches for a scalar RDVQ
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Figure 3.6. Comparison between LA and DA approaches for a distributed vector
quantizer of dimension 2. R; = Ry = 2, K = L = 128, oy = 0.5, g =1,
A1 = Ay = 0. Net distortion from DA is -12.75 dB while LA gives best and
worst distortion as -10.85 and -10.01 dB, respectively. For ease of comparison, a
line along which constant D, = -12.75 dB is drawn. Achievable distortion as

promised in [54] is -15.61 dB.

system with the number of prototypes for the sources. Here \g = 1, \; =
Ao = 0.01 and a9y = a3 = as = 0.5 and the source rates R, and R, are kept
fixed at 3 bps. As the number of prototypes is increased, the WZ mappings
can possibly combine more non-contiguous regions together and utilize the inter-
source correlation more efficiently. Note that even for large number of prototypes
the greedy LA approach underperforms the DA approach, justifying the use of
a global optimization tool for a robust distributed quantizer design. Also, after
a point increasing the number of prototypes does not lead to reduction in the

distortion cost. This implies that only sufficiently large number of prototypes (in
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Figure 3.7. Comparison between LA and DA approaches for a distributed vector
quantizer for sources coming from a gaussian mixture model. Ry = Ry = 3 |
K =L=064 ag = 0.5, \g =1, Ay = Xy = 0. Net distortion from DA is -13.59
dB while LA gives best and worst distortion as -12.74 and -9.87 dB, respectively.

For ease of comparison, a line along which constant D,,.; = -13.59 dB is drawn.

comparison to the transmitted indices) are required for achieving a good system

performance.

Finally a note on system complexity. The design complexity of DA-based
algorithm is higher than that of the LA approach. In our simulations, the DA
approach took on an average 20-25 times longer time than for a single run of LA
approach. The run time of the DA algorithm can be further reduced by simple
schemes outlined in [37]. For completeness, we just outline a simple procedure to
accelerate the DA algorithm. In DA, almost all the interesting activity happens
near the phase transitions, when the codevectors split and move to different lo-

cations to minimize the cost. In between the phase transitions, the codevectors
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remain at the same locations and the changes in distortion cost are insignificant.
Thus, the cooling between phase transitions can be done in a rapid fashion with-
out actually compromising the algorithm performance. We have not pursued the
above idea for accelerating the DA approach in between the phase transitions in
this work and have used the simple exponential cooling schedule for DA. Further,
instead of starting from a high temperature, DA algorithm can be initialized from
a temperature slightly above the critical temperature for first phase transition,
since above this temperature there is only one global minimum on the cost sur-
face (see the result for critical temperature for first phase transition in Appendix).
Note that the design complexity of DA is a one time cost only. During operation
hard quantizers are used and both the DA and LA approaches have the same

operational complexity.
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Figure 3.8. Comparison between LA and DA approaches when the number of
source prototypes are varied for Ry = Ry = 3 ag = a1 = ag = 0.5; Ay =1,

A1 = A = 0.01.
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3.5 Conclusions

In this chapter, we have proposed a multiple prototype based deterministic
annealing approach for the design of quantizers for a robust distributed source
coding system. The approach is general and is applicable to a wide gamut of cod-
ing and quantization problems such as multiple descriptions, distributed source
coding, CEO problem etc. The approach assumes no prior knowledge about the
underlying probability distribution of the sources, eliminates the dependence on
good ad-hoc initial configurations and avoids many poor local minima of the
distortion cost surface. The necessary conditions (and update equations) for sys-
tem design are derived and presented. Simulation results comparing DA with an
iterative Lloyd-like algorithm are shown. Significant improvements confirm the
advantage of using a global optimization scheme such as DA for robust distributed

vector quantizer design.
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Chapter 4

Scalable coding of correlated

sources

In this chapter, we consider the problem of scalable distributed coding of
correlated sources that are communicated to a central unit. The general set-
ting is typically encountered in sensor networks. The communication channels
in a sensor field may vary in capacity due to the presence of obstacles or other
phenomena such as fading. In such a scenario, it will be beneficial to convey a
minimal amount of information even when the channel deteriorates. This mo-
tivates the problem of scalable distributed source coding (S-DSC) or successive
refinement of distributed correlated sources, which generalizes the traditional
problem of scalable coding of single source [11, 22, 35, 52]. Successive refinement
for Wyner-Ziv coding (side information at the decoder) was proposed in [49], and
has been studied in [49, 50] from the information-theoretic perspective of char-

acterizing achievable rate-distortion regions. Here we derive practical iterative
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algorithms for the design of successive-refinable system within the multi-terminal
(distributed) setting, i.e., for a S-DSC system. The general S-DSC problem sub-
sumes several important special cases such as multiple-description coding [29],

robust distributed coding [5, 6, 18] etc.

Various scalability structures for S-DSC may be implemented, such as tree-
structured quantizers or multi-stage quantizers [17]. In practice, multi-stage
structures are often preferred due to their reduced encoding and decoding com-
plexity, and training data requirements. An example is speech coding applications
where multi-stage vector quantizers are heavily used. In this work we first ana-
lyze the design of multi-stage distributed source coding (MS-DSC) [42, 46] and
then the unconstrained scalable distributed coding problem [42, 43]. It may be
tempting to assume that simple combination of algorithms for distributed coding
([13, 34, 40]) and multi-stage quantizer design ([17]), would yield a good MS-DSC
coding scheme. However, as we will see, there exists a fundamental tradeoff be-
tween exploiting inter-source correlation at the base or intermediate layers, and
better reconstruction in subsequent layers of the MS-DSC. Moreover, by allowing
for a slight but controlled mismatch between encoder and decoder estimates and

reconstructions, inter-source correlation can be exploited more effectively.

Next, we consider the unconstrained scalable distributed coding problem. Al-
though a standard ‘Lloyd-style’ distributed coder design algorithm can be gener-
alized to scalable distributed coding, the resulting algorithm depends heavily on
initialization and will virtually always converge to a poor local minimum on the
distortion-cost surface. We propose an efficient initialization scheme for such a

system, which employs a properly designed multi-stage distributed coder.
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Figure 4.1. Scalable distributed source coding

It is also desirable that the S-DSC system be robust to fades or failures of
various communication channels, and utilize all received information to attain
maximize efficiency. We incorporate system robustness objectives by adopting

techniques for robust distributed coder design [40].

4.1 Problem statement and special cases

Consider the S-DSC scenario in Fig. 4.1. For brevity, we will restrict the
analysis to the case of two sources and to two-layers, but without loss of generality
as the model is trivially extendible to an arbitrary number of sources or layers.
Here (X,Y) are two continuous amplitude, i.i.d., correlated (scalar or vector)
sources. The encoder &, for source X compresses the data and transmits an index
pair {i1,42} where i; € {1..2%1=} and iy € {1..2%2}. Similarly the encoder &, for

Y has an index pair {ji,j2} as output where j; € {1..2%1%} and j, € {1..2%},
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Ry, and Ry, correspond to the first (base) layer rates while Ry, and R, denote

the incremental second (enhancement) layer rates.

We assume that the fusion center obtains full information from the base layer
while data from the enhancement layers for sources X and Y is lost independently
with probabilities p, and p,, respectively. Depending on the sub-set of informa-
tion received from the source enhancement layers, the fusion center uses decoder
Doo, Do1, D1y or Dy to reconstruct X as Xoo, XOI,XN or X'H, respectively and
similarly for Y (see Fig. 4.1). The sub-scripts in a decoder indicate whether
the enhancement layer information for source X and Y have been received, e.g.,
decoder Dy is used when only enhancement layer information from X is received.

Thus the decoders Dyy, Do1, Dip and D;; are used with probabilities poy = pupy,

po1 = pz(1 —py), Pro = (1 — py)py and p1; = (1 — p,)(1 — py), respectively.

The distortion incurred when decoder Dy is used for reconstructing sources
will be:
Elad(X, Xq) + (1 — a)d(Y, Yoo)], (4.1)

where d(-,-) is an appropriately defined distortion measure and a € [0,1] is a
weighting factor which governs the relative importance of the sources X and Y
at the fusion center. Distortion terms when decoders Dy, Dyg or Di; are used
are similarly defined. Note that we use uppercase letters for a random variable

and lowercase letters to denote its particular realization.

We use the following stream-lined notation to denote the distortion terms for
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a data point (x,y) when different decoders are used:

Dy(z,y) = ad(x,Zoo(ir, j1)) + (1 — a)d(y, Joo(i1, 1)),
Doi(z,y) = ad(z,T01(i1,j1,J2)) + (1 — @)d(y, Jo1 (i1, j1, J2)),
Dig(z,y) = ad(x,Z10(i1, j1,92)) + (1 — a)d(y, 9i0(i1, j1, i2)),

Dy (z,y) = ad(x,211(i1, j1, 02, j2)) + (1 — a)d(y, 911(21, 1, 12, J2))-  (4.2)

where the index pairs are determined by the source values, £,(x) = {i1,i2} and
E,(y) = {j1,72}. In the above expressions, Dy, denotes the distortion for a par-
ticular source pair (x,y) when decoder Dy is used and so on. Also for simplicity,
we assume that the weighting factor a is same when different decoders are used.
This simplifying assumption can easily be eliminated by simple modification of

the weight factors in the various distortion terms.

Next we define the net average distortion incurred for a source pair {x,y} as:

Dyei(z,y) = pooDoo(z,y) + po1 Do (z,y)

+ proDio(z,y) + prDu(z,y). (4.3)

The S-DSC design objective is to minimize the following distortion cost given
rate allocations Ry, Ra,, 1, and Ry,; and enhancement layer loss probabilities
Pz and py:

E[Dyet(X,Y)]. (4.4)

4.1.1 Special Cases

The S-DSC problem is very general and includes a large number of source

coding problems as special cases. We mention a few of these:

45



. Single Source Vector Quantizer: If the second source Y does not transmit
any information, and the source X transmits only base layer information,

the problem reduces itself to that of a single source vector quantizer.

