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Abstract

Fusion Coding, Search and Retrieval of Correlated Data

by

Sharadh Ramaswamy

This work is a collection of results on novel uses of quantizers for two problems in

database management, namely, similarity search in high-dimensional databases, and

fusion-compression for selective retrieval of correlated data sources (data-streams). The

results can be grouped into three main categories, each of which occupies a paragraph

below.

Similarity search for nearest neighbors in databases where entries are represented by

high-dimensional, correlated features, is challenging and compression is a reliable means

to speed up search time. It is shown how to efficiently use the vector quantization

scheme for exact similarity search. A new cluster distance bounding technique, based

on separating hyperplanes and cluster supports, is presented and shown to achieve exact

similarity search while requiring the retrieval of only a few relevant clusters. Next, a

property of point-to-hyperplane distance is derived that enables extending the query-

cluster distance bound to an adaptively changing Mahalanobis distance matrix. The

resulting cluster indexing efficiently adapts to relevance feedback from the user. Finally,

these bounds are further tightened by recasting the problem of cluster-distance bound-

ing as norm minimization with linear constraints. The resulting convex optimization

problem complexity is polynomial in the number of dimensions.

The second focus is on fusion compression for selective retrieval of data from cor-

related source (sensor) networks. A fusion coding paradigm is presented where, given

a fixed storage rate (space), the retrieval rate (time) is traded against distortion (qual-

xi



ity). Only statistics of future queries are assumed to be apriori known. The optimality

properties of the fusion coder are derived, and an iterative algorithm for design is pre-

sented. Lastly, these properties are exploited to reduce growth of design complexity with

query-set size and designs are adapted to queries unknown during design phase.

The proposed fusion coder’s design complexity scales exponentially with storage rate

and number of blocks. Two techniques are presented to handle the growth in design

complexity. In the first, by imposing “clever” constraints on fusion coder modules, a

“Shared Descriptions” framework is obtained wherein, it is possible to trade storage rate,

retrieval rate, distortion and complexity of design against each other. This allows design

at high storage rates and provides gains over naive quantization schemes that have not

been optimized for fusion coding. On the other hand, time correlations are exploited

by a predictive coder, which is a low-complexity alternative to fusion coding over long

blocks. The algorithm for predictive fusion coder design is based on the asymptotic

closed loop principle and thereby, stable. The resulting predictive coder is matched to

the closed-loop error statistics and provides substantial gains over memoryless fusion

coding and joint compression schemes.
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Chapter 1

Introduction

The development of high-speed electronics has resulted in proliferation of multime-

dia devices such as CD players, MP3 players, digital cameras, imaging devices, which

generate huge volumes of multimedia data. At the same time, there has been a dense

deployment of low-cost sensing devices to monitor the environment, such as tempera-

ture sensors, where due to their geographical proximity, there are dependencies in the

observations of the sensors. Combined with the availability of cheap storage, this has

led vast data archives as well as several applications to mine these data. Data mining in

such repositories requires the extraction of rich, high-dimensional, correlated features.

This thesis focusses on how these correlations might be exploited through source coding

to minimize required storage and to accelerate retrieval in databases.

We are concerned with two important database applications. The first deals with

efficient nearest neighbor search over databases of high-dimensional features extracted

from images etc. The other is a fundamental problem in efficient storage and fast retrieval

of correlated data-streams whose solution is critical to the usefulness and practicality

of sensor network databases. Compression has so far been used only to reduce storage

space/bandwidth requirements. But in this thesis, we show the extensive applications

of compression in both the above problems.
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The work can be grouped into three categories, each of which is described below. In

Section 1.1, we outline the compression approach to similarity search, including exten-

sions to incorporate user feedback and retrieve perceptually relevant results. In section

1.2, we describe the problem of fusion coding of correlated sources, as well as a frame-

work for optimizing the storage rate-retrieval rate-distortion tradeoff. In Section 1.3,

we consider the scalability of optimal fusion coding systems and note the exponential

growth in complexity. By revising the method to impose constraints on complexity, we

achieve scalable design algorithms that handle large sensor networks, and signal sources

with memory.

1.1 Indexing for Exact k-Nearest Neighbor (kNN)

Search

In data mining, the data objects are abstracted by a set of representative features.

Given the complexity of human perception, a rich set of feature vectors needs to be

extracted from multimedia data for mining. The high-dimensionality of the features

and the large databases handled necessitate offline storage, on a hard disk device. Since

hard disk devices are slower than computing devices, the disk access times dominate

query-search times. However, the search for nearest neighbors in such high-dimensional

databases is challenging due to the “curse of dimensionality”. Several, state-of-the-art

indexing schemes rely on some form of compression to speed up search time. The well

known Vector Approximation-File (VA-File) performs scalar quantization of the data-

set, but ignores feature correlations. Vector quantization (VQ) on the other hand can

exploit correlations and dependencies across feature dimensions and thereby produce

a compact representation of the data-set. While the use of clustering/VQ for fast,

approximate search is well known, we now show how to efficiently use the same VQ

scheme for exact search.
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Central to our indexing approach, is the need to estimate query-cluster distance

bounds. Conventional distance bounds based on Minimum Bounding Rectangles (MBRs)

and Minimum Bounding Spheres (MBSs) are loose. This results in weak spatial filtering

and restricts applicability of the VQ scheme to approximate similarity search. We present

a new cluster distance bounding technique, where we project the query onto separating

hyperplanes and complement with cluster-hyperplane distance (cluster support). This

“hyperplane bound” produces tight, lower bounds on query-cluster distances, resulting

in retrieval of only a few relevant clusters. We note that Voronoi cluster boundaries are

linear hyperplanes and it is these that are used in cluster-distance bounding. We also

present a reduced storage complexity hyperplane bound, that is almost equally effec-

tive. Substantial gains in IO performance, computations and preprocessing storage over

known indexes are noticed on several large data-sets.

While indexing multimedia data, it is equally important to retrieve perceptually rel-

evant results. In order to do so, a popular approach is to use relevance/user feedback

to update the distance measure, typically the weight matrix of a Mahalanobis distance

measure. However, this complicates indexing, as usually knowledge of the weight ma-

trix is needed for index construction. Consequently, when relevance feedback updates

the weight matrix, several indexing schemes are rendered ineffective. We derive an in-

variance property of point-to-hyperplane distance that allows recalculation of cluster

supports as the weight matrix changes, without accessing the cluster. This allows for

tight bounding of query-cluster distance using the proposed hyperplane bound, under a

changing Mahalanobis distance matrix. Thus, cluster indexing for relevance feedback is

possible.

Finally, we improve upon the hyperplane bound by recasting cluster-distance estima-

tion as norm minimization under linear constraints, imposed by separating hyperplane

boundaries. This is equivalent to bounding the cluster with a convex polytope and es-

timating the distance from the query to the polytope. In this fashion, given multiple

separating hyperplanes, we search over all hyperplanes and all points of intersection.

3



We note that, given K hyperplanes in a d dimensional space, the number of points of

intersection are O(Kd). This is a consequence of “curse of dimensionality”, which inca-

pacitates naive search over all possible intersections. However, since norms are convex

functions, the distance estimation is a convex optimization problem and can be solved

in time polynomial in the number of dimensions. We note that Mahalanobis distances

are also norms and hence, such cluster distance bounding technique adapts to changing

Mahalanobis distances as well. The reader is directed to Chapter 3 for details and results

from experiments on several real, high-dimensional data-sets.

1.2 Fusion Coding of Correlated Sources

Our second focus is on a new application of source coding in the compression of

data collected from correlated source (sensor) networks, which we term as the fusion

coding of correlated sources. Given huge volumes of data from multiple sources (or data-

streams), it is necessary to compress and save storage space. Yet, at the same time,

only a select a-priori unknown subset of sources could be queried. Such database design

introduces fundamentally new and interesting challenges: On the one hand, inter-source

correlations may be exploited via joint coding to reduce the overall storage requirement

and to potentially reduce the retrieval time. On the other hand, a future query may

select only few of the sources for retrieval, and it would be wasteful to have to retrieve

the entire (jointly) compressed data only to reconstruct a small subset.

Thus, at the heart of the problem, lies a trade-off between storage rate (space) versus

retrieval rate (time), (both measured in terms of bits stored or retrieved). An example

application of the proposed fusion coding of correlated sources is in the arena of sensor

networks, which has been the focus of extensive research in recent years. Much of the

effort in sensor network design has been dedicated to the development of device and

communication technologies. But in order to fully realize the potential of most such

systems, it is necessary to efficiently store the vast volumes of data generated by the

4



network for future retrieval, as needed for analysis or other uses.

We assume that only statistics of future queries is known and are interested in designs

for lossy compression. In Chapter 4, we present a Fusion Coder (FC) for the joint

compression and selective retrieval, or fusion coding, of correlated sources, where given

a fixed storage rate (space), the retrieval rate(time) is traded against distortion (quality).

The fusion coder is composed of three modules: an encoder, a bit-selector and a decoder.

The crucial components is the bit-selector which allows retrieval of only subsets of stored

bits for each query. We derive optimality properties of each module and present an

iterative algorithm for FC design. We study the design complexity of FC and note

growth with query-set size. We exploit the properties of the optimal FC to reduce

complexity of design. Lastly, we present techniques to adapt FC designs to queries

unknown during design phase.

1.3 Efficient Design of Fusion Coders

By increasing the storage rate, better trade-offs between retrieval rate and distortion

are possible. Secondly, in order to exploit temporal correlations in data, coding over

larger block lengths would be necessary. However, the proposed FC’s design, storage

and operational complexity scales exponentially with storage rate and number of blocks

coded. We consider two approaches to handle the growth in complexity. In the first sce-

nario, by imposing “clever” constraints on FC modules, we obtain a framework wherein

it is possible to trade storage rate, retrieval rate, distortion and complexity of design.

Specifically, the bit-selector is constrained to retrieve only from disjoints groups of bits.

Consequently, the encoding of such bits can be independently performed, which in turn

reduces storage complexity. Simultaneously, an estimate of complexity becomes avail-

able. Each such group of bits is termed a “Shared Description” and the corresponding

coder is termed the Shared Descriptions Fusion Coder (SDFC). The proposed SDFC

allows design at high storage rates and provides gains over naive quantization schemes
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that have not been optimized for fusion coding. For details, the reader is directed to

Chapter 5.

On the other hand, we propose to exploit time correlations by a Predictive Fusion

Coder (PFC). However, PFC design is complicated, not only by the feedback loop, but

also by the need to account for an (exponentially) large set of queries at the encoder.

The optimal encoder would have as many prediction loops as there are queries and

could be of impractical complexity (even for moderate sized networks). We impose

complexity constraints on the encoder where queries and sources share prediction loops.

We derive an iterative algorithm for predictive fusion coder design, which is based on the

“Asymptotic Closed Loop” framework and hence, circumvents optimality and stability

issues that plague traditional predictive quantizer design. The proposed PFCs directly

optimize the distortion-retrieval rate tradeoff, given a fixed storage capacity, and hence,

provide significant gains over storage schemes that perform only joint compression or

memoryless fusion coding of all sources.

Prior to discussion of our methods and approaches to organizing such correlated

databases, we present background, discuss other prior, relevant works and develop some

of our notations in Chapter 2. A summary of the main contributions of this dissertation

and some directions for future research are presented in Chapter 6.
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Chapter 2

Background

2.1 Multimedia Database Management

Advancements in magnetic storage and semiconductor technology has led to a prolif-

eration of personal digital multi-media devices, such as digital cameras, video recorders

etc. and archival of multimedia data. This, in turn, has spawned new database appli-

cations that handle these data, such as image search engines [1], digital libraries (such

as the Alexandria Digital Library project [2]), personal digital albums [3], Multime-

dia Information Systems (see [4][5] [6] and more recently, the Photo-tourism project

[7]), Computer Aided Design/Manufacturing (CAD/CAM), Geographical Information

systems (GIS) [8], medical image mining [9][10], social networking [11] etc. However,

the nature of these databases is such that their organization based on the well known

relational database model is insufficient. For example, while searches based on key-

words is the current paradigm in many search engines, keywords are not necessarily

the most effective representatives of multimedia information. It would be ineffective

to mine databases of medical images based on keywords or “metadata” if the goal is

to discover hidden correlations that are unknown and hence have not been quantified
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through metadata. Clearly, content-based database management is a more appropriate

paradigm.

In the last decade or so, we have moved towards an “Information Age”, where we

handle more complicated tasks for which known analytical methods/models are poor

fits. It has become inevitable to learn the models and predict from data i.e. to perform

“machine learning”. For example, spam is of such a nature that only machine learning

approaches such as Bayesian prediction [12] are appropriate for spam filtering. However,

the impact of such tools necessitates large training sets and hence the need to collect

and archive data. Another example is efficient bug detection in large program code

i.e. automated software support (see [13]). Yet another example is extensive weather

sensing and archiving for building better climate models. In some cases, the statistics

and nature of data change with time. For example, spammers respond to Bayesian

filtering by changing the structure of their emails [14] and hence, even spam filters

would need to evolve. Another case would be mathematical modelling and algorithmic

trading strategies in finance. As better models for financial data are derived, better

trading strategies are devised. However, the market “evolves” and changes to these

approaches, which necessitates continued study and improved modelling. Even then, all

new models are evaluated against (archived) historical data, before acceptance.