. Distributed Source Coding: In the case when enhancement layer from both
the sources is missing (when p, = p, =1 or when there is no enhancement
layer transmission (Ry, = R, = 0 bits), the problem reduces to that of

typical distributed source coding.

. Scalable Coding of a Single Source: When only a single source is present,
the S-DSC problem reduces to scalable coding of a single source.

Next we consider some other special cases where the base layer information
is also allowed to be lost (Note that in this work our assumption of base
layer being always received is for presentation simplicity and the proposed
model can easily be generalized to the most general scenario where base

layer information can be lost.)

. Scalable Multiple Descriptions Coding: When the two sources X and Y are
identical, and the base layer may also experience loss, the S-DSC problem

reduces to scalable multiple descriptions coding.

. Multiple Description Coding: This is a special case of scalable multiple
descriptions coding problem when only the base layer information is being

transmitted.

. Robust Distributed Source Coding: In the general case when sources X and
Y are not identical and the enhancement layer from both the sources is

missing, the problem reduces to robust distributed source coding [6],[40].
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Here the objective is to reconstruct the sources based on the available num-

ber of descriptions.

We begin our discussion of S-DSC design by first considering a MS-DSC sys-
tem. We highlight the major conflict that happens when distributed coding is
naively combined with multi-stage coding and an approach to resolve the con-
flict. We then propose an iterative design algorithm for the MS-DSC design that
efficiently exploits the inter-source correlation. The next section explains the

functioning of various modules of the MS-DSC system.

4.2 Multi-stage distributed source coding

4.2.1 Encoder

The MS-DSC encoder for source X is shown in Fig. 4.2. The overall encoder &,
consists of two stage encoders &, and &,. Input X is fed to the first stage (base-
layer) encoder €1, whose output is an index ¢; and an encoder reconstruction value
Xenc. The residual, e, = X — Xenc is input to the second stage (enhancement
layer) encoder &,, whose output is an index i5. Since the sources X and Y
are correlated, the encoders &£, and &, will differ from the nearest-neighbor

quantizers encountered in single-source multi-stage quantization.

Base layer encoder &, consists of a high rate quantizer (used primarily to
discretize the source) which maps source X to index k; representing Voronoi
region Cf . The WZ mapping block, employed next, takes in k; and outputs

index 41 = v1(k1) representing region Rj, = Uy .., (k,)=i, Ck,» to be transmitted
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Figure 4.2. MS-DSC encoder and an

Voronoi regions to (transmitted) indices

example of Wyner-Ziv mapping from

over the channel. An example of WZ mapping for a scalar source with K; = 7 and

7, = 3 was given in previous chapter and again reproduced here for convenience

in Fig. 4.2.

The encoder codebook C takes index k; as input and outputs Xenc which is

used to compute the residual e,. Base layer encoder &;, for source Y is defined

similarly. Since the error residuals e, and e, obtained by the first encoding stage

are correlated, a distributed coder should be designed to exploit inter-source

correlations. The second stage encoders &, and &, similarly consist of a high

rate quantizer followed by WZ mapping. Since the second stage is the last stage

in our setting here, no encoder codebook is needed in &, or &, (in general all

except the last MS-DSC stage encoders contain an encoder codebook as in &y, ).
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4.2.2 Decoder

The MS-DSC system consists of four decoders (see Fig. 4.1), depending on
whether the enhancement layers from sources X and Y are received or not. De-
coder Dy, is used when only indices 7; and j; are received and actually comprises
of decoders Df, and Df, for sources X and Y, respectively. Both D, (see Fig. 4.3)
and D, just consist of a single codebook as reconstruct X and Y as Xoo and Yoo,

respectively.

Decoder Dy, (part of D,,) comprises of two codebooks (Fig. 4.3). Similar to
single-source multi-stage coding, the decoding is performed in an additive fashion.
Xl(),dec is calculated based on indices ¢; and j; using a decoder helper codebook
C3 while the estimate for error residual e, is calculated as é, 19 based on iy using

a residual codebook C} as shown. The source reconstruction is obtained as:

Xlo = Xl(),dec + €210 (4.5)

Note that the various entities Xone, X10 and Xl(],dec (corresponding to Dyg)

differ in general. In brief, these entities can be interpreted as follows:

1. XlO,dec is the decoder helper codebook output based on 4; and j; and its
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sole objective is to aid in the reconstruction via (4.5).

2. Xem, based on k; is an encoder estimate of X at the base layer in order to

derive the residual for the enhancement layer.

3. Xjp is the final source reconstruction values at decoder Dy.

The functioning of the other decoders Dy, and D;; is similar and other entities
such as X(]l,deca €301, X'm etc. are analogously defined. For the second source Y,

we have a similar decoding procedure.

4.2.3 Components to optimize

The design algorithm for MS-DSC system needs to optimizes the high rate
quantizers, WZ mappings (or encoder), encoder and decoder codebooks for all lay-
ers and all sources. We will restrict the scope here to the design of all codebooks
and WZ mappings. (For simplicity, we will assume that high rate quantizers are
independently designed using standard Lloyd’s algorithm [26]. Additional gains
due to their joint optimization with the rest of the system are expected to be

small).

4.2.4 Naive design scheme

We first discuss the design scheme which emerges when distributed coding is
directly combined with multi-stage coding. As it ignores the potential conflict
in objectives we refer to it as “naive” design. In the naive scheme, a base layer

distributed coder is designed while ignoring the enhancement layer and the role
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of p, and p, to minimize the following base-layer distortion:
Elad(X, Xoo) + (1 — a)d(Y, Yoo)].- (4.6)

The Wyner-Ziv mappings and the decoder codebook (C,) for the base layer for
both the sources are designed using a standard distributed coder design algorithm
such as in [40, 34]. Consequently, the estimates X‘mc at the encoder and XOl,deca
X 10,dec and X 11,dec for decoders Dy, Dy and Dy, respectively are calculated only
based on index 7;. Note that there is no encoder-decoder mismatch in this scheme
and Xene(i1) = Xotdee(i1) = Xiogec(i1) = Xi14ee(in) = E[X|X € R%], i.e., the
estimates are simply calculated as the centroids of the region R} corresponding to
index ;. The encoder codebook C; and decoder helper codebook Cj for Dy (and
similarly for Dy; and D;;) are same and solely based on the common information

at both the encoder and decoder, i.e., index ;.

The residual e, is calculated as e, = X — X,mc and similarly for e,. The
resulting training set for {e,,e,} is used to design a distributed coder for the
enhancement layer to minimize the expected distortion corresponding to the last
three distortion terms in (4.4) using a Lloyd-style algorithm for robust distributed
coder design [40] in which the various codebooks and enhancement layer Wyner-
Ziv mappings are optimized given the fized base layer coder. For more details on

robust distributed coder design, we refer the reader to [38, 40].

4.2.5 Comments on naive design scheme

In essence, the naive scheme for MS-DSC design tries to first minimize the
base layer distortion term by designing a base layer distributed coder. Given

the fixed base layer distributed coder, a robust distributed coder is designed (the
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term robust distributed coder is used because the enhancement layer channels for
the two sources can fail independently and a particular decoder is used depending
on the available information) to minimize the remaining distortion terms. The
inherent assumption is that ignoring (a) the enhancement layer during base layer
distributed coder design and (b) the role of p, and p, may not degrade the
performance substantially. For example, when enhancement layer from both
sources is almost always received, p, and p, are close to 0 implying that the base
layer decoder Dyy) will be used with very less probability poy = pyp,. This implies
that the base layer distributed coder design should not be done independently by

ignoring the effect of enhancement layer.

Further to avoid any potential mismatch, only index i; (available at both
the encoder and decoder) is used as input for the encoder and decoder helper
codebooks and information from other source Y (in the form of index j;) is

ignored.

4.3 Multi-stage distributed coding design algo-

rithm

4.3.1 Motivation and design

The most fundamental deviation of this work from the “natural” approach to
MS-DSC is in the use of different codebooks for constructing Xenc at the encoder
and XOl,dec; X 10,dec and X 11,dec at the decoder. In the sequel we will only mention

XlO,dec (Discussion about )A(()l,dec and Xll,dec is similar.). At the decoder, both
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indices 7; and j; can be utilized to construct Xleec. However, the encoder for
source X only has access to index i; to construct Xenc, and does not know ji.
Obviously, there will be a mismatch between Xem and )A(()Ldec. A possible way
to match X()l,dec with Xenc will be to make both XOl,dec and Xenc a function of
i1 alone (as was done in the naive approach). But this may actually worsen the
performance of the enhancement-layer distributed coder. For example, consider
a (scalar) source point in the X space (see example of Wyner-Ziv mapping in
Fig. 4.2) lying in the second region and being mapped to index i; = 2. The
encoder estimate X, corresponding to this point may actually lie in the middle
of the line (since it will be calculated as the average of all source points X in
the second and seventh region of high-rate quantizer output that get mapped to
index 2). Obviously the estimate Xenc will be coarse and the error residuals e,

(and similarly for e,) will have higher magnitude (lo-norm for vector sources).

The idea, is therefore to allow for some mismatch between the first (or inter-
mediate) layer estimates at the encoder and decoder and optimize so that efficient
distributed coding at second (respectively next) layer will more than compensate
for any allowed mismatch. Another crucial point to note is that, the source en-
coder has complete knowledge of the source itself or effectively index k; (which
is the output of the high resolution quantizer used primarily to discretize the
source), while the decoder has additional knowledge from the correlated source
Y, in the form of index j;. This implies that there may exist some (elusive)
additional information at both ends that could be exploited, if an appropriate
means were devised. Also joint design of the distributed coders at both the layers
should be performed (so that impact of enhancement layer and role of p, and p,

is not neglected while designing base layer distributed coder).
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We therefore use different codebooks for calculating XlO,dec and Xenc at the
decoder versus encoder. The encoder codebook (C}) can have k; as input, and
the decoder helper codebooks have inputs 4; and 7;. This flexibility enables opti-
mization of the tradeoff between better exploitation of inter-source correlations
at the sub-sequent layer, and the cost of some mismatch in the system. Appro-
priate design of encoder and decoder codebooks (as well as WZ mappings) will

optimize the precise overall performance while accounting for the mismatch.

Note that the scheme subsumes single source multi-stage quantizer design
as a special case. Also, when the sources X and Y are uncorrelated, then WZ
mappings for the base layer will converge to a union of contiguous cells (the
encoder &1, will act as a fine-coarse quantizer) and both the encoder and decoder

helper codebooks will effectively be the same and depend on 7; only.

4.3.2 Update rules for proposed MS-DSC algorithm

Herein we assume squared error distortion measure for simplicity. To mini-
mize the cost in (4.4), the Wyner-Ziv mappings and the various codebooks are

optimized iteratively using the following necessary update rules:

1. First Layer Decoder Codebook (C,, at Dy):

Too(i1,71) = arg m(gn Z d(x, §). (4.7)

(an,y)ERi1 xR;

2. Second Layer Decoder Codebooks (for residuals, at decoders Dy, Dig
and DH)
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éx,Ol(j2> = al"gm(gn Z d($7£01,dec+¢)7

ey€R;,
éz10(i2) = argmin Z d(z, Z10,dec + @),
¢ es€R;,
€x11(l2, j2) = argm(gn Z d(z, Z11,dec + ) (4.8)

(ex,ey)eRiQ xR;,

3. Encoder Codebook (C)):

Tenc(k1) = arg m;n Z P01d(Z, Zot,dec + €2,01) + Pr0d(Z, T10,dec + €x10) +

zGCkl

p11d(x, Z11 dec + €x11), (4.9)

where the dependence on ¢ comes from €, 1, €, 10 and é,11 which are the

estimates of e, at the second layer and e, = x — ¢.

4. First Layer Decoder Helper Codebooks (at decoders Dy, Dyy and
D)
Tot,dec(i1,J1) = argmwin Z d(x, 401 + 1),
(ac,y)GRi1 ><R].1

T10,dec(it, 1) = arg mwin Z d(z, ez,10 + 1),
(w,y)GRil ><R].1

T11,dec(it; 1) = argmwin Z d(z, ez,11 + 7). (4.10)
(w,y)GRil ><R].1

5. WZ Mappings (Layer 2): For ko = 1 : Ko, assign ks to index iy = vy(k2)

such that:

vo(ky) =iy = arg min Z Diyet(z,y) (4.11)

i/2€{1..[2}e cC,
T 2
where the sum is over the residuals e, which lie in the region C}, and the

dependence of D, (z,y) on the index iy is specified by (4.2) and (4.3).
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6. WZ Mappings (Layer 1): For ky = 1: Ky, assign k; to index i; = vy(ky)

such that:

ky) =iy = i Diper(, 4.12
vi(k1) =14 argiaglll‘gl}x;% (2, ) (4.12)

Again the dependence of D, (x,y) on the index i; is specified by (4.2) and
(4.3).

The update rules for the second source Y are straightforward to specify from the
above. Also, to reduce clutter, superscripts and arguments were omitted where

obvious, e.g., R;, rather than R} ; €, 1, rather than é,11(i2, j2) etc.

4.4 Scalable distributed source coding

In the general setting for the S-DSC problem (see Fig. 4.1), encoders for
sources X and Y transmit index pairs {iy,io} and {ji, 72}, respectively. The
encoding comprises of directly generating an index pair ({i1,i2} for source X)
rather than source quantization followed by error residual quantization. Similar to
MS-DSC, decoder Dy consists of a single codebook (per source) and takes indices
11 and 77 as input to obtain the reconstruction Xoo (and 1700). The decoders Dy,
Dy and Dy; also have a single codebook (per source) and decoding is performed
directly using the codebook, rather than in the additive fashion as was being
done in MS-DSC. A block diagram depicting the S-DSC encoder &, and decoders
Dyo and Dy (for X) is shown in Fig. 4.4

Obviously the S-DSC system in its general setting will perform better than

its special constrained case MS-DSC. Also, there is no direct conflict between the
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Figure 4.4. S-DSC encoder for source X; an example of Wyner-Ziv mapping from

Voronoi regions to index pair {iy,i2}; and decoders Dy and Dy in S-DSC

objectives of distributed and scalable coding in S-DSC, since the design for all the
stages can be performed simultaneously and there is no feedback (dependence)

for calculating the source error residual for any intermediate stage in S-DSC.

However, in S-DSC the encoding complexity grows exponentially with the
sum-rate of base and incremental enhancement layer, i.e., with 2f=+F2= for source
X (and similarly for Y'). Note that, earlier for MS-DSC, the encoding complex-
ity was proportional to 2%+ and 2%2¢ for the base and the enhancement layers,

respectively.

Moreover the total storage required for the various decoder codebooks will
grow more rapidly in S-DSC. For example, in S-DSC the codebook for decoder Dy,
will have storage proportional to 2F1etFeat Ryt R2y where as in MS-DSC the cor-
responding storage for the codebooks is approximately proportional to { 2f1=+ 1y
+ 2ft2et B2y 1 due to the additive nature of decoding (the first term corresponds
to the decoder helper codebook and the second term for the residual decoder

codebook).
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Apart from the increased encoding and storage requirements, efficient design
of Wyner-Ziv mappings from different prototype regions to indices is important
for good performance of the S-DSC system. The index-assignment problem im-
plicit in WZ mapping is a discrete optimization problem. In the case of S-DSC,
we need to map K different regions to one of the I; x I indices for source X
(see Fig. 4.4). One can generalize a distributed quantizer algorithm (such as
in [40],[34]) for the design of S-DSC system. However, random initialization of
the WZ mapping in the generalized DSC iterative algorithm (described below in
Sec. 4.4.1) generally leads to a poor local minimum. While we do not attempt
a global solution to this index assignment problem, we propose to use an opti-
mized MS-DSC system as an efficient initialization for S-DSC design. Simulation
results confirm that the proposed initialization obtains considerable gains over

uninformed, randomly initialized solutions.

We next describe the locally optimal Lloyd-style algorithm alongwith its up-
date rules for S-DSC. After that we explain how the MS-DSC solution can be

used as an efficient initialization for the S-DSC problem.

4.4.1 TIterative design algorithm

We use similar notation in Sec. 4.2 to denote the various S-DSC modules
(Fig. 4.4). The high-rate quantizer for source X maps the source sample to a
prototype associated with the region Cf where k € {1..K} and K is the total
number of prototypes. Next the WZ mapping block maps the prototype regions
to an index pair {i1,i2} where {iy,is} € {1..Z7} x {1..Z5}. Similar procedure is

performed at the second source encoder and indices j; and j, are transmitted for
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the base and enhancement layer respectively.

We again assume squared error distortion measure for simplicity. To minimize
the cost in (4.4), the WZ mappings and the various decoder codebooks (with some

initialization) are optimized iteratively using the following necessary update rules:

1. Wyner-Ziv Mappings For k =1 : K, assign k to index pair {ij,is} such
that:

{i1,i2} = arg min Z Diyet(z,y). (4.13)

i,
12 zeCy

Here also the dependence of D, (x,y) on the index pair is specified by (4.2)
and (4.3).

2. Decoder Codebook: Reconstruction Values

Too(in,j1) = EX[X e R],Y € R.?;l]

7217

To1(i1, j1,J2) = E[X|X € R],)Y € R}

]17j2]

fl()(il,jlyiQ) = E[X‘X € R Y € R§11]

11,127

T11 (i1, J1, %2, J2) = E[X|X e€eR] ;.Y €RY ] (4.14)

11,827 71,72

Similar rules for the second source Y can be obtained and won’t be reproduced

here. In the above update rules, Rf =J,, itf,;, and R =J,, R}

11,82 J1,J2°

4.4.2 Effective initialization for S-DSC design

MS-DSC is a special case of S-DSC under additive encoding/decoding con-
straints. The proposed scheme for S-DSC takes the optimal MS-DSC system as
an effective initialization and then removes the structural constraints to apply

the iterative algorithm in Sec. 4.4.1.
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In the MS-DSC scheme, the source space for X (in base layer) is divided into
K, different regions. These K different regions are mapped to one of the I;
regions via the base-layer WZ mapping. The residual e, = X — Xenc is then
quantized by a high-rate quantizer having K, different output cells (regions),
which are mapped to one of the I, different regions via enhancement layer WZ
mapping. Hence during design, all the training point samples for source X are

associated with an index {iq,is}.

Now consider a sample X corresponding to some high-rate quantizer region
k1 € {1.K;} and WZ mapping region ¢;. This sample is associated with an
index iy for the enhancement layer (through e,). We define C¥ (k € {1..K}
and K = K x I, ) as the set of all source points X that lie in the region C},
(corresponding to high rate quantizer output index k;) and Rf, (corresponding

to index 75 of the enhancement layer WZ mapping), i.e.,

Cr=Ci (RL. (4.15)

Now, each of the regions C¥ is associated to an index pair {iy,i2}. So we
effectively view the X source space as divided into K different regions, each of
which is mapped to one of the index pair {i1,i2} via an implicit S-DSC WZ
mapping v(k) = {i1,i2}. We can use these K regions and WZ mappings as an
initial solution for the S-DSC algorithm in Sec. 4.4.1. A similar construction of

the different regions and WZ mapping is performed for source Y.

Encoding during S-DSC operation

Note that the region R} in (4.15) corresponding to index i, (outcome of

enhancement layer WZ mapping) is a union of different possibly, non-contiguous
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regions. Hence the region C¥ in (4.15) is also a union of different possibly, non-

contiguous regions.