Thus, there is a strong rationale for archiving and mining multimedia data. The

variety of data that need to be collected, handled and mined is huge, varying from

text data to streaming time-series data; geospatial data to source/executable program

data (in code repositories) and multimedia data. Data organization for content-base

retrieval/use would involve feature extraction, clustering, indexing, tagging, filtering

(e.g. spam/ham filtering), pattern recognition, mining etc. Therefore, there is need for

efficient multimedia database management.

8



2.2 Storage Technology

Historically, storage technology has always lagged processor technology in speed and

available storage has almost always lagged applications i.e. as with case of computational

units, applications outstrip available storage. In all storage media, data is stored and

accessed in units of pages. A page is a block of bytes and modern hard disks have a

page size of around 4kB. Typically, there is a limit on the page size. This is necessary to

reduce disk fragmentation and to reduce susceptibility to power failure (on hard disks).

However, page sizes themselves are application/technology dependent [15]. With the

exception of tape drives, on most storage media, data can be accessed by serial access

(or serial IO) or by a random access. This includes hard disks, random access memory

and compact discs (optical) media. Depending upon the kind of storage technology, the

costs of sequential and random page IOs vary.

2.2.1 Hard Disk Technology

Hard-disk technology consists of storage on cylindrical disks where a head writes

(creates) or retrieves a magnetic polarization pattern. The magnetic medium can be

easily erased and rewritten, and it will “remember” the magnetic flux patterns stored

onto the medium for many years. Combined with a very low price/density ratio, this

makes the hard disk the preferred storage medium. The magnetic read/write technology

is similar to how storage on tapes and tape drives takes place but retrieval on hard disks

can be through random IOs as well. The disks rotate at high speed (currently reaching

20,000 rpm), while the head can move across the surface of the disk. Some hard disks

have multiple read/write heads.

The time taken to retrieve data from the disk is a sum of seek time, rotational latency

and transfer time. Seek-time is the time taken to position the disk head over the track

and varies from 0-20msec. Rotational time is the time taken for the corresponding block
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to rotate under the head and takes about 0-10msec. Transfer time is the time taken to

actually move data to/from the disk surface and is about 1msec per 4KB page. Thus, we

can see that seek times dominate access times. Hence, random IOs are more expensive

on hard disks. On modern disks, the page access time for a single random IO is 100

times that for a single serial page access. Random IOs are better in retrieving pages

spaced far apart, while sequential IOs are better for reading closely spaced pages. Each

new disk access would involve one random IO and if more data need to be retrieved, a

few additional sequential IOs1. If all the pages to be accessed are known before hand,

the optimal sequence of sequential and random IOs is determined as the shortest path

over a suitably defined graph [16].

2.2.2 Semiconductor Memory

Semiconductor or random access memory (RAM) have faster access times than mag-

netic media. The access times on RAM are limited by electronics (or corresponding

quantum mechanical limits), unlike hard disks, where access speed is limited by me-

chanical components. Sequential and random page IOs have roughly the same cost.

Historically, RAM has been more expensive and only possible for short term storage.

But recent technology developments have resulted in better price-performance ratios and

allowed long term retention of stored data. It is expected that in the near future, RAM

would replace hard disks, at least, in personal computing devices.

2.2.3 Other Storage Media

Optical (such as CD/DVD) disks, unlike hard disks and RAM are typically “write

once, read many” devices, which restricts their applications, even though they have high

density of storage and are durable for several years. Optical media are typically suited

1We note that this is a relatively simple model, as we ignore the effects of the cache and other
physical hardware processes on disk access. True estimates of access times would depend on these
factors as well, but for our purposes, this level of abstraction is sufficient.
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for video/audio streaming applications.

2.3 Data Representation and Feature Extraction

Data stored in a database often contain correlations and dependencies. By exploiting

correlations, we can compress a database efficiently i.e. have a more compact represen-

tation for same quality or vice versa. In other words, a compressed representation

allows for faster retrieval. More importantly, this could be used to improve kNN search

speed by searching over the compressed version of the database prior to access of the

actual database. In this thesis, we deal with signal databases of two types - either

static databases of vector data or dynamic databases of streaming data. The former

would consist of high-dimensional features extracted from images etc. and maintained

for similarity indexing. The latter consist several individual, correlated streams of data

(signals) consisting of measurements from sensor networks or time-series such as stock

market streams.

Sometimes raw data are used directly as features, for example in a database of

employee payrolls or in repositories of sensor data [17]. In the case of signal databases,

often, it is more useful to represent the database objects based on features extracted

from the data, rather than the raw data. A feature representation would be chosen

based on an application or database at hand. For example, Fourier transforms are found

to be compact representations of time-series and are often used in feature extraction

[18]. A useful property of the Discrete Fourier Transform (DFT) is that moving average

(or any linear operation) in time is a scaling of the Fourier feature space (when the

DFT is properly evaluated) [19]. Additionally, it has been found to be easier to monitor

correlations among streams in the Fourier domain [20]. Wavelet representations have

been found to be useful in interpolating missing values [21] and comparable to Fourier

representations [22]. Piecewise constant representations [23] have been found to return

perceptually relevant results, when used for similarity indexing.
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In the case of images, other kinds of features are more useful. Popular descriptors are

the color histogram [4], the color layout descriptor (CLD) [24], scale-invariant feature

transforms (SIFT) [25], shape descriptors [26] etc. Recently, a combination of texture

features (extracted through Gabor filters) and color features (histograms) have been

found to be efficient descriptors for a broad class of images and form a part of the MPEG-

7 multimedia standard (see [27]). Useful feature vectors are often high dimensional, such

as the 60 dimensional texture descriptors of [27]. For video, in addition to color, shape

and texture features, motion intensity descriptors are known to be useful [24]. In the case

text mining, term frequency-inverse document frequency (tf-idf) features are commonly

used [28], while inverted lists [29] are often preferred for text document indexing.

2.3.1 Feature/Data Storage

With large amounts of data being collected and with a rich set of high-dimensional

features being extracted, storage on the relatively limited and expensive primary mem-

ory (RAM) is impractical. On the other hand, magnetic hardware offer high storage

density-cost ratios and preferred media for feature or data storage. However, such sec-

ondary storage devices are significantly slower and hence, IO access time dominates

query processing time.

2.4 The Concept of a Query

A query is a request for information. However, the nature of the query would depend

on the database and application at hand. In this thesis, we restrict attention to two

kinds of queries, which are described in the following subsections.
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2.4.1 Similarity queries

The first class of queries that shall be considered are similarity queries. Here, the user

provides the system with an object, from which a query vector is abstracted. The system

is requested to return all objects similar to the query or perform similarity search. The

search and retrieval is based on the content of the query and objects in the database,

i.e. it is a content-based retrieval. We note that in the context of similarity queries, the

query vectors and feature vectors lie in the same vector space. A common model is the

query-by-example where the user selects an object from the database most relevant to

the query.

The similarity of two objects is assumed to be proportional to the distance between

their feature vectors. A distance function d(p, q) estimates the distance between vectors

p and q in the feature space. Commonly used distance functions are the Euclidean (l2

norm), Mahalanobis distances and lp norm (p ≥ 1) (for real vectors), the Edit distance

(for strings/text) and the Hamming distance (for finite alphabet vectors). Usually, good

distance functions are also metrics [30].

Some popular similarity queries are listed in the following table.

Table 2.1. Types of Similarity Queries
Type of query Search results in ...
Single Nearest Neighbor (1NN) The closest (nearest) neighbor

to the query
k Nearest Neighbor (kNN) The ‘k’ Nearest Neighbors (NN)

to the query
range-query or εNN All feature vectors (data elements) within

ε distance from the query
(1 + ε)-query All feature vectors within (1 + ε) of the

distance to the 1NN
εkNN query k feature vectors with utmost ε error in distance

from the query

We note that kNN queries are widely applicable to many databases, whereas range

queries are more appropriate for geospatial or alphanumeric (such as payroll) data. This

is because when dealing with databases of features such as image feature sets, users would
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find it difficult to define the radius of search, whereas in geospatial databases, this is

quite intuitive. It is for of this reason, in experimental sections, we limit discussion to

kNN queries as our similarity queries.

2.4.2 Queries in Correlated Source Databases

We also consider another class of queries. Given a database of sources X1, ..., XM ,

this query is a request for a subset of these sources. For example, when a database

accumulates several stock market streams, a user could request data from only the

technology stocks (a subset of these streams).

Employing binary variables qi ∈ {0, 1} to denote whether source Xi is requested or

not, we represent queries by M -tuples of the form

q = (q1, ..., qM) ∈ Q (2.1)

where Q ⊆ {0, 1}M represents the domain-set of queries. We next introduce notation

for the query distribution, or the probability mass function (pmf),

P : Q → [0, 1] (2.2)

It is to be noted that there are conceivably 2M possible queries and
∑
q∈Q

P (q) = 1. With-

out loss of generality, we assume that each source is requested with positive probability

(i.e., there exists some query with positive probability whose requested subset includes

the source) and that a query always asks for a non-empty subset of sources, i.e.,

P (0) = 0 (2.3)

Clearly, queries and data lie in different spaces.
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2.5 Need For Similarity Indexing

As described before, a host of new database applications such as Multimedia Infor-

mation Systems, Geographical Information systems (GIS), time-series analysis (in stock

markets and sensors) etc., need to be supported, that store large amounts of data for fu-

ture retrieval (see [10] for more examples and applications). The size of these databases

can range from the relatively small (a few 100 GB) to the very large (several 100 TB,

or more). A very important application is to find the most similar objects within the

database to a query object. When the search is based on the content of the (query and

database) objects, the search is termed a similarity search. A typical application is in

image databases i.e. to search for the database images most similar to a query image.

Similarity search serves an important role in knowledge discovery and is hence ex-

tremely useful. For example, by similarity searches over biomedical images, hidden cor-

relations between different medical conditions might be discovered. In the future, large

organizations will have to retrieve and process petabytes of data, for various purposes

such as data mining and decision support. Given the volume of data being handled,

the only cost effective solution (to date) is storage on secondary hard-disk devices. But

since secondary devices are extremely slow, compared to modern processing units such

as CPUs, the time spent in data access (IO time) overwhelmingly dominates query pro-

cessing time. Hence, the need to organize the database for quick similarity searches i.e.

efficient similarity indexing.

More generally, indexes perform information filtering, reduce search and access times

and are used in several disparate applications. Examples include but are not limited to

dictionaries (inherent usage), file systems, payroll indexing [31], Web search engines,

scientific document and co-citation indexes such as Google Scholar, CiteSeer, Microsoft

Libra (also see [32] [33]), inverted lists [29] and Latent Semantic Indexing (LSI) [34]

for text retrieval, Computer Aided Design (CAD) systems, Geographical Information

Systems (GIS) systems (e.g. Google maps) etc. In fact, the R-tree [35] was originally

15



devised for a CAD application (see [36]) i.e. to reduce search and processing time in

determining whether an area of the chip was used or not. The first portion of this thesis

focuses on multidimensional indexes for similarity searching in real, vector spaces.

2.5.1 Traditional Tree-based Similarity Indexing

Several index structures exist that facilitate search and retrieval of multi-dimensional

data. In low dimensional spaces, recursive partitioning of the space with hyper-rectangles

(R-trees [35], R∗-trees [37], k-d trees [38]), hyper-spheres (SS-Tree [39]) or a combination

of hyper-spheres and hyper-rectangles (SR-Tree [40]), have been found to be effective

for nearest neighbor search and retrieval. While the preceding methods specialize to

Euclidean distance (l2 norm), M-trees [41] have been found to be effective for metric

spaces with arbitrary distance functions (which are metrics).

2.5.2 Curse of dimensionality

The phrase ‘curse of dimensionality ’ actually refers to the exponential growth of

hyper-volume with dimensionality of the space and was initially introduced by Bellman

[42], in the context of multidimensional optimization. As an example, for the simplest

space partitioning scheme (such as described in the [43]), where the data space in each

dimension is partitioned into two halves, with d-dimensions, there are 2d partitions.

Also, note that each such d-dimensional partition is a rectangle with 2d vertices. With

d≤10 and with around 106 elements in the data space, such a partitioning strategy for

database search makes sense. However, if d is larger, say d=100, there are around 1030

partitions for only 106 points i.e. the overwhelming majority of partitions are empty.

Several multidimensional indexing strategies can be thought of as maps of the data

(input) space. Loosely speaking, such maps try to somehow cover or represent every

part of the input space. Covering the entire input space takes up a lot of resources,

16



and, in the most general case, the amount of resources needed is proportional to the

hyper-volume of the input space. The resources in this case are the size of the index tree

(storage cost) and the number of IO accesses (the retrieval cost). Because of the curse of

dimensionality, a very-large portion of the space is actually empty and hence, almost all

resources are used on irrelevant/empty portions of the data space. So, similarity search

by searching all space partitions, would lead to a large number of needless disk accesses,

making it slower than the simple sequential scan.

2.5.3 Failure of Tree-based Indexing

Conventional multi-dimensional indexes such as R-tree [35] work well in low dimen-

sional spaces, where they outperform sequential scan. But it has been observed that the

performance of many such multidimensional index structures, degrades with increase

in feature dimensions and, after a certain dimension threshold, becomes inferior to se-

quential scan. In a celebrated result, Weber et. al. [43] have shown that whenever

the dimensionality is above 10, these methods are outperformed by simple sequential

scan. Such performance degradation is typically attributed only to Bellman’s ’curse of

dimensionality ’ [42]

A more careful analysis of such indexing schemes reveals other reasons for their

failure. These are

• Recursive Partitioning and Fragmentation: A notable characteristic of such

indexes is recursive space partitioning. This is done till each node contains utmost

only as many vectors as allowed by the page size and dimensionality. While the

goal is to retrieve these pages with a single random IO, we note since page capacity

reduces with dimensionality, the “fanout” of these trees reduces with dimensional-

ity and consequently, height of such trees increases. This leads to (exponentially)

more storage (O(ah), for some constant a and tree height h) and unnecessary frag-

mentation of the data-set. For example, consider total index storage costs reported
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in [44], which dominate the size of the original data-set. Similar feature vectors

now lie on different pages and need to be accessed by separate random IOs.

• Weak Adaptation to Data-set Statistics : Few of these indexes are created

by processing the whole data-set in batch mode. In indexing terminology, few

indexes are bulk-loaded. Often, indexes are created and updated by sequential

access of elements, assuming that data elements are available only one-at-a-time.

This unnecessary restriction leads to weak adaptation to data statistics. Index

creation is dependent on the order of data access and hence can trapped in poor

local minima.

• Distance Estimation with Bounding Rectangles and Spheres : Typi-

cally, distance bounds to regions of the database are calculated through Mini-

mum Bounding Rectangles (MBRs) and Minimum Bounding Spheres (MBSs). As

d → ∞, the useful (or used) volume inside MBRs and MBSs → 0 (a true con-

sequence of the ’curse of dimensionality’). An attempt to compensate for this by

partitioning through both MBRs and MBSs was performed with minimal success

[40].

• The Law of Large Numbers Effect : Some data-sets are just not indexable,

typically synthetic data-sets for e.g. Uniform iid data-sets. If X,Y ∈ R
d, Xi, Yi

are iid i.e. ∀i and Xi⊥Yj, ∀i, j, then for “large” d∑d
m=1(Xm − Ym)2 ≈ d.E((Xk − Yk))

2) =constant

This result (see [45], [46]) would imply that any two elements in the data-set

are almost at the same distance away from each other. We note that this is a

consequence of the Law of Large Numbers [47]. This has led to questioning notions

of similarity [48] and the meaningfulness of conventional distance measures [49].

Often, researchers have mistakenly concluded that the nearest-neighbor search, with

Euclidean distance metric, is hopeless in all high dimensional data-sets, due to the

notorious “curse of dimensionality”. This is has been shown to be an overpessimistic
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inference. Specifically, the authors of [50] have shown that what determines the search

performance (at least for R-tree-like structures) is the intrinsic dimensionality of the data

set and not the dimensionality of the address space (or the embedding dimensionality).
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Figure 2.1. Rectangular Trees vs. Spherical Trees vs. Scan: UNIFORM Data-set

Consider the following results from experiments conducted on a UNIFORM (syn-

thetic) data-set and the AERIAL (real) data-set. They both have 275,465 elements

and are stored on a hard drive with 8kB page size. We vary the dimensionality and

extract the 10NN for 100 queries randomly extracted from each data-set. We compare

the average performance of a typical rectangular and spherical trees and contrast with

sequential scan. In the UNIFORM data-set (Figure 2.1), as predicted by theory [45],

once dimensionality crosses 10, it becomes more meaningful to perform sequential scan.

However, on the real data-set AERIAL (Figure 2.2), performance the tree based meth-

ods still access less data pages than sequential scan. But sequential scan could still be

preferable, because of the relatively less cost of sequential page access versus random

page access.

The typical (and often implicit) assumption in many previous studies is that the

data is uniformly distributed, with independence between attributes. However, real

data sets overwhelmingly disobey these assumptions; rather, they typically are skewed
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and exhibit intrinsic (fractal) dimensionalities that are much lower than their embedding

dimension, e.g., due to subtle dependencies between attributes. Hence, real data-sets

are demonstrably indexable and that too with Euclidean distances. Whether Euclidean

distances are perceptually acceptable is an entirely different matter, and it is for this

reason, significant research activity (in content-based image retrieval) has been directed

toward Mahalanobis distances (see [51],[52]).

2.6 Search Quality

The quality of search results could be viewed as the analog of distortion in compres-

sion. However, as show in subsequent sections, search quality has different meanings in

different contexts.

2.6.1 Exact vs. Approximate Neighbors

In the context of indexing, when one speaks of quality, one refers to how accurately or

what fraction of the true nearest neighbors (as determined by the features and distance
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measure used) were returned. One could easily ensure perfect quality by reading the

entire database i.e. by sequential scan, but this would result in high search times. On

the other hand, by sacrificing some accuracy in search, search time could be reduced.

The quality of the search is typically measured through precision/recall [30], distance-

sensitive recall [53] or distance ratio [54] [55]. In an information theoretic analysis of

approximate search [56], the use of a three-way distortion measure (which depends on

the query, data-element and a compressed version of the data element) for evaluating,

and optimizing for, search quality has been proposed.

2.6.2 User Perception/Feedback

When dealing with multimedia data, there is a need to retrieved perceptually relevant

results. Hence, feature extraction is performed with user perceptions in mind. However,

there is an inherent approximation of user perceptions and hence search results are

always approximate. So even a “best” result is undefined. In order to retrieve the

required data objects, the search happens over several iterations till the user is satisfied

with the quality of the results returned. At each step, the user gives feedback and this

is used to improve the quality of results in the next round. In this context, since feature

vectors are already approximations of perceptions, one may consider further compression

of feature vectors, to reduce storage space and possibly ease indexing.

In order to return perceptually relevant results, two strategies are possible. We either

1. fix the distance measure, return approximate results and possibly search again

with a new query vector. It is possible to train, and periodically update, the index

[53]. Or

2. assume errors in search results are due to the wrong distance measure. The system

gradually tunes the distance measure and but performs exact search i.e. fixes the

index, trains distance measure and returns the exact nearest neighbors.
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Quality is normally measured through precision and recall. In this thesis, we focus

on the impact of the second strategy on indexing (see Chapter 3, Section 3.4).

2.7 Compression for Similarity Search

The early explicit role of compression in indexing was a “passive” role i.e. just data

object compression. With careful scrutiny, one may view indexes themselves as com-

pressed versions of the database. For example, recursive data-set partitioning reveals

structure and clustering of the data. Different levels of the index structure represent a

compressed version of the data-set at a different resolution i.e. multi-resolution (com-

pressed) representations. However, today compression plays an active role. Modern

indexing techniques such as the VA-File[43] explicitly employ compression. In high

dimensions, compressed representations of the database allow for quick browsing and

search of the database. Such indexes have only a single layer and directly trade index

size for retrieval speed (time)2 .

2.7.1 Information-Theoretic Bounds on Search and Retrieval

Indexing has also been characterized within an information theoretic setting. The

search time is dominated by the IO time, which in turn is proportional to the number of

bits read from the storage device (typically, the hard-disk drives). This depends on index

structure but even the optimal index cannot retrieve less information than a certain limit

(which depends on the data-set). In the context of exact search, this was related to the

capacity of identification systems [58]. In the context of approximate search, by relating

search quality to distortion, the search quality-search time tradeoff was characterized in

[56].

2VQ has also been applied to image feature extraction. By performing compression, redundancies
are eliminated and only dominant patterns appear, for e.g. in dominant color descriptor extraction [24]
and the Keyblock method [57].
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2.7.2 State-of-the-art of Exact Indexing

Recent trends in database indexing involves explicit use of compression. We next

describe two classes of such indexing techniques that resort to compression.

Vector Approximation Files

A popular and effective technique to overcome the curse of dimensionality is the vec-

tor approximation file (VA-File) [43]. VA-File partitions the space into hyper-rectangular

cells, to obtained a quantized approximation for the data that reside inside the cells.

Non-empty cell locations are encoded into bit strings and stored in a separate approxi-

mation file, on the hard-disk.

QUERY

Figure 2.3. VA-File: Uniform Quantization

Distance Bound Estimation in the VA-File

Consider a query q and a rectangle R in a d-dimensional space. The rectangle is

defined by the co-ordinates of its main diagonal l = [l1, ..., ld]
T and u = [u1, ..., ud]

T i.e.

∀x ∈ R, lm ≤ xm ≤ um, ∀m = 1, 2, ..., d (2.4)
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To lower bound the distance from the query to the rectangle, we evaluate

d(q,R) = min
x∈R

d(q,x)

= min
x∈R

√√√√ d∑
m=1

(xm − qm)2

=

√√√√min
x∈R

d∑
m=1

(xm − qm)2

=

√√√√ d∑
m=1

min
lm≤xm≤um

(xm − qm)2

Now, each minimization within the summation can be easily performed, without com-

plex calculations. In a similar fashion, an upper bound on the distance to the rectangle

can be easily evaluated. During a nearest neighbor search, the vector approximation file

is sequentially scanned and upper and lower bounds on the distance from the query vec-

tor to each cell are estimated 3. The bounds are used to prune irrelevant cells. The final

set of candidate vectors are then read from the hard-disk and the exact nearest neighbors

are determined. At this point, we note that the terminology “Vector Approximation”

is somewhat confusing, since what is actually being performed is scalar quantization,

where each component of the feature vector is separately and uniformly quantized (in

contradistinction with vector quantization in the signal compression literature).

The VA-File was followed by several more recent techniques to overcome the curse

of dimensionality. Methods such as LDR [59] and the recently proposed non-linear

approximations [60] aim to outperform sequential scan by a combination of clustering

and dimensionality reduction. Some other indexes, such as VA+-File [61] build on and

extend the principles of VA-File, in that a suitable approximation file is created, and

during query processing, this is used to prune the data-set of irrelevant objects.

In the VA+-File, the data set is rotated into a new set of uncorrelated dimensions,

prior to vector approximation. The rotation is chosen to be the data-set de-correlating

3As a separate contribution of this thesis, we show how the calculation of upper bounds can be
avoided. See Appendix A for details.
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QUERY

Figure 2.4. VA+-File: Transform Quantization

transform i.e. the Karhunen-Loève Transform (KLT). Evaluating the KLT (or equiva-

lently the principal components) also returns the variances of the new dimensions. Bit

distribution among the new dimensions is performed in a non-uniform fashion, with

more bits for dimensions with higher energies (variances). The quantizer in each new

dimension is designed through the Lloyd algorithm [62] [63]. In other words, the data-

set undergoes transform coding. Each new dimension is quantized at the appropriate

resolution, and the approximation file is created. During query processing, distances are

evaluated to the bounding boxes around each data point and the nearest elements are

retrieved. There also exist a few hybrid methods, such as the A-Tree [44], and IQ-Tree

[64], which combine VA-style approximations within a tree based index.

Clustering and Cluster Pruning

Since clustering performs vector quantization, it can exploit correlations across fea-

ture dimensions and reduce preprocessing storage. In some methods, such as in [65]

[66], query-cluster distance is bounded by using bounded spheres and the clusters are

retrieved in order of distance bounds till the kNNs are identified. Other techniques, such

as LDC [67], iDistance [68], and Pyramid Tree [69], are based on local dimensionality

reducing transformations. The data-set is clustered and partitioned. In each partition,
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Figure 2.5. iDistance: Indexing the Distance

the distances of the resident vectors to some reference point, typically the centroid, are

evaluated. The feature vectors in a partition are now indexed by their centroid-distance,

using ubiquitous one-dimensional indexes such as the B+-tree [10]. During query pro-

cessing, spheres of gradually increasing radii are drawn around the query, until they

intersect a cluster sphere. Now, the relevant elements in the partition, identified by

centroid-distances which lie in the intersecting region, are retrieved for finer scrutiny.

The search radius is set to such a value that on the average high-precision approximate

NNs are returned.

It is to be noted that co-ordinate hyperplanes translated to the centroid divide the

feature space into 2d boxes, where d is the space dimensionality. In LDC [67], another

approximation layer is created, by generating a box identification code for each resident

point. Once an initial set of candidates have been identified with the B+-tree, the cor-

responding approximations are scanned to further filter out irrelevant points within the

partition. The surviving elements are finally retrieved from the hard drive to determine

the nearest neighbors. In order to reduce disk IO, care is taken to control the maximal

fraction of space searched. In this form, LDC can provide significant speed-ups and

generate high precision results but cannot guarantee that the exact nearest neighbors
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Figure 2.6. LDC: Local Digital Coding

will be found (much like the iDistance [68]).

2.7.3 Approximate Nearest Neighbor Indexing

It has often been argued that the feature vectors and distance functions are often only

approximations of user perception of similarity. Hence, even “exact” similarity search is

inevitably approximate. Conversely, by performing an approximate search, considerable

savings in query processing time would be possible. Examples of such search strategies

are clustering techniques such as KLT-Clustering [55], Clindex [70], Local dimensionality

reduction [59] and CSVD [71] as well as scalar quantization (compression) approaches

such as VA-LOW [72]. We note that even the famous locality sensitive hashing (LSH)

approach ([73] [74] and more recent [75]) performs randomized binning of the data-set (a

suboptimal clustering of the data-set). Other methods include multi-level dimensionality

reduction [76], probabilistic searches (PAC-NN) [77] etc. The reader is directed to [30]

for a more detailed survey of approximate similarity search.
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Retrieved Set Reduction vs. Retrieved Information Reduction

In practice, there are two popular lines of attack for approximate similarity search

[30]. In the first approach, a modified distance function is used over feature space

or the space itself, is modified. Generally, a smaller number bits or dimensions are

used to represent the feature vectors. The approximated feature vectors are stored in

a sequential file, which is scanned for NN queries. This compression-based approach

is called retrieved information reduction [55]. Search algorithms suggested in [59], [43]

and [61] fall under this category. This method of approximate NN search is crucial in

high-dimensional data sets, as comparing all dimensions at the same time dramatically

degrades the efficiency of the query processing.