The encoding for a sample X will still be performed in a similar fashion
to encoding in MS-DSC, i.e., for X, find the high rate quantizer region and the
corresponding index k; and X ene - Using kq, find the base layer WZ mapping index
11. Calculate the residual e, = X — Xenc and find the corresponding enhancement
layer WZ index 75. The resulting indices ¢; and i, are then transmitted as base

and enhancement layer information, respectively.

4.5 Simulation results

We give several examples to demonstrate the gains of (a) the proposed MS-
DSC scheme which resolves the conflict between distributed quantization and
multi-stage coding and (b) the proposed S-DSC scheme initialized using a prop-
erly designed MS-DSC system over the randomly initialized S-DSC approach. In
all the simulations, sources X and Y are assumed to be jointly Gaussian with
zero means, unit variances and correlation coefficient p. The weighting coefficient
a of (4.2) is set to 0.5 to give equal importance to both the sources at the de-
coder. A training set of 10000 scalars is generated. The number of prototypes
is 60 for the high rate quantizers which are designed using Lloyd’s algorithm
[26]. We compare four different schemes (a) separate (single-source) multi-stage
coding in which no distributed coding is performed, (b) randomly initialized S-
DSC system (‘Random S-DSC’), (c) structurally constrained MS-DSC system
(Proposed ‘MS-DSC’), and (d) proposed S-DSC system which is initialized by
MS-DSC (‘Proposed S-DSC’).
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Figure 4.5. Performance comparison of naive scheme for MS-DSC, separate (sin-
gle source) multi-stage coding, randomly initialized scalable DSC, proposed multi-
stage DSC, and proposed scalable DSC technique. (a) All the transmission rates
are same and varied; (b) enhancement layer rates are varied (base layer rates

fixed at 2 bits/sample); (c) base layer rates are varied (enhancement layer rates

fixed at 2 bits/sample).
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Figure 4.6. Performance comparison of separate (single source) multi-stage cod-
ing, randomly initialized scalable DSC, proposed multi-stage DSC, and proposed
scalable DSC technique as the probability of enhancement layer loss p,(= p,) is
varied. All the transmission rates are 2 bits/sample. In (a) inter-source correla-

tion p = 0.97 while in (b) p = 0.9.
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is 0.2 in (a) and 0.1 in (b).
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In the first set of experiments (see Fig. 4.5), we plot the weighted distor-
tion at the decoder in (4.4) vs. rate for the various schemes. The probability
of enhancement layer loss for both sources p, = p, = 0.2 and p = 0.97. In
Fig.(a), the same transmission rate is allocated to each layer of each source, i.e.,
Ry = Roy = R1y = Ry, = R. We also plot the performance of naive MS-DSC
scheme in these set of experiments. The proposed MS-DSC scheme achieves sub-
stantial gains of upto 6.8 dB over the naive scheme (at R = log2(3) bits) while
the proposed S-DSC scheme leads to considerable gains over Random S-DSC ap-
proach and gains upto ~ 3.3 dB are obtained (e.g., at R = log»(5) bits/sample).
Also the performance of naive MS-DSC scheme is even worse than that of sepa-
rate (single source) multi-stage coding, as it ignores the potential conflict between
the objectives of distributed quantization and multi-stage coding. In Fig (b), the
base layer rates Ry, and Ry, are fixed at 2 bits/sample while the enhancement
layer rate Ry, (= Ry,) is varied. Again the proposed MS-DSC and S-DSC schemes
outperform their respective counterparts, namely the naive MS-DSC and Ran-
dom S-DSC schemes and gain upto 9 and 2.6 dB respectively at rates 1 and 2
bits/sample respectively. In Fig. (c), the base layer rate Ry, (= Ri,) is varied
while the enhancement layer rates Ry, and R,, are fixed at 2 bits/sample. Here
again the proposed MS-DSC and S-DSC schemes outperform naive MS-DSC and
Random S-DSC scheme and gains upto 7.2 and 2.8 dB respectively at rates logs(7)

and 2 bits/sample, respectively.

In the next set of experiments, we fix all the transmission rates Ry, = Ra, =
Ry, = Ry, to be 2 bits/sample. The probability of enhancement layer loss for
both sources p,(= p,) is varied and the weighted distortion is plotted. In (a), the

inter-source correlation p is 0.97 while in (b) p is 0.9. Here again the proposed
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MS-DSC and S-DSC schemes consistently outperform the other schemes.

Next we plot the weighted distortion as a function of inter-source correlation
for two different probability of enhancement layer loss p,(= p,): 0.2 and 0.1,
respectively. Again all the transmission rates Ry, = Ro, = Riy, = Ry, are fixed
at 2 bits/sample. We again find that the proposed MS-DSC and S-DSC schemes
consistently outperform the other schemes. In fact, in all the simulations the
performance of the Random S-DSC algorithm is even worse than MS-DSC most
of the times, which reiterates the importance of an efficient initialization for S-

DSC.

Finally, we note that the proposed methods are extendible to incorporate
entropy coding, but such extension is omitted for brevity. Further for fair com-
parison and to eliminate atypically poor results, the initialization for both the
Random S-DSC and MS-DSC algorithms was done 20 times and the best results

are reported.

4.6 Conclusions

In this chapter, we considered the design of scalable distributed source coders.
The proposed S-DSC system is robust to a partial number of channel failures and
utilizes all the available information to attain the best possible compression effi-
ciency. We first identify the inherent conflict between the objectives of distributed
quantization and multi-stage coding and show how to resolve the conflict in the
MS-DSC system, a special constrained case of the S-DSC problem. Our scheme

allows a controlled mismatch between the encoder and decoder reconstruction for
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estimating the enhancement layer residual and jointly optimizes all the compo-
nents in the MS-DSC system. Next we show that a Lloyd-style iterative S-DSC
algorithm is heavily dependent on initialization and can even be worse than the
performance of a proposed multi-stage DSC algorithm. The multi-stage DSC
algorithm solution is used as an efficient initialization for the S-DSC design algo-
rithm. Simulation results show that (a) the that the proposed MS-DSC scheme
consistently outperforms other naive schemes and single source (separate) dis-
tributed multi stage coding schemes and (b) proposed S-DSC scheme initialized
using a properly designed MS-DSC system consistently outperforms the randomly

initialized S-DSC approach.
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Chapter 5

Distributed predictive coding

In this chapter, we discuss distributed coding of correlated sources with mem-
ory. We specifically employ linear predictive coding to exploit the temporal cor-
relations within a source. The prediction errors of the different sources can be
assumed to be typically memoryless. However, they will be correlated since the
original sources themselves were correlated. Thus a distributed quantizer needs
to be designed for the prediction errors to exploit the inter-source correlation. We
reformulate the problem of distributed coding of correlated sources with memory

within the representative setting of distributed predictive coding (DPC).

DPC system design poses major challenges due to the fundamental conflict
between the objectives of distributed quantization and predictive coding. Sim-
ply combining a distributed quantization algorithm with predictive coding leads
to a naive design and severely degrades the prediction loop performance of the

resulting DPC system.

A complementary challenge arises from the instabilities in the design of closed
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loop predictors, whose impact has been observed in the single source case, but is
greatly exacerbated in the case of DPC. To circumvent the difficulty of closed loop
predictive quantizer design, we derive and adopt a technique called asymptotic
closed loop (ACL). Within the ACL framework, the design is effectively done in
open loop (eliminating issues of error buildup through the prediction loop), while
ensuring that asymptotically, the prediction error statistics converge to closed

loop statistics.

It should be mentioned that the temporal correlations within a source can con-
ceivably be exploited by blocking sources into large vectors, but such a scheme
will have high complexity and will be extremely sensitive to initialization and
poor local optima as we have seen in Chapter 3 and in [38, 39, 40, 51]. Moti-
vated by these observations, a notable approach to predictive coding of correlated
sources has been proposed in [51] where a uniform quantization grid was imposed
on the product space (across sources) of prediction errors, on which the main
support of the joint distribution was identified and a DSC code devised. The
emphasis in that paper’s results was on the design of optimal predictor filters in
such distributed setting and on how they deviate from the case of non-distributed
predictive coding. Also in [58], an algorithm for predictive coding of correlated
sources exhibiting high inter-source correlation was given where different com-
ponents (encoder and decoders) were designed. However in both the previous
settings, neither the optimality of the algorithms was proven nor the system can

be guaranteed to be drift-free for all values of inter-source/temporal correlations.

In this chapter we propose optimal algorithms with ‘zero-drift” and ‘controlled-
drift’ for distributed predictive coding. The ‘controlled-drift’ algorithm includes

the zero-drift approach as a special case that emerges whenever the impact of
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potential drift overwhelms the benefits of improved prediction. Both the DPC
schemes also subsume as special extreme cases (a) separate predictive coding of
sources and (b)memoryless distributed coding. We begin the chapter by first
reviewing the different methods used for single-source predictive coding, namely
the open loop (OL), closed loop (CL) and ACL. After that, we discuss the various

DPC design algorithms that we have proposed in [41, 44, 45].

5.1 Predictive vector quantizer design for single-

source

A typical predictive vector quantizer (PVQ) is shown is Fig. 5.1. We assume
that the channel is noiseless and concentrate only on the source coding modules.
Let X be a real valued scalar source {x,})_,. For simplicity, assume that the
source X has zero mean and first-order linear prediction is performed (In general,
X can be a vector and higher order prediction can be performed. For a more
detailed treatment of PVQ, refer [17]). The predictor P, is used to predict the
next source sample as Z,.1 = P,Z,. The prediction error at time n + 1 is

calculated as e,11 = Tpi1 — Tpi1-

The encoder € (of a quantizer @)) takes e, as input and outputs an index 7, =
E(ey) to be transmitted over the channel. At the decoder, the error reconstruction

is calculated via a decoder codebook as D(i,). A predictive quantizer can be
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concisely described by the following mathematical operations:

€n = Tp— Tp, (5.1)
in = Elen), (5.2)
Tn = Tp+D(in), (5.3)
Tni1 = Py, (5.4)

Though the encoder £ and decoder D are actually needed for implementing
a typical PVQ system, for simplicity an abstraction is made that a quantizer @)

quantizes the prediction error and é, = Q(e,) = D(E(ey)).

The PVQ system design is problematic due to the presence of feedback loop.
A training set of prediction errors is needed for the design of quantizer ). How-
ever, these prediction errors have themselves to be generated in closed loop and
therefore depend on the quantizer which needs to be designed. This affects the
convergence and stability of the algorithm and the resulting system performance
can be poor. Next we review the various approaches for predictive coding of
single sources and discuss the convergence/stability issues associated with these

approaches.

5.1.1 Open loop approach

A schematic of open loop PV(Q design [8] approach is shown in Fig. 5.2. In
OL approach, a training set of prediction errors is generated from the original

sequence of samples directly as follows:

en =Ty — Py Tp_1. (5.5)
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Figure 5.1. Predictive vector quantizer

The quantizer () is then designed for these fixed prediction errors via Lloyd’s
algorithm [26]. The design procedure is simple and algorithm will converge to a
local minimum on the distortion-cost surface (Thus it is stable). However, during
operation, the PV(Q system actually runs in closed loop and the prediction is
actually performed using the source reconstruction X instead of X. Hence the
error statistics differ from those for which the quantizer was designed and the

resulting system performance is sub-optimal.

5.1.2 Closed loop approach

A schematic of closed loop PVQ design [8] approach is shown in Fig. 5.3. Here
p denoted the iteration of the CL approach. The OL design is used to initialize
the quantizer Q) at p = 1. Given the initial quantizer, the prediction errors are

actually calculated in closed loop as shown in Figure by the following expression:

en =Ty — Py Tp_1. (5.6)

The system then iterates in closed loop to generate new training data, for

the redesign of the quantizer, until (hopefully) convergence. However, since the
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Figure 5.2. Open loop approach for PVQ design

training set changes with each iteration, each redesigned quantizer is applied to
error statistics it had not been designed for. Moreover, the change in statistics is
generally unpredictable as, due to the prediction loop that feeds back errors, there
can be distortion build up as the sequence is processed causing non-stationary
statistics and actual divergence (in terms of the performance cost). In general,
there is no guarantee that the algorithm will converge and the procedure may be
unstable [17]. Another notable approach for PVQ design using steepest descent or
stochastic gradient algorithms has been proposed in [4], where joint optimization
of the predictor and quantizer is performed using adaptive filter techniques. For
conciseness, we do not discuss these here, since these are outside the scope of

work presented here.

73



Repeat

[teration

Design new quantizer QW

Figure 5.3. Closed loop approach

5.1.3 The asymptotic closed loop approach

The ACL design approach [19, 20] mitigates the shortcomings related to sta-
bility /convergence in predictive coder design . A subterfuge is employed wherein
the design is effectively performed in open loop, where each quantizer is de-
signed for the statistics of the exact signal it then quantizes to produce a new
sequence of reconstruction for the next iteration, thereby circumventing stability
issues. Asymptotically, the loop is virtually closed in the sense that the design ap-
proaches closed loop statistics despite open loop operation within each iteration.

A schematic of the approach is given in Fig. 5.4.

More specifically, for a given quantizer Q®~1 and reconstruction sequence

X@=1) obtained at iteration p — 1, a new training set of prediction errors 7" =
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{e,(qp )}nN:1 for iteration p is generated as:
e® =z, — P27V, (5.7)

where the subscript n denotes time and P, is the predictor. Using T, a new
quantizer Q) is designed and a new set of reconstruction values for X is obtained

by applying the new quantizer on T® itself as:

jﬁlp) — px[f(P—ll)] + QW [6(19)]. (5.8)

n— n

It should be noted that the prediction is not from the preceding sample re-
construction at the current iteration, but rather from the fized reconstruction
sequence of the previous iteration. Hence, unlike CL, the prediction errors to be
quantized are fixed and do not change as we modify the quantizer. Since the
quantizer is applied to the exact error training set for which it was designed,
it is the best quantizer for the job and hence the distortion cost will decrease.
This will result in better prediction. A new prediction error training set 7®+%)
is then obtained and the procedure is performed until a convergence criterion
is met. Since the entire design is performed in open loop, it is stable. At con-
vergence, the quantizer updates are vanishingly small Q®*t1) ~ Q). Therefore,

: o . . (p+1 ~(p) -
the reconstructed sequence is unchanged with iterations, i.e., P~ 2P e

plying P,[z7" V] ~ P, [55551)1] which means that asymptotically we are effectively
predicting from the previous sample reconstruction in the current iteration, i.e.,
the loop is effectively closed. So, even though the algorithm is always running

in open loop, the design asymptotically approaches closed loop conditions. More

details about ACL are given in [19, 20].
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Figure 5.4. Asymptotic closed loop approach

5.2 DPC:Problem statement

Once again consider the simplest distributed source coding scenario of Fig. 5.5.
For brevity, we restrict the presentation to two sources (generalization to an
arbitrary number of sources is straightforward). Here X and Y are two continuous
amplitude, correlated (scalar or vector) sources with memory. The two source
encoders compress and transmit source information at rates R; and Ry bits per

source sample respectively, to the central unit (joint decoder). The objective is
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Figure 5.5. Distributed coding of two correlated sources

to minimize the following expected distortion cost:

~

D = E{ad(X,X)+ (1 —a)d(Y,Y)}, (5.9)

where d(-,-) is an appropriately defined distortion measure, X and Y are the
reconstruction values for X and Y respectively, and o € [0,1] is a weighting

factor that accounts for the relative importance of the sources at the decoder.

We employ predictive coding to exploit temporal redundancies (We will re-
strict the scope to linear prediction). The prediction errors e, (for X') and e, (for
Y') will be correlated. Therefore, instead of the standard predictive quantizer, a

distributed quantizer needs to be designed to exploit inter-source correlations.

A mechanism to enable full leveraging of information from another correlated
source requires that the encoder and decoder reconstruction of the prediction
errors differ. We begin by describing the ‘zero-drift” approach wherein both the
source encoder and decoder have access to exactly the same prediction error re-
construction for the prediction loop and then propose a ‘controlled-drift” approach

where the constraint of zero-drift is relaxed.
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5.3 Zero-drift approach

5.3.1 Encoder

The zero-drift distributed predictive encoder for source X is depicted in
Fig. 5.6. The input to the high resolution quantizer @, is e, = X — Xem where
X,ne is the predicted value of X at the encoder. Q, maps the prediction error
e, to an index k representing Voronoi region C} (a prototype can be associated
with each Voronoi region). The WZ mapping module is employed next. (For
completeness and easy readability, we give a brief description of WZ mapping
here in this chapter as well). The WZ mapping block takes in k& and outputs
index i = v(k) for transmission over the communication channel, and which rep-
resents region R = ., 4)—; Ci- The encoder codebook C,,,. produces é; epc, the

prediction error reconstruction value. An example of WZ mapping for a scalar

source with L =7 and Z = 3, is given in Fig. 5.6.

The reconstructed residual €, ¢y is added to Xem to obtain Xenc, the sample
reconstruction value for the encoder prediction loop. A linear predictor P, is
applied to Xone to predict the next source sample. For Y, we similarly define the
quantizer @, regions C} and R?. Here, the L Voronoi regions are mapped to
J indices via a WZ mapping w(l) = j. Next, we explain the functioning of the

distributed predictive decoder in the zero-drift setting.
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Figure 5.6. Block diagram of a DPC zero-drift encoder and a scalar example of
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Figure 5.7. DPC zero-drift decoder for source X

5.3.2 Decoder

The decoder module in charge of reproducing X (see Fig. 5.7) receives indices
1 and j from sources X and Y respectively. Index i is first used to reconstruct
€z.enc S0 that the encoder prediction loop can be exactly replicated without error
or potential drift to generate Xem and Xenc via the predictor P,. Given the index
pair (7,7), the decoder retrieves é, from the decoder codebook, C,,., and adds it

to Xenc to obtain the decoder reconstruction X.
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5.3.3 Observations and intuitive considerations

It is important to note that the WZ mappings compromise the quality of
the sample reconstruction in the prediction loop in order to exploit inter-source
correlation and improve the decoder reconstruction. In particular, region R =
Ukw(k):i C} is typically formed as a union of distant Voronoi cells C} in the hope
that the information from source Y will allow the decoder to separate them (see
the example WZ mapping in Fig. 5.6). A fundamental tradeoff emerges, as in or-
der to exploit inter-source correlations between e, and e, to better reconstruct the
current sample at the decoder, we compromise the performance of the prediction

loop and hence the quality of future reconstruction.

We should also re-emphasize that Xenc is a (coarse) reconstruction of X which
only serves the prediction loop, and is generally different from X, the decoder
reconstruction of X. Also note that the “encoder codebook” C., . which is used
in the prediction loop at both the encoder and the decoder is, in general, different

from the “decoder codebook” C,. (used only at the decoder).

5.3.4 Naive approach for DPC design

One can argue that predictive coding per se is largely a solved problem and
a predictive quantizer module can be straightforwardly integrated with existing
distributed memoryless coding methodologies (such as in [34]) to obtain a DPC
system. The idea in such a naive approach will be to first obtain a set of prediction
error residuals (e, e,). Let us assume that these are initialized with the open

loop prediction errors. Then a distributed coder will be designed to minimize the
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following distortion cost between the prediction errors:
Elad(es, é;) + (1 — a)d(ey, é,)], (5.10)

(see e.g. DSC in [34]) (similar to the practice for traditional single-source pre-
dictive quantizer, wherein the quantizer is designed to minimize the distortion
between prediction error and its reconstruction). This will resemble the open
loop design in traditional single-source predictive coding. For the subsequent
iterations (of closed loop predictive quantizer design) for source X, €, .. will be
calculated solely based on index i, since this is the only common information
guaranteed to be available at both the encoder and decoder (index j from source
Y is available only at decoder). Next one computes €, cn.(¢), corresponding to
transmitted index i as €, ¢ne(i) = E(e,|e, € RY). Using this, the sequences Xones
X,ne and prediction errors e, will be computed in closed loop. The crucial point
to note in such a design is that é,.,.(¢) for index i is a very coarse estimate
for e,. For example, in Fig. 5.6, for index i = 2, €; ¢, may lie somewhere in
regions in the middle of the line. This will cause the estimate X’enc to be coarse
as well and degrade the performance of the prediction loop. The prediction error
statistics for subsequent samples will differ greatly from those assumed during
the distributed coder design and may even cause instability as will be illustrated
in the results section. This shortcoming is primarily due to neglecting the impact
of the feedback prediction loop during the design of the distributed coder. Hence,
there is a major conflict between the objectives of distributed quantization and

predictive coding, and the corresponding tradeoff should be explicitly optimized.