The second approach uses the exact distance and the exact feature vectors to compare

objects. Here, the data set is partitioned in to several clusters, each of which is stored

into a separate sequential file. Each cluster has a representative, which is compared with

the query. The elements of a cluster are accessed sequentially, only if the representative

is “close” to the query. In this way, the search space is pruned down to the set of objects

most likely to contain the nearest neighbors of the query. Several rounds of pruning

are possible. This clustering-based approach is called retrieved set reduction [55]. The

search algorithms suggested in [70] and [53] fall under this category. This approach is

important, especially in large data sets. Clearly, it can outperform any approximate NN

query processing technique that tries to access the entire data set.

It is also possible to formulate a search procedure that has the “best of both worlds”.

For example, Clustering with Singular Value Decomposition (CSVD) [71] and KLT-

clustering [55] group data into clusters but each cluster is represented only by a reduced

set of dimensions. In VQ-Index [54], the data-set is partitioned into several regions using

the query statistics, but thereafter, each partition is represented by a smaller codebook.
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2.8 Compression in Correlated Source (Sensor) Databases

We now consider the problem of storing correlated sources in a database for future

retrieval of any subset of them as queried by users. This problem, which we term as the

fusion coding of correlated sources, differs from the well known distributed source coding

setting [78, 79] in that all information about the sources is centrally available during

encoding for storage in the database. However, only statistical information about future

queries is available. Such database design introduces fundamentally new and interesting

challenges: On the one hand, inter-source correlations may be exploited via joint coding

to reduce the overall storage requirement and to potentially reduce the retrieval time.

On the other hand, a future query may select only few of the sources for retrieval, and

it would be wasteful to have to retrieve the entire (jointly) compressed data only to

reconstruct a small subset.
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Figure 2.7. Fusion storage and selective retrieval or Fusion coding of correlated sources

Thus, at the heart of the problem, lies a trade-off between storage rate (space) versus

retrieval rate (time), (both measured in terms of bits stored or retrieved). An example

application of the proposed fusion coding of correlated sources is in the arena of sensor

networks, which has been the focus of extensive research in recent years. Much of the

effort in sensor network design has been dedicated to the development of device and

communication technologies [80]. But in order to fully realize the potential of most such

systems, it is necessary to efficiently store the vast volumes of data generated by the
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network for future retrieval, as needed for analysis or other uses.

Consider a network of surveillance cameras covering a scene. The video signals

generated by these cameras are expected to be highly correlated, since they are covering

the same scene. This data is sent to a fusion center to be stored for possible future

analysis. We note in passing the more generalized setting of multiple storage centers,

each of which store video data from one or more cameras, i.e. distributed storage, but

for the sake of simplicity, we assume herein that all video signals are stored in a single

fusion center. When the data from the fusion center is eventually accessed by a user, it

is very likely that the views from only a small subset, and not all, of the cameras will

be requested at any given time. Note also that fusion storage of correlated sources has

applications even in areas that are far removed from traditional signal processing and

communications, such as storage and indexing of stock market data streams [81].

Figure 2.8. A 2D sensor field: dots represent sensors and boxes represent regions of

interest (queries)

Figures 2.7 and 2.8 depict the setting we consider. The fusion coding problem was

first identified in [82], where an information-theoretic characterization of the achiev-

able rate region for lossless coding, via reformulation as a multi-terminal source coding

problem [83], was derived.

2.8.1 Why Compress for Storage?

The rapid development of low-cost, high-density storage devices motivates one to

consider why compressed storage is even considered. The issue is that stored data are
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often going to be requested by users and without (joint) compression of the requested

sources, unnecessarily additional bits would need to be retrieved which could significantly

increase the retrieval time. A secondary issue is that we are considering storage of data

from many correlated sources, the number of which could run from hundreds to several

thousands. Hence the volume of data encountered could overwhelm storage systems,

unless compression is performed. Compression would also be intricately linked with any

high-dimensional index for nearest neighbor search over such databases [56], [43].

2.8.2 Information Theoretic Bounds on Lossless Storage and

Retrieval

We continue with the notation developed in Section 2.4.2. To compress any source

of information X, the number of bits required for lossless representation should be

at least the Shannon entropy (entropy-rate, for sources with memory) of the source,

H(X). Information theory offers straightforward bounds on the performance of naive

compression techniques when applied to the problem of fusion coding.

Minimal Storage Rate :

It follows from Shannon’s basic result that the minimum number of bits required to store

M sources X1, . . . , XM , i.e. the minimal storage rate is

Rs,min = H(X1, ..., XM) (2.5)

Since H(X1, ..., XM) ≤
∑
m

H(Xm) joint compression of correlated sources never requires

more bits for storage than separate compression (by exploiting inter-source redundan-

cies). The retrieval rate for this method is similarly

Rr = H(X1, ..., XM) (2.6)

since the entire compressed description needs to be retrieved for any query.

Minimal Retrieval Rate :
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If we denote the set of sources queried as,

X(q) = {Xm,∀m : qm = 1}

the minimum number of bits required to reconstruct the sources requested in query q is

H(X(q)) and hence, the minimum retrieval rate averaged over the query distribution is

Rr,min =
∑
q

P (q)H(X(q)) ≤ H(X1, ..., XM)

This implies that joint compression is suboptimal in retrieval speed. In order to achieve

the fastest retrieval speed, we need to separately compress and store each subset of

sources that may be requested,. However, unless M is very small or the set of queries Q
is severely restricted, the storage requirement would be impractically high as it would

have to individually accommodate a very large (possibly an exponential) number of

queries, i.e.

Rs =
∑
q∈Q

H(X(q)) � H(X1, ..., XM) = Rs,min (2.7)

Thus, it is clear that the optimum storage technique is wasteful in retrieval speed, and

the optimal retrieval technique is wasteful in storage.

Scalar/Separate Compression :

Lastly, we consider separate/scalar coding of each source. The storage rate for lossless

separate compression is

Rs,sep =
∑
m

H(Xm) � Rs,min (2.8)

while the retrieval rate

Rr,sep =
∑
q

P (q)
∑
m

qmH(Xm) � Rr,min (2.9)

Clearly, separate/scalar coding(quantization) would be severely sub-optimal both in

storage efficiency and retrieval speed. It ignores the correlations that exist across sources,

thereby incurring larger storage costs and higher retrieval time than necessary.
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2.8.3 Fusion Coding Objectives in Other Forms

In fusion coding, we compress database of sources but want access to and retrieve

only relevant information. There are several other applications that have objectives

similar to that of fusion coding, i.e. require “compression with random access”. Some

notable examples are

• Browsing Compressed Video: When video is compressed, prediction (or inter-

frame coding) is used to exploit the significant temporal correlations that may be

present, in addition to intra-frame coding. However, when viewed there is a need

to fast-forward or rewind or jump to a scene of interest. If purely predictive coding

were performed, then the whole video would need to be uncompressed to the point

where streaming can be resumed, causing significant delay. Typically, I-frames

(i.e.) purely intra-coded frames are available every few milliseconds. Predictive

coding is restricted to sections between I-frames. The codec “jumps” to the closest

I-frame and decodes the video stream from that section, thereby avoiding excessive

delay.

• Multi-file Compression : Often, in an archive for e.g on news servers, several

files are jointly, losslessly coded (through a Lempel-Ziv like algorithm). However,

the need to extract specific files from a huge archive requires careful decompression.

• Executable Data Compression : Depending upon the complexity of the task

to be performed, program data are stored in compressed format. In embedded

systems, since on-chip cache is limited, there is a need to retrieve only small,

relevant sections of the code, without decompressing the whole program.

• kNN Search ? It is possible to even view kNN search in the light of fusion cod-

ing. The optimal search for kNNs accesses only relevant portions of database i.e.

accesses only relevant images/feature vectors. By creating an index, irrelevant por-

tions of the database may be eliminated and only relevant portions are retrieved.
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Sequential scan could be viewed as the analog to joint compression, wherein all

the data are retrieved.
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Chapter 3

Indexing by Cluster Distance

Bounding

We consider a clustering approach for kNN search as an alternative to the Vector

Approximation (VA) Files. The data set is clustered using a standard clustering or

vector Quantization (VQ) technique, e.g., K-means or Lloyd’s algorithm and during

query processing, the “nearest” clusters are loaded into the main memory. Clustering

exploits correlations and dependencies across feature dimensions. In fact, clustering

algorithms are the methods of choice for the design of vector quantizers [62]. As a result,

a more compact representation of the data-set is possible, for the same representation

quality. Alternatively, better representation quality is possible when allowed the same

number of codevectors. This facilitates nearest neighbor search since the search can now

be performed over a very compact and accurate representation of the data-set prior to

actual access of the database.

Additionally, clustering results in several similar feature vectors sharing the same rep-

resentative. In other words, in clustering techniques the mapping is from the code-vectors

to the many database entries (or feature vectors) they represent, while compression-based

methods such as VA-File employ the reverse mapping. Thus each cluster retrieved re-
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turns several promising candidates. Next, we note that each cluster retrieved results in

only one more random IO and several sequential IOs. Finally, observe that the sequen-

tial scan is a special case of clustering i.e. with one cluster. Thus, a clustering approach

would use costly random disk IOs more efficiently.

In order to adapt clustering/VQ to exact NN search, tight estimates (lower bounds) of

query-cluster distance, without accessing the clusters, are necessary. This would lead to

retrieval of clusters in decreasing probability of containing entries relevant to the query.

Once the true kNNs have been found, clusters with cluster-distances that exceed the

kth-NN distance can be eliminated from the search procedure. While such a clustering

approach to search has been studied in the image database and mainstream database

community (see [66, 65, 71], [68] [67]), the earlier approaches have been applicable only

for approximate nearest neighbor search. The distance bounds (based on bounding

hyperspheres) are loose and hence the search strategy performs poorly when adapted to

exact nearest neighbor search. We next present an effective cluster distance bound that

complements our branch-and-bound search algorithm.

3.1 The Hyperplane Bound

Let d(x,y) be a distance function that estimates the distance between vectors x and

y in the feature space.

d : Rn ×Rn → [0,∞) (3.1)

In subsequent discussion, we shall specialize to the Euclidean distance over (real vector

spaces) as the feature similarity measure i.e. d(x,y) = ‖x−y‖2. We define the distance

from query q and a cluster Xm as

d(q,Xm) = min
x∈Xm

d(q,x) (3.2)
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The distance of vector q to a hyper plane H(n, p) = {y : yTn + p = 0} is defined in the

normal fashion as

d(q, H) =
|qTn + p|

‖n‖2

(3.3)

Given a cluster Xm, the query q and a hyperplane H that lies between the cluster and

the query (a “separating hyperplane”, see Figure 3.1), by simple geometry it is easy to

see that for any x ∈ Xm

d(q,x) ≥ d(q, H) + d(x, H)

≥ d(q, H) + min
x∈Xm

d(x, H)

= d(q, H) + d(Xm, H)

⇒ d(q,Xm) ≥ d(q, H) + d(Xm, H) (3.4)

3.1.1 Cluster Distance Bounding

If Hsep represents a countably finite set of separating hyperplanes (that lie-between

the query q and the cluster Xm),

⇒ d(q,Xm) ≥ max
H∈Hsep

{d(q, H) + d(Xm, H)} (3.5)

The second lower bound presented in (3.5) can be used to tighten the lower bound on

d(q,Xm). Next, we note that the boundaries between clusters generated by the K-means

algorithm are linear hyperplanes. If c1 and c2 are centroids of two clusters X1 and X2,

and Y12 the boundary between them, then ∀y ∈ Y12

d(c1,y) = d(c2,y)

⇒ ‖c1‖2
2 − ‖c2‖2

2 − 2(c1 − c2)
Ty = 0

Therefore, the hyperplane H12 = H(−2(c1 − c2), ‖c1‖2
2 − ‖c2‖2

2) is the boundary

between the clusters X1 and X2. What is to be noted is that these hyperplane boundaries

need not be stored, rather they can be generated during run-time from just the
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centroids {cm}K
1 themselves. It is straightforward to show that: Given a query q and a

hyperplane Hmn that separates clusters Xm and Xn, it lies between the query and cluster

Xm if and only if d(q, cm) ≥ d(q, cn).

3.1.2 Reduced Complexity Hyperplane Bound

For evaluation of the lower-bound presented in (3.4) and (3.5), we would need to pre-

calculate and store d(Hmn,Xm) for all cluster pairs (m,n). With K clusters, there are

K(K − 1) distances that need to be pre-calculated and stored, in addition to the cluster

centroids themselves. The total storage for all clusters would be O(K2 + Kd), where d

is the dimensionality. This heavy storage overhead makes the hyperplane bound, in this
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form, impractical for a large number of clusters. We can loosen the bound in (3.5) as

follows:

d(q,Xm) ≥ max
H∈Hsep

{d(q, H) + d(H,Xm)}

≥ max
H∈Hsep

d(q, H) + min
H∈Hsep

d(H,Xm)

This means that for every cluster Xm we would only need to store one distance term

dm = min
1≤n≤K,n�=m

d(Hmn,Xm)

Figure 3.3 is representative of our index.
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Figure 3.3. Index Structure

3.2 Data-set Clustering

The first step in index construction is the creation of Nearest Neighbor/Voronoi

clusters. There exist several techniques of clustering the data-set, from the fast K-

means algorithm [84] (which requires multiple scans of the data-set) and Generalized
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Lloyd Algorithm (GLA) [62] to methods such as BIRCH [85], which require only a

single scan of the data-set. The output of any of these algorithms can be a starting

point. From each of the K clusters detected by a generic clustering algorithm, a pivot

is chosen i.e. K pivot points in all. Then the entire data-set is scanned and each data-

element is mapped to the nearest pivot. Lastly, data mapping to the same pivot are

grouped together to form Voronoi clusters (see Algorithm 1). This would lead to slight

re-arrangement of clusters, but this is necessary to retain piecewise linear hyperplane

boundaries between clusters. We believe the centroid is a good choice as a pivot. Thus,

quick Voronoi clustering, with possibly only a single scan of the entire data-set, can be

achieved using any generic clustering algorithm.

Algorithm 1 Voronoi-Clusters(X ,K)

1: //Generic clustering algorithm returns

//K cluster centroids

{cm}K
=1 ←GenericCluster(X ,K)

2: set l = 0, X1 = φ,X2 = φ, . . . ,XK = φ

3: while l < |X | do

4: l = l + 1

5: //Find the centroid nearest to data element xl

k = arg min
m

d(xl, cm)

6: //Move xl to the corresponding Voronoi partition

Xk = Xk

⋃{xl}

7: end while

8: return {Xm}K
=1, {cm}K

=1

We note that the K-means, GLA and BIRCH algorithms are fast and can generate

reliable estimates of cluster centroids, from sub-samples of the data-set. Typically, for

K clusters, even a sub-sample of size 100K is sufficient. As we shall see, for the range

of clusters we are considering, this would be overwhelmingly smaller than the data-set.
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Faster index construction would be possible by allowing for hierarchical and multi-stage

clustering. However, only the clusters at the leaf level are returned.

We tested several clustering techniques including GLA and BIRCH, and the results

were largely similar. While it is possible to also optimize the clustering itself, that is not

our goal in these experiments.

3.3 Experimental Results

We have conducted extensive tests on real data-sets to characterize and compare

the performance of our index structure with other popular schemes. By varying the

number of clusters (or some suitable parameter), a range of solutions was obtained for

each index, which are subsequently compared.

3.3.1 Data-sets and Experimental Set-up

We tested our index on 5 different data-sets - HISTOGRAM, SENSORS, AERIAL,

BIO-RETINA and CORTINA. See Table 3.1 for details on size and dimensionality. The

HISTOGRAM 1 data-set consisted of a color histogram extracted from images on a

CD. The second real data-set, SENSORS, was generated by the Intel Berkeley Research

Lab2 . Data were collected from 54 sensors deployed in the Intel Berkeley Research lab

between February 28 and April 5, 2004. Each sensor measures humidity, temperature,

light and voltage values once every 31 seconds. We retain data from those sensors that

generated in excess of 50,000 readings. This corresponds to temperature, light, humidity

and voltage readings from 15 sensors which is equivalent to 60 sources.

The next two data-sets, AERIAL and BIO-RETINA, were MPEG-7 texture feature

descriptors extracted from 64 × 64 tiles of the images. AERIAL3 was extracted from

1Download from http:/scl.ece.ucsb.edu/datasets/Histogram.mat
2Download from http://db.csail.mit.edu/labdata/labdata.html
3Download from http://vision.ece.ucsb.edu/data-sets
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Table 3.1. Data-Sets Used
Name Dimensionality No. of Vectors Size (Pages)
HISTOGRAM 64 12,103 379
SENSORS 60 50,000 1471
AERIAL 60 275,465 8300
BIO-RETINA 62 208,506 6200
CORTINA 74 1,088,864 40,329

40 large aerial photographs while BIO-RETINA 4 was generated from images of tissue

sections of feline retinas as a part of an ongoing project at the Center for Bio-Image In-

formatics, UCSB. On the other hand, the CORTINA5 data-set consists of a combination

of homogenous texture features, edge histogram descriptors and dominant color descrip-

tors extracted from images crawled from the World Wide Web. In our experiments, we

assumed a page size of 8kB. The query sets were 100 randomly chosen elements of the

relevant data-sets. In all subsequent sections, we report results from experiments where

the 10 nearest neighbors (10NN) were mined, unless otherwise stated (see section 3.3.9,

where the number of kNNs retrieved was varied).

3.3.2 Performance Measure and Parameter Variation

The common performance metrics for exact nearest neighbor search have been to

count page accesses or the response time. However, page accesses may involve both serial

disk accesses and random IOs, which have different costs. On the other hand, response

time (seek times and latencies) is tied to the hardware being used and therefore, the

performance gain/loss would be platform dependent. We propose to separately track

the average number of sequential and random accesses incurred to retrieve the 10NNs.

In a typical search procedure, by varying the tunable parameters θ (where applicable), a

range of solutions with different sequential and random accesses would be possible i.e. a

performance graph. Two competing search procedures are compared by comparing the

number of random seeks R given roughly the same S or vice-versa.

4Download from http://scl.ece.ucsb.edu/datasets/BIORETINA features.txt
5http://scl.ece.ucsb.edu/datasets/CORTINA all feat1089K.mat
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We note that given the performance in terms of the number of sequential (S) pages

and number of random IOs (R) i.e. the (S,R) pair, it is relatively easy to estimate total

number of disk accesses or response times on different hardware models. The number

of page accesses is evaluated as S + R. If Tseq represented the average time required for

one sequential IO and Trand for one random IOs, the average response time would be

Tres = TseqS + TrandR
6.

Table 3.2. Tunable Parameter Variation in Experiments

Indexing Method Tunable parameter Range Tested
VA-File Bits per dimension 3 - 12 bits
iDistance No. of clusters 10 - 400
LDC No. of clusters 10 - 4000
Clustering
+ Cluster-distance No. of clusters 10 - 400
bounding

Table 3.2 lists the tunable parameter for each indexing technique and the range of

values considered. The performance of each indexing technique is evaluated at all values

of its tunable parameter within the ranges considered. In the VA-File, the number of

quantizing bits is varied from 3 to 12 bits per dimension. In LDC, the number of clusters

is varied from 10 - 4000 clusters, whereas in the iDistance and our and our proposed

technique, the number of clusters was varied from 10-400. The performance is evaluated

6Assuming Trand and Tseq are known constants for a given hardware, the optimal operating point(s)
on the S − R curve are where a line of slope Trand

Tseq
is tangential to the curve.
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and plotted at each setting.

3.3.3 Comparison with Bounding Rectangles and Spheres

Traditionally, spatial filtering of irrelevant clusters has been done by constructing

minimum bounding hyperrectangles (MBR) and hyperspheres (MBS) around clusters,

and evaluating distance bounds to these minimum bounding surfaces (see Figure 3.5).

We, on the other hand, evaluate this distance bound from the separating hyperplane

boundaries that lie between the query and the cluster.

In Figures 3.6 and 3.7, we present MBR, MBS and Hyperplane distance bounds along

with the true (golden) query-cluster distances for a sample query, on the BIO-RETINA

data-set. The distance of the query to every cluster is evaluated and these distances are

sorted in ascending order. We note that his sorting order or ranking is also the order

in which the clusters are read. Now, the distances bounds are evaluated to these ranked

clusters and are compared with the true distances. The goal of this study is to compare

the relative tightness of the bounds and also to observe how well they imitate the correct

ranking.

We immediately note that hyperplane bounds are very close to the true distances.

For the 30 cluster case, we note that the sphere (MBS) bound is almost zero for the first

6-8 clusters. This is because for large cluster sizes (small number of clusters) the volume

occupied by bounding spheres is significantly more than the cluster volume. Hence, the

ability to filter out clusters is significantly diminished. Once the number of clusters has

been increased to around 300, the performance of the sphere bound improves slightly.

On the other hand, though the MBR bound is looser than the hyperplane bounds, it is

tighter than the sphere bound. This is a reflection on the structure of the data-clusters,

suggesting that they are more rectangular than spherical in shape. We noticed similar

behavior in the AERIAL data-set.

Lastly, we note that, the reduced complexity hyperplane bound is almost as good as
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the full hyperplane bound, while at the same time enjoying a smaller storage overhead.

We also note that the distance profiles generated by the hyperplane bounds has almost

the same (non-decreasing) nature of the true, sorted query-cluster distances. This means

that even if the distance estimates are a little off, the clusters are still searched in

approximately the same order. However, this is not so for the MBR and MBS bounds.

We note in Figures 3.6 for the MBR bound and 3.7 for the MBS bound, the distance

profile is very jittery. This, as we shall see, leads to a large number of needless disk

accesses, further compromising the IO performance.
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Figure 3.9. IO Performance of Distance Bounds - AERIAL

IO Performance Comparison

We conclude this study with comparison of the IO performance of the different

distance bounds on the different data-sets (see Figures 3.8, 3.9, 3.10, 3.11, 3.12). We
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Figure 3.10. IO Performance of Distance Bounds - SENSORS
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Figure 3.11. IO Performance of Distance Bounds - HISTOGRAM
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Figure 3.12. IO Performance of Distance Bounds - CORTINA

note that the sphere (MBS) and the MBR bounds are comprehensively outperformed by

the two proposed hyperplane bounds in all data-sets. For the BIO-RETINA data set,
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when allowed roughly 1000 sequential IO pages, the MBR and sphere bounds generate

nearly 20X more random accesses than the hyperplane bounds. When allowed roughly

10 random disk accesses, the MBR and sphere require nearly 4X-5X more sequential

disk reads. Similar trends are noticed in other data-sets, with the performance gains

higher in bigger data-sets.

3.3.4 Comparison with Popular Indexes

Next, we compare the performance of our proposed clustering plus hyperplane bound-

ing ( ‘Hyperplane (full)’ or ‘Hyperplane (red. comp.)’) framework with the VA-File [43],

iDistance [68] and Local Digital Coding (LDC) [67]- recently proposed multidimensional

index structures that have been successful in overcoming the curse of dimensionality.

Description

We note that in the VA-File initially the approximation files are read into the main

memory and then the nearest elements are retrieved for finer scrutiny. As more bits

are allocated in quantizing the dimensions, the size of the approximation file, which is

proportional to the no. of sequential IOs, increases. At the same time, the number of

vectors visited in the second stage, which determines the no. of random IOs, are reduced.

Hence, the vector approximation files were created at different resolutions, from 12 bits

per dimension to 3 bits per dimension, and the IO performance was evaluated at each

level of compression.

For the proposed index structure, as well as the iDistance and the LDC, the per-

formance would depend on the number of clusters created. The number of clusters

was varied from 10-4000 for LDC and 10-400 for iDistance and our technique. Each

multi-dimensional index was searched till the 10 exact nearest neighbors (10NNs) were

guaranteed to be found.
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Figure 3.13. Clustering vs. VA-File vs. iDistance vs. LDC - AERIAL
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Figure 3.14. Clustering vs. VA-File vs. iDistance vs. LDC - BIORETINA

In all data-sets (Figure 3.13, 3.14, 3.15, 3.16 and 3.17), the proposed index (clustering

plus hyperplane bounds) outperforms all popular indexes. For the CORTINA data-set,

when allowed (roughly) the same number of sequential IOs as the VA-File, speed-ups

in costly random IOs ranging from 3000X-5X, are possible. In the AERIAL data-set,

when allowed (roughly) the same number of sequential IOs as the VA-File, our index

structure has random IOs reduced by factors ranging from 500X-5X. When allowed

the same number of sequential page accesses, random disk IOs reductions ranging from

40X-90X over the LDC and 3x-16x over the iDistance were observed.
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Figure 3.15. Clustering vs. VA-File vs. iDistance vs. LDC - SENSORS
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Figure 3.16. Clustering vs. VA-File vs. iDistance vs. LDC - HISTOGRAM

3.3.5 Computational Costs

We also evaluated the computational costs involved for the different indexes, in terms

of the number of distance evaluations. Since the VA-File maintains an approximation for

every element of the data-set and evaluates the distances to these approximation cells,

the number of distance calculations are O(|X |), the size of the data-set. However, we note

that the other indexes are based on clustering, which can exploit spatial dependencies

across dimensions. Initial distances are evaluated to the cluster centroids and relevant

clusters alone are inspected. This results in efficient filtering and substantial reductions

in the number of distance computations required.

We only present results from the CORTINA data-set, as similar trends were observed
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Figure 3.17. Clustering vs. VA-File vs. iDistance vs. LDC - CORTINA
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Figure 3.18. Computational Costs - CORTINA

on other data-sets as well. Our index structure requires roughly ≈10X less distance cal-

culations than the VA-File on the average. also less than the iDistance and compare

favorably with the LDC. We note specifically in the LDC, with a combination of dimen-

sion ranking arrays and partial distance searches, explicit distance evaluations to the

second layer of approximations are replaced by faster binary operations. However, since

processor speeds are much faster than IO speeds, out index structure still maintains its

advantage in total response time over the LDC.
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3.3.6 Preprocessing Storage

We compared the preprocessing storage induced by the different indexing schemes

and notice substantial gains over competing indexes (Figure 3.19). This is because on

the one hand the approximation file size grows with data-set size, dimensions and the

number of approximation/quantization bits per dimension. On the other hand, both

iDistance and LDC store one distance term for every data-set element (in addition to

the centroids), thus incurring enormous preprocessing storage costs. For roughly the

same number of random IOs, our proposed index requires ≈100X less storage than the

VA-File.
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Figure 3.19. Preprocessing Storage - CORTINA

3.3.7 Scalability with Data-set Size

Figures 3.20 and 3.21 present performance comparisons of the proposed indexes with

sub-sampled versions of the CORTINA data-set. Figure 3.20 represents the results of

varying the data-set size for the full complexity hyperplane bound. Figure 3.21 pertains

to the reduced complexity hyperplane bound. The performance variation is nearly linear

in the number of sequential accesses and almost insensitive in the number of random

IOs. Hence, our clustering based index scale well with data-set size.
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Figure 3.20. Data-set Size vs. Full Complexity Hyperplane Bound
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Figure 3.21. Data-set Size vs. Reduced Complexity Hyperplane Bound

3.3.8 Scalability with Dimensionality

We also evaluated the scalability of the proposed indexes with dimensions by retain-

ing only 48, 24, 10 and 1 dimensions of the original CORTINA data-set (Figures 3.22,

and 3.23 respectively). Both methods display a graceful degradation in performance

with dimensionality. We also note that the VA-File degrades at very low number of

dimensions while naive indexes degrade at high dimensionality.