81



5.3.5 Closed loop vs ACL design

For conceptual simplicity, let us consider first order linear prediction. We note
that the quantized error sample €, ¢, at time n impacts the sequence Xenc and
X from time n + 1 onwards due to the presence of the prediction loop. On the
other hand, é, at time n only impacts the current X (at time n), as is explicitly
depicted in Fig. 5.7. Hence, if one tries to directly design a distributed quantizer
for the quantities being quantized, namely, the pair of prediction errors {e,, e,}
to minimize the distortion in (5.10), the ultimate end-to-end distortion in (5.9)

will not be minimized.

However, if the DPC decoder were to perform in “open loop” as shown in
Fig. 5.8, then a particular sample of é, ... will affect only the next sample (in
case of m™ order linear predictor, it will affect m future samples) of X and not all
the samples following it. This is our main rationale of adopting the asymptotic
closed loop (ACL) approach [19, 20] for DPC system design, in which the design
iterations are performed in open loop and the prediction loop is essentially closed
asymptotically. The functioning of the ACL based DPC decoder will be explained
in detail in Section 5.4. An important characteristic of the ACL technique is
that the design is performed in open loop but as the algorithm converges, the
prediction loop is effectively closed and the operation mimics closed loop. Next
we explain how the ACL approach for predictive quantizer design can be adapted

for zero-drift DPC design.
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Figure 5.8. DPC zero-drift decoder in open loop during the design phase

5.4 ACL for zero-drift distributed predictive cod-
ing

The ACL distributed predictive decoder (zero-drift approach) for source X
is shown in Fig. 5.8. Here i), ;" denote the received indices in the p* ACL
iteration. eg,f gm,n is the prediction error estimate of the encoder codebook during
iteration p for n'* time sample. The other entities Xéﬁ;,ll), Xe(ﬁ)m, etc., are cor-
respondingly defined. During the design iteration, the prediction loop is open as

shown. The distortion cost to be minimized is:

DW= EladX, X))+ (1 —a)dy,Vve)]. (5.11)

Note that during iteration p, we seek to minimize the ultimate cost at iteration

p+1. Asymptotically, this makes no difference. This setting is used to ensure that

) . . A(pt1 )
the direct impact of the present error reconstruction (eip " +)1), and previous error

reconstruction (ég(ff inw) via the prediction loop on )A(,(fj:rll)

is taken into account
for effective update rules. Also, since the design is actually in open loop, égf 2%”

affects XD at time n + 1 only.
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5.4.1 Update rules: zero-drift DPC

For simplicity, we assume that d(-,-) is the squared error distortion measure.
The decoder codebook, encoder codebook, WZ mappings and the predictor are

updated iteratively using the following steps:

1. Decoder Codebook (Cg.): Entry (i,7),i=1:Z and j =1: 7 is given
by:

é2(i,j) = argmin > d(elrt, ¢). (5.12)
’ n:(e(p+1) e(yp-H))GR.XRV
z,n Cy.n i j

2. Encoder Codebook (C.,.): Entry i, i =1:7 is given by:
ém,enc(i) = arg min Z [Oé d( :Ep:i)h ég(vp:'zi)l)

1 ~ 1
+(1—a)d(eh, e (5.13)

where the resulting prediction error of source X depends on 1 via efcp :{i)l =

Tpyr — PPEPY 4 ], Note that efcp;)l is shorthand for &,(i%"", ;%41

1
the reconstructed value of el,p ” +)1

3. WZ Mappings: For k= 1,..., K, assign k to index ¢ = v(k) such that:

. 1) 4 1
(k) = arg min, > lad(ePT 1, 6.(i,55HD))
ne:(,;pzléckor
et e

+(1 = a)d(elTh e, (i, )] (5.14)

4. Predictor: See sub-section 5.4.2.
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The update rules for WZ mappings, the encoder codebook and the decoder
codebook and predictor for source Y are similarly obtained. Note that ¢ and j
point to codebook entries, subscript n indicates time, and superscript p indicates
the ACL iteration. To reduce clutter, superscripts were omitted where obvious,

e.g., i, for RY.

Further note that for presentation simplicity, we assume the codebooks and
WZ mappings in iteration p and p + 1 are same. Hence the expressions on the
left hand side of the above update rules correspond to encoder codebook (and
respectively decoder codebook and WZ mappings) for both iteration p and p+ 1.
We then increment the iteration counter p < p + 2. Note that this notion
of incrementing p by 2 is just for conceptual simplicity and asymptotically (as

p — 00) this will not make any difference.

5.4.2 Predictor optimization

To obtain an effective update rule for the predictor, we keep the various code-
books and WZ mappings fixed and take the partial derivative of the distortion
cost in (5.11) with the predictor. Specifically, we set V P(,,)D(p) equal to 0.

p—L\ N

For the fixed set of reconstructed sequence {i(encn n—o, the prediction error

at iteration p is calculated as:

=z, — PO (5.15)

T enc,n—1

For notational simplicity, we break the distortion cost in (5.11) as D® =
aD®P + (1— a)Dép ), where DY) and Dép ) are the contributions to the distor-

tion from sources X and Y, respectively: DP = E[d(X, X®*D)] and DY =
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E[d(Y,Y®)]. The term DY can be re-written as follows:

N
1 N
DY = DX, - X (510
n=1

(X, — el — X ) 12 (5.17)

enc,n

I
=] -
WE

3
Il
—

~

[Xn _ éggpjl-l) _ p(p)X(p)

T enc,n—1

]2 (5.18)

I
=
WE

i
I

X = Y = PO by + XS0L0P (5:19)

x,.enc,n enc,n—1

I
=
NE

i
I

where we have replaced the expectation by the sample averaging over N samples

in the training set.

While minimizing the distortion cost D® in (5.11) with respect to PP we
neglect the effect of adjusting predictor P on the reconstructed prediction error
egp i ) which can be considered a quantizer output (implemented by a high reso-

lution quantizer followed by WZ mapping); and is a standard practice in deriving

predictor optimization rule in single-source predictive quantizer design [17, 4].

Setting VP(p>D(p) = VP<p) Dg(ﬂp) = 0, we obtain the matrix equation:

T,enc,n— enc,n—1 z,enc,n enc,n—1

N
EZ ) = POy X0 [ eos + XL )T = 0(5.20)

where superscript T denotes matrix transpose. From the above expression, pw

can be explicitly found as:

ngp) — A(p)(B(p))fl (5.21)

x T
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where

N
AP = Y (= ) (@ hens + Kt 1) (5.22)
n=1
N ~ ~
and Ba(ﬁp) = Z(é(x{)inc,nfl + Xe(igi)fl>(éa(fe)mc,nfl + Xe(zz,rlz)fl)T (523>

3
Il
—

5.4.3 Algorithm description

In ACL iteration p, the various codebooks, WZ mappings and the predictors
are updated iteratively. Since these steps (finding optimal predictor for fixed
codebooks and WZ mappings; finding WZ mappings for fixed codebooks and
predictor etc.) within a particular ACL iteration are monotone non-increasing in
the distortion, convergence is guaranteed within that ACL iteration.

(p+1)

For the next ACL iteration, the sequence é;.en¢ is calculated using the index

. S (p+1) . .
sequence iPt1) . The reconstructed sequence X2 is obtained as:

X+ — x (@) + o(p+1) (5'24)

Enc ENnc x,enc

and the predicted sequence as:

X @+l — p) x+1) (5.25)

enc T enc

Again, we note that since the update rules involve parameters in iteration p and

p + 1, we then increment the iteration counter p < p + 2.

We initialize the predictor for the ACL iteration p + 2 as P = P and
proceed to the next ACL iteration. A flowchart describing the algorithm is given
in Fig. 5.9.
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Figure 5.9. Flowchart of asymptotic closed loop design procedure for distributed

predictive coding

38



5.5 Controlled-drift approach

5.5.1 Motivation and description

In the zero drift approach, to avoid any potential mismatch the encoder code-
book for source X (see Figures 5.6 and 5.8) was restricted to have index i as
input. However, the source encoder for X has complete knowledge of the pre-
diction error (e,) itself or effectively the index k (which is the output of high
resolution quantizer used primarily to discretize the source), while the decoder
has additional knowledge about the prediction error from the correlated source
Y, in the form of index j. This implies that there exist some (elusive) additional
information that could be exploited, if an appropriate means were devised. This
may be done by using different codebooks for the prediction loop at the decoder
and encoder, specifically assigning k as the input to the encoder codebook, while
the decoder loop codebook has i and j as inputs. This flexibility enables better
exploitation of inter-source correlation, at the cost of some drift in the system.
However, appropriate design of encoder and loop codebooks will optimize the
precise overall performance while accounting for and managing the drift. Note
that the controlled-drift approach actually subsumes the zero-drift scheme as an
extreme special case where the encoder and loop codebooks are effectively the
same and depend only on i. The encoder and decoder employed for the controlled-
drift approach during system operation are depicted in Fig. 5.10 and Fig. 5.11.
However during the ACL design, the prediction loop is open as shown for the
decoder in Fig. 5.12. We next specify the update rules for controlled-drift DPC

which parallel those of zero-drift DPC.
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Figure 5.12. Controlled-drift DPC decoder during design phase
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5.5.2 Controlled-drift DPC-Update rules

Again, we assume mean squared error distortion for simplicity. The notation
in what follows is necessarily heavy due to the multiple indexing involved; in
a nutshell we alternate between optimization of the decoder codebook, encoder
codebook, loop codebook , WZ mapping and predictor. The update rules be-
low are specified in terms of the subset of distortion terms that depend on the

parameters being updated; while avoiding overly detailed notation.