3.3.9 Scalability with Number of Nearest Neighbors

We also vary the number of nearest neighbors with 10NNs, 20NNs and 50NNs being

mined (see Figures 3.24 and 3.25). We note very slight variation in performance. This
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Figure 3.22. Dimensionality vs. Full Complexity Hyperplane Bound
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Figure 3.23. Dimensionality vs. Reduced Complexity Hyperplane Bound

is because when each cluster is retrieved, several promising candidates are available.

Hence, even if we search for more NNs, we don’t notice any substantial increase in disk

accesses.

3.3.10 Extension to Approximate Search

Since feature vectors are imperfect representations of the corresponding objects, it

could be argued that even exact search is unavoidably approximate. Since each disk IO

retrieves a cluster, it may be sufficient to stop the search after the first few disk accesses

to extract an approximate result, that could be further refined with user feedback. For

brevity of presentation, we describe results for only the reduced complexity hyperplane
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Figure 3.25. No. of kNNs vs. Reduced Complexity Hyperplane Bound

bound. Similar results are observed with the full complexity hyperplane bound.

In approximate similarity search, the quality of the retrieved is typically measured

through precision or recall metrics. If A(q) and G(q) represent the approximate and

golden (true) answer sets for query q, we define

Precision =
|A(q) ∩ G(q)|

|A(q)|
Recall =

|A(q) ∩ G(q)|
|G(q)|

For kNN queries, |A(q)|=|G(q)| and hence precision equals recall.

It has also been argued that precision or recall are hard metrics that improperly

measure the quality of results [54] [53] and that softer metrics such as the distance ratio

metric proposed in [54] [55] would be more appropriate.
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D =

∑
x∈A(q)

d(x,q)

∑
x∈G(q)

d(x,q)
(3.6)

We compare against VA-LOW [72], a variant of the VA-Files that can return approx-

imate NNs. In the VA-LOW, the search in the second phase is stopped once sufficient

vectors have been visited to assure a certain precision. Figure 3.27 shows the perfor-

mance of our clustering + reduced complexity hyperplane bound retrieval with precision

as quality metric, while Figure 3.26 pertains to distance ratio.
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Figure 3.26. Clustering Retrieval vs. VA-LOW, Distance Ratio (D) Metric
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Figure 3.27. Cluster Retrieval vs. VA-LOW, Precision Metric

We first note that even the very first cluster returns high-precision results. In order to

reduce the number of sequential IOs, it is necessary to allow ≈300 clusters, which results
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in a few additional random disk IOs. On the other hand, in VA-LOW, several random

and sequential disk access are necessary. Moreover, we observe that 100% precision

results i.e. the retrieval of exact nearest neighbors, is possible with just the first few

disk IOs. Of course, in this approach, there is no guarantee that the exact NNs have

been found, even though experimentally we notice 100 % precision.

3.4 Relevance Feedback in Image Databases

While the Euclidean distance metric is popular within the multimedia indexing com-

munity, it is by no means the perceptually “correct” distance measure. Hence, sig-

nificant research activity (in content-based image retrieval) has been directed toward

Mahalanobis (or weighted Euclidean) distances (see [51]). The Mahalanobis distance

measure has more degrees of freedom than the Euclidean distance and by proper up-

dating (or relevance feedback), has been found to be a much better estimator of user

perceptions (see [86, 87, 51]).

The goal in relevance feedback is to adapt the distance measure to match user ex-

pectations, by making the search an interactive process. Here, in each iteration a set

of results is retrieved and user provides feedback on the relevance of each result. If

Mahalanobis distance is employed, this is used to update the weight matrix for the next

iteration. Sometimes, the query vector is also modified [86]. The process stops when

the user is satisfied with the results.

3.4.1 Mahalanobis Weight Adaptation

The Mahalanobis distance measure has more degrees of freedom than the Euclidean

distance and by proper updating (or relevance feedback), has been found to be a much

better estimator of user perceptions (see [86, 87, 51]). The goal in relevance feedback

is to adapt the distance measure to match user expectations, by making the search an
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interactive process. Here, in each iteration a set of results is retrieved and the user

provides feedback on the relevance of each result. If Mahalanobis distance is employed,

this is used to update the weight matrix for the next iteration. There are two popular

methods for weight adaptation - MARS [88] and MindReader [86]. In MARS, the weight

matrix is constrained to be a diagonal matrix. If σii is the ith diagonal entry and

Q+ = {q1,q2, ...,ql} is the set of positive samples returned from the earlier iteration, in

the next iteration

σii =
1√

V AR[Q+
i ]

(3.7)

The MindReader approach attempts to estimate the full weight matrix W by mini-

mizing the average distance from the query q to the elements of Q+, with the determinant

|W |constrained to be unity. At the same time, the query vector is also modified. The

“optimal” W is found to be

W = αC−1 (3.8)

where C is the sample correlation matrix of Q+.

However, the MindReader approach can be affected by the singularity of C because

of the relatively high dimensionality of the space involved and the low cardinality of Q+

. While the authors of [86] propose to use the Moore-Penrose inverse instead of C−1,

perceptual quality in experiments conducted by the authors of [87] have been observed

to be poor. Hence, the authors of [87], attempt to combine the MARS and MindReader

approaches within the same framework, with the weight matric W constrained to be

diagonal if C is singular. If the weights are to be updated in batch fashion (after

accumulating several queries) rather than the continuous online fashion, approaches

such as the information theoretic approach to learn the new weight matrix [52] or the

optimization based methods presented in [89] [90] can be considered. The process of

weight adaptation stops when the users are satisfied with the results.
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3.4.2 Efficiency of Indexing with Relevance Feedback

Multidimensional search indexes are typically designed assuming a fixed Mahalanobis

distance measure that is known in advance. The weight matrix is diagonalized and

the data are correspondingly rotated and scaled into a new set of dimensions, prior

to indexing. However, in relevance feedback applications, the weight matrix changes

with time and renders most standard indexes ineffective and very slow. Clearly, a truly

effective relevance feedback application requires a new indexing approach.

The popular VA-File [43] approach partitions the space into hyper-rectangular cells,

aligned with the co-ordinate axes. Each dimension is quantized uniformly and the quan-

tization indices are stored of each feature vector in the so called approximation file, on

the hard-disk. A change in the Mahalanobis weight matrix is equivalent to rotating

W

QUERY

QUERY

(unkwown)

Figure 3.28. VA-File under an Unknown Linear Transformation

and skewing the bounding rectangles into uniform hyper-parallelograms. Since distance

bounding to these parallelograms is more complicated and involves O(d3) computations

[91] [92] [93], for dimensionality d, the total number of computations for all points scales

as O(Nd3), where N is the database size. The method of [91] fits minimum bounding

rectangles that contain these parallelograms. A new set of distance bounds to these rect-

angles are evaluated and used in spatial filtering (see Figure 3.28). We note that distance

bounds to these rectangles can be efficiently performed and computational complexity

only scales as O(Nd). Note that these hyper-rectangles are larger and overlapping, which

results in weaker distance bounds and consequently, weaker spatial filtering.

Since we focus on the clustering approach, a natural step would be to investigate
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any properties of the hyperplane bound that could allow adaptability to a change in the

Mahalanobis weight matrix. We begin by evaluating the point-to-hyperplane distance

for an arbitrary Mahalanobis distance measure.

3.5 Generalized Point-to-Hyperplane Distance

Let dW (x,y) =
√

(x − y)T W (x − y) be the distance between any two feature vectors

x and y. Without loss of generality, we assume W is symmetric and positive definite

i.e. dW (·, ·) is a metric. Let H(a, b) = {x : aTx + b = 0} be a hyperplane and y a point

in the space outside of it. Then,

dW (y, H) = min
x∈H

dW (x,y) =
√

min
x∈H

dW (x,y)2

Using Lagrange multiplier λ, let J = (x − y)T W (x − y) + λ(aTx + b).

∂J

∂x
= 0 ⇒ x∗ − y = −1

2
λW−1a

∂J

∂λ
= 0 ⇒ aTx∗ + b = 0

⇒ λ =
2(aTy + b)

aT W−1a
,x∗ − y =

−(aTy + b)W−1a

aT W−1a

⇒ (x∗ − y)T W (x∗ − y) =
(aTy + b)2

aT W−1a

⇒ dW (y, H) = dW (x∗,y) =
|aTy + b|√
aT W−1a

We note that if W were the identity matrix, then the formula reduces to the known

version for Euclidean distance. Next consider two weight matrices W1 and W2, it is easy

to note that

dW1(y, H)

dW2(y, H)
=

√
aT W−1

2 a

aT W−1
1 a

(3.9)

In other words, the ratio of point-to-hyperplane distances under differing weight matrices

is independent of the point y (as well as the fixed translation b).
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3.6 The Hyperplane Bound Revisited

It is easy to show that for any positive definite W , the shortest path between two

points is along the straight line passing through the two points. Now, given a cluster

Xm, the query q and a hyperplane H that lies between the cluster and the query (a

”separating hyperplane”, see Figure 3.2), by simple geometry it is easy to see that for

any x ∈ Xm

dW (q,x) ≥ dW (q, H) + dW (x, H)

≥ dW (q, H) + min
x∈Xm

dW (x, H)

= dW (q, H) + dW (Xm, H)

⇒ dW (q,Xm) ≥ dW (q, H) + dW (Xm, H) (3.10)

We focus on the second term, dW (Xm, H), the “support”. Had W been known in

advance, this could have been evaluated offline and stored. Instead, let us denote the

weight matrix used during clustering as W0. Then, (3.9) implies

dW (Xm, H) =

√
aT W−1

0 a

aT W−1a
dW0(Xm, H) (3.11)

which demonstrates that it is unnecessary to reevaluate the support due to change in

weight matrix after the clustering phase. Without loss of generality, in subsequent

discussion, we will assume that dW0(·, ·) is the Euclidean distance, and drop the suffix

W0.

3.6.1 Cluster Distance Bounding

As described in section 3.1.1, if Hsep represents a countably finite set of separating

hyperplanes (that lie-between the query q and the cluster Xm),

dW (q,Xm) ≥ max
H∈Hsep

{dW (q, H) + dW (Xm, H)} (3.12)

The conditions for a hyperplane boundary to be a separating hyperplane can be similarly

derived.
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3.6.2 Reduced Complexity Hyperplane Bound

For evaluation of the lower-bound of (3.10) and (3.12), we would need to pre-calculate

and store d(Hmn,Xm) for all cluster pairs (m,n). With K clusters, there are K(K − 1)

distances that need to be pre-calculated and stored, in addition to the cluster centroids

themselves. The total storage for all clusters would be O(K2 +Kd). This heavy storage

overhead makes the hyperplane bound, in this form, impractical for a very large number

of clusters. However, we can loosen the bound in (3.12) as follows:

dW (H,Xm) =

√
‖a‖2

2

aT W−1a
d(Xm, H)}

≥
√

‖a‖2
2

aT W−1a
min

H∈Hsep

d(Xm, H)}

⇒ dW (q,Xm) ≥ max
Hsep

{dW (q, H) +

√
‖a‖2

2

aT W−1a
dsep}

where dsep = min
H∈Hsep

d(Xm, H). This means that for every cluster Xm we would only

need to store one distance term dsep, thus reducing the total storage to O(K(d + 1)).

For the special case when dW (·, ·) is itself Euclidean, i.e., no weight adaptation, see

[94]. For small K, even ‖a‖2, for all cluster boundaries a, can be calculated offline and

stored. Even otherwise, we note that it is IO time (and not processor time) which is the

bottleneck in query processing.

3.7 Experimental Results

We compared the performance of our index (henceforth referred to as ‘VQ-Hyperplane

(full)’ for full complexity and ‘VQ-Hyperplane (reduced)’ for reduced storage complexity

bounds resp.) with a well-known variant of VA-File [91] that is adapted to leverage rele-

vance feedback. We evaluated the performance of VA-File at various quantization levels

(3-12 bits per dimension) and the VQ method for varying numbers of clusters (10-400

clusters). We note that this expands upon and subsumes results presented in [95].
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3.7.1 Data-set: CORTINA-Caltech101

This data-set consists of a 1,103,271 element sub-sample of the CORTINA image

data-set 7 and consists of 48-dimensional MPEG-7 texture features 8. Within this we

embed 733 images extracted from 11 classes of the CalTech 101 data-set [96] which have

strong texture signatures. The classes considered are “accordion”, “barrel”, “bass”,

“brain”, “beaver”, “cougar body”, “Leopards”, “wild cat”, “hedgehog”, “platypus”,

and “soccer ball”. These images classes are a-priori unknown to the system and the

images are used as queries for performance evaluation. For each query, the 10 nearest

neighbors (10NN) were mined. We also assumed a page size of 8kB.

3.7.2 Data-set: BIO-RETINA

The data-set BIO-RETINA9 consists of MPEG-7 texture feature descriptors ex-

tracted from 64 × 64 blocks generated from images of tissue sections of feline retinas

as a part of an ongoing project at the Center for Bio-Image Informatics, UCSB. It is

208,506 elements long and 62 dimensional. We also assumed a page size of 8kB. The

query sets themselves were generated by randomly selecting 100 elements from the rel-

evant data-sets. For each query, the 10 nearest neighbors (10NN) were mined.

3.7.3 CORTINA-CalTech 101 + MARS

In this set of experiments, we evaluated the (diagonal) weight matrix for each query-

class according to principles and heuristics established in MARS [88]. We note that with

the MARS weights there is no rotation of the feature space, since the weight matrix is

diagonal.

We notice moderate gains for the VQ-hyperplane methods in the IO performance

7See http://cortina.ece.ucsb.edu/
8http://scl.ece.ucsb.edu/datasets/CORTINA HTD 1Million.bin
9Download from http://scl.ece.ucsb.edu/datasets/BIORETINA features.txt
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Figure 3.29. IO Performance with MARS (diagonal weight matrix)

(Figure 3.29). For the same number of sequential accesses, random disk IOs are reduced

by factors ranging from 1.5X to 200X. But we note that the VA-File requires ≈ 100X

more pre-processing storage (Figure 3.30) and also ≈ 10X higher computational costs

(Figure 3.31). This is because the VA-File maintains a separate compressed representa-

tion for each element of the database, as a result of which O(N) distance computations

and storage of .15N − 0.3N are needed, where N is the size of the database. In order

to reduce the number of costly random access reads in the VA-File, the quantization

resolution in each dimension needs to be increased, which again results in larger approx-

imation files. In contradistinction, the VQ method reduces random IO reads by reducing

the number of clusters.
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Figure 3.30. Preprocessing Storage with MARS
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Figure 3.31. Computational Costs with MARS

3.7.4 CORTINA-CalTech 101 + Random Weight Matrix

Here, the weight matrix was modelled as W = UT ΛU . The orthonormal matrix U

was generated randomly and the eigenvalues were uniformly distributed between 0 and

10. We present results from one such realization of W , that is representative of general

performance.
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Figure 3.32. IO Performance with Random Weight Matrix

For the random weight matrix, our indexes are able to consistently reduce the number

of random IO reads as compared with VA-File, when allowed (roughly) the same number

of sequential disk accesses (see Figure 3.32). This is because of the rotation and scaling

of the space, which significantly loosens the distance bounds of the VA-File. At 5-

bit quantization for the VA-File and 300 clusters for our indexes, we note an ≈ 105X
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Figure 3.33. Preprocessing Storage with Random Weight Matrix

reduction in costly random IO reads. Clearly, at this quantization level, efficiency of the

VA-File in spatial filtering is almost nil i.e. it almost underperforms the sequential scan.

The performance degradation from the full complexity to the reduced storage complexity

hyperplane bounds is also minimal. Large gains in storage and computational costs were

also observed (Figures 3.33 and3.34).
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Figure 3.34. Computational Costs with Random Weight Matrix

3.7.5 BIORETINA + Random Weight Matrix

Similar to the previous set of experiments, the weight matrix, typically a correlation

matrix [86], was modelled as W = UT ΛU . The orthonormal matrix U was generated

randomly and the eigenvalues were uniformly distributed between 0 and 10. We present
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results from one such realization of W , that is representative of general performance.

Here, we evaluated the performance of VA-File at various quantization levels (3-12 bits

per dimension) and the VQ method for varying numbers of clusters (10-600 clusters).
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Figure 3.35. IO Performance
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Figure 3.36. Preprocessing Storage

We note that our indexes are able to consistently reduce the number of random IO

reads as compared with VA-File, when allowed (roughly) the same number of sequen-

tial disk accesses. For BIO-RETINA (Figure 3.35), at 6 bit quantization for VA-File, a

nearly 3000X reduction in costly random disk accesses is achieved by the vector quan-

tization/clustering approach with 15 clusters. We note that at K = 600 clusters (the
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last/rightmost operating point), clustering was done in a multi-stage fashion, which

explains the sudden ”plateau” in storage/computation.
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Figure 3.37. Computational Cost

We also note significant (≈ 10X − 100X) lower storage and lower computational

costs incurred by the VQ method (Figure 3.36 and 3.37).

3.7.6 Approximate Nearest Neighbors: BIO-RETINA

For brevity of presentation, we describe results for only the reduced complexity

hyperplane bound with the BIO-RETINA data-set. Similar results are observed with the

full complexity hyperplane bound and with the CORTINA-CalTech101 data-set. Our

performance metrics are precision (which equals recall for kNN queries) and distance

ratio.

Comparison with VA-LOW

Figures 3.38 and 3.39 show the performance of our clustering + red. complexity

hyperplane bound retrieval and VA-LOW [72], a variant of the VA-Files that can return

approximate NNs. In the VA-LOW, the search in the second phase is stopped once

sufficient vectors have been visited to assure a certain precision.
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Figure 3.38. IO Performance under Precision Metric
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Figure 3.39. IO Performance under Distance Ratio (D) Metric

We note substantial gains over VA-LOW. Even the very first cluster returns high-

precision results and by creating 300-500 clusters, the number of sequential IOs is re-

duced. Moreover, we observe that 100 % precision results i.e. the retrieval of exact

nearest neighbors, is possible with just the first few disk IOs (even though there is no

guarantee that the exact NNs have been found). On the other hand, in VA-LOW several

random and sequential disk access are necessary.
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Comparison with Naive Cluster Retrieval

Next, we compare performance against naive cluster retrieval i.e. retrieval of clusters

in order of distances to the centroids. The search is stopped at various stages and the

precision (or distance ratio) is measured. This was performed at two levels of clustering

with K = 600 clusters and with K = 1200 clusters.
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Figure 3.40. Precision, 600 clusters
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Figure 3.41. Precision, 1200 clusters

We note that when the performance measure is precision, the retrieval performance

of both schemes is very similar, with minor gains for hyperplane based cluster retrieval.

However, if the performance measure is the distance ratio, we note that the naive cluster

retrieval is worse with disk accesses increased by as much as 20%, when compared with
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Figure 3.42. Distance Ratio (D) Metric, 600 clusters
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Figure 3.43. Distance Ratio (D) Metric, 1200 clusters

hyperplane bound based retrieval for roughly same accuracy (D). This is because, with

the hyperplane bound, better selection of clusters is possible.

3.8 Enhanced Cluster Distance Bounds

In this section, we present a method that improves upon the hyperplane based cluster-

distance bounds. We first note that both Euclidean and (positive definite) Mahalanobis

distance measures are metrics i.e. they are symmetric, non-negative, obey the triangle

inequality and two vectors are equal if their Euclidean or Mahalanobis distance is zero.
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Now, for query q consider the function

fq(x) = ‖x − q‖2 (3.13)

By applying the triangle inequality,

fq((1 − λ)x + λy) = ‖(1 − λ)x + λy − q‖

= ‖(1 − λ)(x − q) + λ(y − q)‖

≤ (1 − λ)‖x − q‖ + λ‖y − q‖

= (1 − λ).fq(x) + λ.fq(y)

i.e. fq is a convex function. Convex functions have the useful property that when

optimized over convex sets, if a local minimum exists, then it is a global minimum

[97]. If the function is strictly convex, then there exists at most one minimum. The

optimization of convex functions over convex sets has been well studied and under some

conditions shown to be of complexity polynomial in d, the number of dimensions. In the

case of l2 norm minimization with linear constraints, it is of typically O(d3) complexity

[93] [92].
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Figure 3.44. Cluster Bounded by Multiple Hyperplanes

Now, when considers the cluster procedure, the cluster is bounded by multiple hy-

perplanes (the cluster boundaries, see Figure 3.44). Let the rows of matrix A represent
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the hyperplane normals and while the rows of column vector b represent the distance of

the hyperplanes from the origin. Hence, if Xm is a cluster, then it is easy to see that

∀x ∈ Xm, Ax ≤ b (3.14)

The cluster supports can be viewed as the distance the hyperplanes need to be

“moved” till they just touch the cluster. Hence, by suitable additions/subtractions to

the rows of b, it is also possible to incorporate information about the cluster supports.

Define A = {x : Ax ≤ b}. Clearly,

Xm ⊆ A (3.15)

and A is a convex (intersection of half-spaces) set (see [97], Chapter 2). Now, for

query q, the true query-cluster distance is

d(q,Xm) = min
x∈Xm

d(x,q) (3.16)

By combining with (3.15),

d(q,Xm) ≥ min
x∈A

d(x,q) = min
x∈A

fq(x) (3.17)

This minimization of fq over A provides another lower bound on query-cluster dis-

tance.

3.8.1 Interpretation

The minimization of fq over the convex set A is equivalent to bounding the cluster

with a convex polytope (i.e. A) and searching for the point closest to the query on the

polytope i.e. we now search over all (separating) hyperplane surfaces and their intersec-

tions. Previously in the hyperplane bound, we only estimate distances to the separating

hyperplanes surfaces and hence, this new bound improves upon the hyperplane bounds.
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Since fq is a convex function, its minimization over a convex set can be done very effi-

ciently (see [93] [92]). The computational costs do not grow with size of the database but

only with the dimensionality. It is important to note that in a d-dimensional space, K

hyperplanes in general position have O(Kd) intersections and hence, naively searching

over all intersections in a high dimensional space is not feasible.

Mahalanobis distances, with a positive definite Mahalanobis matrix W , are also met-

rics. Therefore, by suitably modifying fq, the convexity property of fq can be similarly

shown to hold for Mahalanobis distances. We notice that the clustering procedure, and

hence, the hyperplanes, can be defined independent of W , which allows cluster distance-

bound calculation even as W changes. Hence, we improve upon the hyperplane bounds

even for the relevance feedback application.

3.8.2 Experimental Results
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Figure 3.45. Euclidean Distance Indexing

We show results from both Euclidean distance and relevance feedback indexing (see

Figures 3.45, 3.46, 3.47), when tested on the two CORTINA feature sets. We refer

to the convex optimization based approach as the ’Corner’ and hyperplane methods

as ‘Hyperplane (full)’ and ‘Hyperplane (reduced)’ for the full and reduced complexity

hyperplane bounds.
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In the case of the Euclidean distance indexing, we notice a further reduction of ≈2X

in costly random IOs, given roughly the same amount of sequential IOs, over the full

complexity hyperplane bound and ≈3X over the reduced complexity hyperplane bound.
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Figure 3.46. Relevance Feedback Indexing: MARS

For relevance feedback indexing with a diagonal weight matrix (the MARS approach

[88]), the reductions in random IOs range from 1.3X-1.6X (see Figure 3.46). With a

random weight matrix (Figure 3.47), the random IO reductions are in the range 2.8X-

4X.
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Figure 3.47. Relevance Feedback Indexing: Random Weight Matrix
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Chapter 4

Fusion Coding of Correlated Sources

This chapter develops a practical framework for the fusion coding of correlated

sources in a sensor network-database. The goal is to design a system that can ex-

ploit correlations and compress multiple data sources (data-streams) efficiently, and yet

have the ability to retrieve information (bits) that are relevant only to a queried subset

of the sources (data-streams). Future queries are unknown, but we assume access to a

query distribution (or a training set of sample queries). The typical application is for

handling data generated in sensor networks, which generate huge amounts of correlated

data and where users would be interested in specific regions of the sensor field.

In subsequent discussion, we shall focus attention on real-valued i.i.d sources Xm, ∀m.

Any practical signal storage scheme would need to quantize and compress the data before

storage, hence leading to some error or distortion. Given query q, the reconstruction

distortion is measured as

dq(x, x̂) =
M∑

m=1

qmdm(xm, x̂m), (4.1)

where

dm : R × R → [0,∞). (4.2)

Hereafter, we will specialize to the squared error distortion measure, i.e. distortion
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measure of the form

dm(x, x̂) = (x − x̂)2, m = 1, ..., M (4.3)
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Figure 4.1. Proposed Fusion Coder

4.1 Fusion Coder Formulation

We propose a fusion coding framework to optimize the fusion storage-selective re-

trieval of correlated sources. A block diagram, representative of our Fusion Coder (FC),

is given in Figure 4.1. The fusion coder is composed of three modules: encoder, bit

(subset)-selector and decoder. We define the encoder by the function

E : R
M → I = {0, 1}Rs (4.4)

which compresses the M-dimensional input vector x, representing the M sources, to Rs

bits at each instant.

The bit (subset) selector is the mapping

S : Q → B = 2{1,...,Rs} (4.5)

where Q ⊆ {0, 1}M represents the domain-set of queries and B is power set (set of all

subsets) of the set {1, ..., Rs}. This mapping determines which of the stored bits to

retrieve for a given query q. Clearly, S(q) ⊆ {1, . . . , Rs},∀q.
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For each subset of bits e that can be retrieved, an estimate of all the sources is

formed by the decoder

D : I × B → X̂ (4.6)

where X̂ ⊂ R
M is the corresponding codebook. The average distortion for a specific

query q is

Dq = E[dq(X,D(E(X),S(q)))] (4.7)

where E[. . .] denotes statistical expectation, and the distortion averaged across all

queries is D =
∑

q∈Q P (q)Dq. In practice, since we have access to the database X
itself, we use it as a training set and replace the expectation operator E[. . .] by a simple

average, evaluated across the database X . Hence, the distortion is evaluated as

D =
∑
q∈Q

P (q)
1

|X |
∑
x∈X

dq(x, x̂), (4.8)

Noting that Rq = RS(q) = |S(q)|, the average retrieval rate is,

Rr =
∑
q

P (q)Rq =
∑
q

P (q)|S(q)| (4.9)

Given M correlated sources and a storage constraint Rs, the designer aims to min-

imize distortion (or maximize quality) and at the same time minimize retrieval rate.