1. Decoder Codebook (Cg.): Entry (i,j), i =1:Z and j = 1: J is
obtained as:

é(i, j) = argmin > d(tp1, 30 o+ ). (5.26)

1 1
n: (e;p:Jr)l, ;p:Jr)l)GR ><R

2. Loop Codebook (Cj,yp): Entry (i,5),i=1:7 and j = 1: J is obtained

as:
A .o . (p+1)
6$,lOOp(/La .]) = arg Irb)ln Z d(fl?n+1, P (‘rloop " + ¢) xpn+1> (5 27)
n(ellh efh)ER, xR,
where ¢%) is shorthand notation for é,(i%", j#*
zntl e(Int1 s Jnr1 )-

3. Encoder Codebook (C.,.): Entry k, k = 1: K is obtained as:

ex7enc<k> -8 mﬁin Z [Oéd(fL‘n_H, ml(ogp n+1 + (xp:-il-)l)

1
+ (1 = a)d(Ynt1, yz(oo)p ntl T eép;+)1)]a(5-28)

where the resulting prediction error of source at encoder X depends on (

1 1
via eip T = Zpyy — PE%o) +¢], and exp AE ez(f 1) are the reconstructed

(p+1)
x,n+

(p+1)

value of e, .7 and e, ,, .}, respectively.
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4. WZ Mappings: For k =1 : K, assign k to index ¢ = v(k) such that:

. ~(p—1 ~ R ~ - 1
o(k) = arg min Y [ad(@ars, PalEln + Cotonplis 1) + ali, 5550)
it “rize;pgleckor
et ecy,
~(p—1 ~ .. ~ .. 1
(1= a)dWns1, PG5+ ey ioop(i, 5P)) + (0, 35N (5.29)

5. Predictor: Similar to predictor update in zero-drift DPC approach.

To reduce clutter, we have again omitted the superscripts where obvious,
e.g., R; rather than Ry etc. We optimize the predictor for both the zero-drift
and controlled-drift DPC schemes using the update rules derived in Sec. 5.4.2.
However, one may still do better in the case of controlled-drift scheme by allowing
different prediction filters at the encoder and decoder. In our experiments, we
observed that adjusting the prediction filters yielded modest performance gains
and thus we leave the derivation of optimal prediction filters in the controlled-drift

setting outside the scope of the work.

5.6 Simulation results

The following Gauss-Markov source model is used for simulations:
X, =0X,.1+w, and Y,=~Y,_1+u,, (5.30)

where w,, u, are i.i.d., zero-mean, unit variance, jointly Gaussian scalar sources
with correlation coefficient p. A training set of size 5000 scalars is generated.
The predictors P, (and P,) are first-order linear predictors designed using X

(and Y'). Simulation results are depicted in Fig. 5.13. In all simulations, the

92



weighting coefficient of (5.9) is set to v = 0.5 so that equal importance is given

to both sources at the decoder. The number of prototypes is 60 for each source.

In the first experiment, § =~ = 0.8 and p = 0.97. Both sources are encoded
at the same rate. The weighted distortion at the decoder is plotted versus the
number of transmitted bits for each source. We compare: (a) “non-distributed”
predictive coding, i.e., each source is compressed independently using standard
predictive coding; (b) memoryless distributed coding, i.e., no prediction is per-
formed and a simple distributed source coder to exploit inter-source correlation;
(c) zero-drift distributed predictive coding (DPC-ZD) and (d) controlled-drift
distributed predictive coding (DPC-CD). The two DPC schemes (with or with-
out drift) clearly outperform the other two compression schemes and gains of ~
1.7 dB are achieved (e.g., at Ry = Ry = 2 bits/sample) by the DPC-CD scheme
over traditional predictive coding or memoryless distributed coding. We do not
include the ‘naive’ approach for DPC design (see Sec. 5.3.4) in this comparison
due to severe instabilities exacerbated by the naive scheme as shown in the next

subsection.

In the second experiment, p = 0.96 and the transmission rates for the sources
are fixed at 2 bits/sample. The temporal correlation 3(= =) is varied in this
experiment. Note that the source variances change as we vary (3. So we need to

normalize weighted distortion by the weighted source variances. Hence we employ

aE[X%+(1-a)E[Y?] S .
the SN R defined as SBIX )Pt (=) Bl —T)7] which is a better performance metric
in this experiment. We plot SN R versus temporal correlation f(= 7). Again the
DPC schemes outperform traditional predictive coding or memoryless distributed

coding and gains upto 1.6 dB are achieved e.g., at § = 0.8.
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Figure 5.13. Performance comparison of distributed predictive coding schemes,
non-distributed predictive coding, and memoryless distributed coding. Figures
(a) and (c) show weighted distortion vs. rate and inter-source correlation respec-

tively. Figure (b) shows SNR vs. temporal correlation
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In the third experiment, § = v = 0.6 and R; = Ry = 2 bits/sample. We plot
the weighted distortion versus inter-source correlation p. The DPC-CD scheme
achieves gains upto 1.1 dB (at p = 0.95) over traditional predictive coding or
memoryless distributed coding. Here for low values of inter-source correlation, the
controlled-drift DPC scheme converges to the zero drift approach, but achieves

additional gains at high inter-source correlations.

5.6.1 Convergence of DPC:ACL algorithms

In Fig. 5.14, we show the convergence (in terms of weighted distortion) of
the controlled-drift and zero-drift DPC algorithms vs. the number of iterations
of the algorithms. The algorithms approach convergence in a small number of
iterations (typically 15 — 20). Since the design of DPC system will generally be
done offline only once, the complexity should be manageable. Note that a naive
combination of the distributed coding and predictive coding modules results in a

highly unstable sub-optimal system as was described in Sec. 5.3.5.

We also observed “limit cycles” in the DPC algorithms, similar to the de-
sign of single source predictive quantizer ([20]). This can be attributed to two
reasons: (a) during an ACL iteration, the various modules (codebooks and WZ
mappings) are each greedily optimized while keeping the others fixed. This leads
to convergence to a local minimum point. As we re-compute the reconstruction
sequences and prediction errors for the subsequent iterations, we may find dif-
ferent locally optimal points thereby causing the “limit cycle”; (b) the update
of WZ mappings (where different regions are mapped to indices can be consid-

ered as complex index-assignment problem) may exacerbate sub-optimalities. To
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Figure 5.14. Plot showing the convergence of various distributed predictive coding

algorithms. Here p = 0.98,3 =~ = 0.8, Ry = Ry = 2 bits/sample

overcome this shortcoming of limit cycles, annealing based techniques can be
employed. Note that an annealing based algorithm for single-source predictive
coding via ACL was proposed in [20]. We observed in experiments that these
limit cycles are small in magnitude and in general do not impact the algorithm

performance.

It should also be mentioned that we have run the various algorithms multiple
times since these iterative descent algorithms may converge to a local minimum
depending on initialization. Global optimization variants of the procedure are
also beyond the scope of this work. Finally, we note that the proposed methods
are extendible to incorporate entropy coding, but such extension is omitted for

brevity.
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5.7 Conclusions

In this chapter, we proposed iterative descent algorithms for the design of
distributed predictive coding systems for spatio-temporally correlated sources.
This is the typical setting for sources with memory in a sensor network. We have
shown that straightforward integration of distributed coding and predictive cod-
ing modules results in a highly sub-optimal system and tends to suffer from severe
design instabilities. We then presented approaches, namely, zero-drift DPC and
controlled-drift DPC. The zero-drift approach allows no mismatch between the
encoder and decoder prediction error estimates. To utilize inter-source correla-
tion more efficiently, the constraint of zero-drift is relaxed in the controlled-drift
approach. Simulation results show that the two proposed distributed predictive
schemes perform significantly better than memoryless distributed coding and tra-
ditional single-source predictive coding schemes. Finally the controlled-drift DPC
scheme offers additional gains over the zero-drift DPC scheme, especially for high

inter-source correlations.
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Chapter 6

Conclusions and Future

Directions

In this dissertation, we have studied certain problems of theoretical and prac-
tical significance in distributed compression of correlated sources: We devised
globally optimal design strategies for distributed coding of memoryless sources;
we identified the fundamental conflict between multi-stage coding distributed
quantization in multi-stage distributed coding and proposed an efficient initial-
ization scheme for scalable distributed coding; we developed a framework to effi-
ciently exploit both temporal and spatial (inter-source) correlations. We briefly

summarize the contributions and suggest directions for future work.

98



6.1 Main contributions

e Global optimization for DSC: In Chapter 3, we proposed a determin-
istic annealing-based algorithm for the design of quantizers of a robust
distributed source coding system. The approach is general and is applica-
ble to a wide gamut of coding and quantization problems, such as multiple
descriptions, distributed source coding, the CEO problem etc. This method
assumes no prior knowledge about the underlying probability distribution
of the sources, eliminates the dependence on good ad-hoc initial configura-
tions and avoids many poor local minima of the distortion cost surface. The
necessary conditions (and update equations) for system design are derived
and presented. Simulation results show that the proposed approach obtains

considerable gains over an iterative Lloyd-like algorithm.

e Scalable distributed coding: We considered the problem of scalable
distributed coding of correlated sources in Chapter 4. We preliminarily
specialized to a multi-stage distributed source coding, due to its reduced
requirements in storage and training data. This problem poses new chal-
lenges. We showed that mere extensions of distributed coding ideas to in-
clude multi-stage coding yield poor rate-distortion performance, due to un-
derlying conflicts between the objectives of scalable and distributed coding.
By allowing for some controlled mismatch between encoder and decoder es-
timates and reconstructions we have exploited inter-source correlation more
efficiently. We have developed an algorithm for multi-stage DSC design

which addresses the conflict between distributed and multi-stage coding.

We then considered the general case of scalable distributed source coding.
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We showed that a Lloyd-style iterative scalable DSC algorithm is heavily
dependent on initialization and may even underperform MS-DSC despite
the structural constraint of the latter. The MS-DSC algorithm solution
is used as an efficient initialization for the scalable DSC design algorithm.
Our proposed MS-DSC and scalable DSC algorithms consistently outper-
forms other naive MS-DSC or randomly initialized scalable DSC approaches

respectively.

Distributed predictive coding: For correlated sources that exhibit both
temporal and inter-source correlations, we reformulated the problem within
the representative setting of distributed predictive coding in Chapter 5. We
showed that the generalization from memoryless DSC to DPC is highly
non-trivial due to conflicting objectives of distributed coding and efficient
prediction. We also identified another challenge that arises from instabilities
in the design of closed loop predictors in distributed coding setting. To
circumvent the difficulty of closed loop predictive quantizer design, we re-

derived the asymptotic closed loop framework for DPC.

We proposed two different techniques for DPC: zero drift and controlled-
drift. The zero drift method guarantees that the encoder and decoder
prediction error estimates are identical while the controlled-drift approach
allows controlled amount of mismatch between encoder and decoder esti-
mates to improve the performance of the prediction loop. Both our pro-
posed schemes are stable and give substantial gains over naive approaches,

which are generally instable and give poor performance.
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6.2

Future directions

Source-Channel DPC: DSC in conjunction with lossy channels or net-
works is clearly very important. We have showed a design procedure for
robust DSC in this dissertation. In the case of robust DPC or in the context
of lossy channels, drift is simply unavoidable, thereby eliminating the zero
drift method from consideration. Our proposed controlled-drift methodol-

ogy can form the basis of a source-channel DPC or robust DPC system.

Integration of DSC and Systems with Feedback: We have identi-
fied the conflicts between distributed quantization and predictive (or multi-
stage) coding. This conflict primarily occurs due to the presence of a feed-
back loop in predictive coding (and respectively the dependence of enhance-
ment layer coding in multi-stage coding). If distributed coding is combined
with any other source coding system with feedback such as recursive vector
quantizers or finite state vector quantizers, such a conflict between the ob-
jectives of distributed coding and aforementioned source coding system is
inevitable. The design of such systems will pose similar problems such as
in DPC or scalable DSC systems and similar techniques of allowing some
controlled amount of mismatch can be leveraged for joint optimization of

all components in such systems.
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Appendix A

Critical temperature derivation

for phase transition in annealing

Recall that deterministic annealing finds the trivial global optimum at “high
temperature” where all the reproduction points coincide at the center of mass of
the source distribution. The first “phase transition” corresponds to the bifurca-
tion of the reproduction points into subsets. The temperatures at which various
phase transitions occur are called the critical temperatures. Here we derive the
expression for the critical temperature corresponding to the first phase transi-
tion for RDVQ. The result will be a generalization of the critical temperature for
special cases such as multiple-description vector quantizer, single source vector

quantizer etc.

Without loss of generality, we assume that the phase transition occurs for
code vectors corresponding to index i (representing source X) and the number

of code vectors increase from 1 to 2 (There can be a phase transition to more
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than 2 code vectors, but the necessary condition for bifurcation can be obtained
by assuming that the number of code vectors increases to only 2). At high
temperature (greater than the critical temperature for the first phase transition),
all the association probabilities are equal (uniform) and the code vectors for both

sources will be located at their respective centroids.

The expression of the Lagrangian cost in (3.14) that needs to be minimized

18:

L = D-TH (A1)
1 . .
- N Z [Z ChlaCyTilkTj Dnet (2, Y, 4, )
xuyeT k7l7i1j
+T{Y_ cnaranlog(rie) + 3 cpyryplog(ryy)}],  (A-2)
ki 1,j

where Dyet(x,y,1,7) is given in (3.2) and the last two terms are for the source
entropies H(K,I|X) and H(L, J|Y) respectively defined in (3.15) and (3.16).
Since, we are assuming only 1 possible value for index j (phase transition occurs
for code vectors corresponding to index i), the second entropy term is zero. Also
> ¢y = 1 from (3.11) since a training set point for ¥ will map only to one out
of £ possible prototypes. Hence the above expression reduces to:

L = — Z ch|$cl|yn|anet(:l: Y,1,] +T{Z Ck|zrz\kl0g Tz|k>}] (A3>

myET ki

= — Z ch|zn|kDmt(:v Y, 1, ] +T{Z CrlaTiklog(rik) . (A4)

xyeT ki

Next we make a simplifying assumption that the number of prototypes (out-
put of the high rate quantizer @Q)q, see Fig. 3.2) is large and there are as many

prototypes as the number of data points. Hence there is one-to-one correspon-
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dence between a data point and a prototype and

rip = Prlzy, € Rj] = Prlz € R} = pi, (A.5)

Using (A.5) and ), ¢k = 1 from (3.11), the expression of free energy in

(A.4) can be re-written as:

1 .
L = 5 2D piaDualey,id) + T{Y_pilog(pnc)}]. (A6
z,y€T 4 i
We assume squared-error distortion measure for further analysis. We further
write Dy as DY " to explicitly indicate that the distortion at first phase transition

(pt) is only affected by index ¢ (the only possible value of j is 1). The expression

for DY can be simplified as:
DY = Xo{ao(z — 20_1)* + (1 — o) (y — 9%5-1)%} + M{on (@ — 3})?
(L —on)(y — )"} + Aefon(r —352)" + (1 - o)y — i)} (A7)

The reconstruction values for central and side decoder 1 are same at high

0
ij

1

= 7, (since j takes only one value)

temperature at the source centroid, i.e., & ;

and similarly for Y. Using this and combining terms, DY " reduces to:

DI = (Aoag + M) (z — 21)% + {Ao(1 — ag) + A (1 —an)}y — §))* +

Aot (= 27_1)* + Aol — o) (y — 5_1)* (A.8)

We define the covariance matrices for the source data as follows:

Crz = % Z (z — ) (T — :uw)ta

z,yeT
1
Coy = % > (= )y — )"
z,yeT
1
and Gy = = D (y—m)y—m), (A9)
z,yeT
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where f1, and p,, are the respective source means. For notational convenience, we

define Bl = /\00[0 + /\10[1 and ﬁg = )\0(1 — O[()) + /\1(1 — Oél).

At the phase transition, the code vectors #;_, and #]_, for X (and similarly
for Y') will separate and move to new respective different locations. At the critical
temperature for phase transition, the system solution changes from a minimum
to a saddle point. Equivalently the Hessian matrix of the free energy (L) with
respect to the code vectors (#_,, #1_,, g, and §,) will no longer be positive

definite, and its determinant will vanish.

For the calculation for the Hessian matrix, we first compute the association
probabilities p;, from (3.8), (3.9) and (3.17) or by directly minimizing the free
energy L with respect to p;,. The association probability p;, is given by:

=D/

i einlt/T

and can be substituted in (A.4). It can be shown by straightforward derivation

that the Hessian matrix is given by:

Bl = $61Cw)  CECu -4k, ap e,
H, — @Om Bl = 761Cse) bk, 4o,
_ﬁlTﬂQ Cfsy ﬁlTﬁQ Cf:y 62(1 - %ﬁQny) (6;)2 ny
L %Cﬂtﬁy _%Ciy (512“)20311/ Ba(l — %526?;@/) |
(A.11)

where [ is the Identity matrix and super-script ¢t denotes matrix transposition.

Setting the Hessian matrix determinant to 0 yields:

det | (I — 28,C,,)(I — 25,Cy,) — 2012 CpyCt, | = 0. (A.12)
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The above equation is implicit in the critical temperature T'. We next obtain

and interpret explicit solution for special cases of RDVQ:

1. Single Source Vector Quantizer (say for X ): Here, only one channel will
be present, i.e., Ay = 1; A\g = Ay = 0 and only source X will be of interest,
i.e., ay = 1. Therefore, we have ; = 1 and (2 = 0, and (A.12) reduces to
det[I — 2C,,] = 0 . This implies that the critical temperature for the first
phase transition will be at T = 27, where v, is the largest eigenvalue of

Cyz, and matches the basic DA result in [37].

2. Multiple Descriptions Vector Quantizer: Here the two sources are identical,
i.e., Y = X. The expression in (A.12) reduces to det[] — 2(8; + 32)Cyl.
Also B1+ 062 = Ao+ 1. The critical temperature for the first phase transition

will be 2 4, (Ao + A1) which was also derived in [23].

3. Jointly Gaussian Scalar Sources: For zero-mean sources X and Y with
respective variances o2 and 05 and correlation coefficient p, the condition

in (A.12) reduces to:

23 20 B15
(1- Tlo—g)@ - T%g) - 4%,)2030—; = 0. (A.13)

The expression for T, can be found by solving the above equation. If o2 =

5 = 02 and both sources are given equal importance during reconstruction

o
(81 = B2), we have T..;; = (Ao + A\1)o(1 + |p|). When the sources are
perfectly correlated (p = 1), this reduces to the multiple description case for
scalar sources as expected (Y = X). For the case when p = 0 (uncorrelated

sources), T, reduces to {\g + A1 }o?. This can be interpreted as follows:

when X and Y are perfectly correlated (p = 1), the sources are spread along
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one direction only (in the X —Y plane). On the other hand, as p decreases
from 1 to 0, the sources (in X —Y space) are spread in an isotropic fashion
along all the directions. Thus, there is more symmetry in the system and
it will take longer for the codevectors to split as we lower the temperature
during the annealing process. Therefore, the critical temperature decreases

to a lower value as p decreases (analysis for negative values of p is similar).
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