Hence, we are interested in optimizing the trade-off between distortion and retrieval

rate, given a fixed amount of storage. This is equivalent to minimizing the Lagrange

sum of distortion and retrieval rate

min
E,S,D

J = min
E,S,D

D(Rs) + λRr(Rs), λ ≥ 0 (4.10)

for different λ.

4.2 Necessary Conditions for Optimality

The Lagrangian cost J can be rewritten as

J =
1

|X |
∑
x

∑
q

P (q)dq(x,D(E(x),S(q))) + λ
∑
q

P (q)|S(q)|
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Optimal Encoder : From the above equation, the optimal encoding index E(x) for

input vector x is

E(x) = arg min
i∈I

∑
q

P (q)dq(x,D(i,S(q))),∀x

It is easy to see the resemblance to the “nearest neighbor” condition in quantizer design

[62].

Optimal Bit-Selector : Similarly, the best set of bits to be retrieved for a particular

query should be the one that minimizes the Lagrangian sum of the distortion measure

dq(., .), averaged across the training set, and the query-specific retrieval rate Rq = |S(q)|
i.e.

S(q) = arg min
e∈B

{ 1

|X |
∑
x

dq(x,D(E(x), e)) + λ|e|},∀q (4.11)

Optimal Decoder : Let i ∈ I be a typical encoding index and e ∈ B represent some

subset of bits. We use ie, to denote the sub-index extracted from i by retrieving the

bits in the positions indicated by e and D(i, e) to denote the corresponding codevector.

Clearly, the choice of codevector does not affect the rate component of the Lagrangian

cost J .

Let Fi,e = {x : (E(x))e = ie} and Ee = {q : (S(q)) = e}. We can rewrite the

distortion as

D =
1

|X |
∑
i,e

∑
m

∑
q∈Ee

∑
x∈Fi,e

P (q)qm(xm −D(i, e)m)2

=
1

|X |
∑
i,e

∑
m

wm

∑
x∈Fi,e

(xm −D(i, e)m)2 (4.12)

where wm =
∑
q∈Ee

P (q)qm.

By setting to zero, the partial derivatives of J w.r.t D(i, e), ∀i, e, we find the optimal

decoder to be

D(i, e) =
1

|Fi,e|
∑

x∈Fi,e

x,∀i, e (4.13)

We note in passing that this is analogous to the “centroid” rule in quantizer design [62].
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4.2.1 Algorithm for Fusion Coder Design

Since we are considering the storage and retrieval of signals from a database, the

signals from all sources are already available. Hence, while one would use the entire

database as a training set, it is equally important to note that the database is also

the test set. A natural design algorithm is to iteratively enforce each of the necessary

conditions for optimality (derived in the preceding sections), till a convergence condition

is satisfied. In effect, the algorithm just partitions the elements of the training set and

the storage bits into different groups, and for a finite sized training set and a finite storage

rate, there exist only a finite number of set partitions. At each step of the optimization,

a set of parameters are chosen to minimize the Lagrangian cost and hence, with every

iteration, the cost is non-increasing. Therefore, the algorithm is guaranteed to converge

in a finite number of iterations. It is to be noted that since the Lagrangian cost surface

is non-convex and has multiple local optima, iterative design would be initialization

dependent and may not lead to a globally optimal solution.

4.3 Complexity of Design

At the encoder, the search for the optimal encoding index for each element x in the

training set/database X , involves 2Rs distance evaluations of the form
∑

q P (q)dq(x,D(i,S(q))).

This implies a net complexity cost O(2Rs |X ||Q|M) additions and multiplications in en-

coder optimization. Codebook optimization, on the other hand, involves computation

of averages of different subsets of the training set and this complexity grows as O(|X |),
for each codevector. Additionally, the total number of codevectors that need to be

maintained is
Rs∑
k=1

(Rs
k )2k = 3Rs − 1 and hence codebook update involves O(3Rs |X |M)

operations. The optimization of the bit(-subset) selector is effectively a search for the

best subset among the set of 2Rs − 1 possible subsets, for each query q. This implies

that the complexity of this step grows as O(2Rs |X ||Q|M). We also note that the storage
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complexity of the bit-selector, which is just a look-up table, grows as O(|Q|). Clearly,

the complexity of FC design scales linearly with the size of the database, the query set

and the number of sources but exponentially with the Rs.

4.3.1 Complexity of Deployment

Once the system has been designed, the encoding of the database has been completed.

Hence, during usage/deployment, only the decoding is performed. For each query, the

optimal subsets of encoded bits are retrieved and the relevant sources are reconstructed.

However, if only a small part of the database was used to train the system, either to speed

up training or because these entries were unavailable during the FC design phase, any

remaining/new entries would of course need to be encoded (entailing the corresponding

encoder usage complexity).

4.3.2 Complexity Reduction Strategies

We note that the query-set Q could be very large as could be the number of sources

considered and the database itself. A first attempt at reducing complexity would be

to limit the training set to be a statistically representative subset, and not the entire

database. But the design complexity may still be un acceptable as it is a product of the

sizes of the training set, query set and the number of sources. In this section, we exploit

properties of the optimal FC to further reduce the design complexity.

Encoding with an Average Codebook

At a first glance, the assignment of the optimal encoding index to each input vec-

tor x (see (5.2.1)) involves O(|Q|2Rs) operations. We try to exploit properties of the

squared-error distortion measure to reduce encoding complexity. Noting that dq(x,0) =
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∑
m qmx2

m, it is easy to see

dq(x,y) = dq(x,0) − 2
∑
m

qmxmym + dq(y,0)

= dq(x,0) − 2xT Wqy + dq(y,0)

where the matrix Wq is diagonal, with Wq,m,m = qm This implies that

∑
q

P (q)dq(x,D(i,S(q))) =
∑
q

P (q)dq(x,0) − 2xT
∑
q

P (q)WqD(i,S(q))

+
∑
q

P (q)dq(D(i,S(q)),0)

=
∑
q

P (q)dq(x,0) − 2xT c̄(i) + αi

The first term is common to all encoding indices and hence need not be computed.

The second term could be viewed as an inner (dot) product of x with a query-averaged

codevector c̄(i) =
∑

q P (q)WqD(i,S(q)), where and the last term a constant, αi, inde-

pendent of x. αi and c̄(i) can be computed in a separate step prior to the encoding of

all x. Thus we obtain the faster encoding rule

E(x) = arg min
i∈I

αi − 2c̄(i)Tx,∀x (4.14)

The new encoder design/operation is now of O(2Rs |X |M + 2Rs |Q|M) ≈ O(2Rs |X |M)

complexity, since the computation of the average codebook is a one-time affair prior to

encoding the entire database (training set).

Recursive Codevector Update

Given Rs storage bits, there are 2Rs − 1 codebooks, one for each non-empty subset

of bits. We denote the codevector based on all Rs encoded bits for index j as x̂j =

D(j, {1, ..., Rs}),

Let Fi,e = {x : (E(x))e = (i)e}, Gj = {x : E(x) = j} and Hi,e = {j ∈ I : je = ie}. It

is easy to see that

Fi,e =
⋃

j∈Hi,e

Gj (4.15)
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and that Gj

⋂
Gk = φ,∀j �= k. Consequently

∑
x∈Fi,e

x =
∑

j∈Hi,e

∑
x∈Gj

x (4.16)

|Fi,e| =
∑

j∈Hi,e

|Gj| (4.17)

But (4.13) also implies

x̂j =
1

|Gj|
∑
x∈Gj

x (4.18)

Hence,

D(i, e) =
1

|Fi,e|
∑

x∈Fi,e

x =
1

|Fi,e|
∑

j∈Hi,e

|Gj|x̂j

In other words, codevector update is effectively the weighted (vector) average of the

corresponding codevectors obtained by extracting all the stored bits. Hence, codebook

update can be performed recursively starting off from the updates of D(j, {1, ..., Rs}), ∀j
and is now of O(2Rs |X |M + (3Rs − 2Rs)M) ≈ O(2Rs |X |M) complexity. Note, that the

storage complexity is reduced from O(3Rs) to O(2Rs) codevectors. We store x̂j and

|Gj|,∀j and extract all other codevectors by appropriate averaging.

Reduced Complexity Bit-Selector Optimization

The optimal bit-selector satisfies

S(q) = arg min
e∈B

{ 1

|X |
∑
x

dq(x,D(E(x), e)) + λ|e|},∀q

Let Dm(e) =
1

|X |
∑
x

(xm − D(E(x), e)m)2,∀m, ∀e ⊆ {1, ...,M}. Now, by interchanging

the order of summation

S(q) = arg min
e∈B

∑
m

qmDm(e) + λ|e|,∀q (4.19)

which implies that we could compute Dm(e),∀m, ∀e in a separate step and use this

result in finding the optimal S(q),∀q. Hence, the complexity of bit-selector optimization

reduces to O(2Rs |X |M + |Q|M) ≈ O(2Rs |X |M).
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4.4 Initialization Strategies

We note that there are two mappings that require initialization - the codebook X̂ and

the bit-selector S. As described in section 4.2.1, the FC design is iterative and hence,

dependent on initialization. Additionally, the cost surface is non-convex and riddled

with local minima. Therefore, for any given λ, FC design should be performed with

different (possibly random) initializations, in order to avoid poor local minima. In this

we describe some initialization heuristics that would help avoid some poor minima.

4.4.1 Computation of Operational Retrieval Rate- Distortion

Curve

Suppose for some λ, a good codebook and bit-selector are known. This can be a

good initialization point for other (Rr, D) points. For an incrementally different value

of lambda, we start off with the same codebook, iteratively optimize the bit-selector,

the encoder and decoder (in that order) till convergence. Alternatively, we could retain

the same bit-selection and iteratively optimize the encoder, decoder and bit-selector (in

that order). This process could be used to gradually compute the entire rate distortion

curve.

Now, for an arbitrary λ, it is unclear how best to initialize the bit-selection and

codebooks. However, there are two settings where good heuristics for bit-selector ini-

tialization are possible. This would alleviate initialization issues to some extent, even

though multiple runs with random codebook initialization could still be necessary to

obtain good results.
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4.4.2 Retrieve All Bits or λ = 0

We first consider the special case when λ = 0. This implies Lagrangian cost is solely

composed of distortion and that the penalty for bit retrieval is zero. In other words, the

optimal bit-selector setting is to retrieve all compressed bits. This initialization setting

would work for all query sets.

4.4.3 Retrieve Only One Bit or λ = ∞

Next, we consider the case when λ = ∞ (or in practice, a very large value). This

implies that the Lagrangian cost is dominate by Rr, while distortion plays almost no

role. Since the FC is constrained to retrieve at least one bit, the bit-selector setting must

do exactly that i.e. retrieve exactly one bit for any query. Since there are Rs encoding

bits, it is necessary to partition the query set into Rs groups, where each group maps

to the same compressed bit. This partitioning of the query set is necessary so that all

allowed Rs bits are used during encoding. We note that such partitioning of the query

set would clearly be possible in some query distributions, such as those with multiple

modes, while for others, this partitioning may not be very clear.

4.5 Adapting to Large/Incomplete Query Training

Sets

While the fusion coding framework is optimal, we note that the bit-selector is a

look-up table that grows with the size of the query-set. In principle, the query-set

might be very large. For example, if M = 100 sources and suppose any query of

size 20 can be requested, then |Q| = (100
20 ) ≈ 1020, which would impose an unbearable

storage requirement. In an extreme case, the query-set may be the entire distribution i.e.

|Q| = 2M − 1. Even otherwise, the query-set may change after training i.e. a different
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set of queries (nevertheless drawn from the same distribution) might be encountered

during operation. In either case, the queries need to be classified (grouped), where all

queries in a group share the same bit-selection (combination of bits).

Let the allowed number of groupings be L. We define the query-classifier as the

mapping

C : Q → L = {1, . . . , L} (4.20)

C defines L disjoint partitions of the query-space {Bl}L
l=1 such that

Bl = {q : C(q) = l},∀l = 1, . . . , L (4.21)

⇒
L⋃

l=1

Bl = Q, Bl

⋂
Bm = φ,∀l �= m (4.22)

The bit-selector is modified to be the mapping

S : L → B = 2{1,...,Rs} (4.23)

where the notations have the usual meaning. The Lagrangian cost to be optimized is

J =
∑

l

∑
q∈Bl

P (q){ 1

|X |
∑
x

dq(x,D(E(x),S(l))) + λ|S(l)|}

Now, C must be learnt from the available (training) set of queries and must classify

accurately an unseen query test-set. This might require some structural constraint to

be imposed on C, such as the nearest neighbor classifier, nearest prototype classifier,

decision tree etc. This structure can be either learnt during the optimization of all

mappings E ,D,S or learnt offline (after which E ,D,S would need to be re-optimized).

In subsequent sections, we shall confine discussion to the latter option.

4.5.1 Necessary Conditions for Optimality

We now present the optimality conditions for this fusion coder (avoiding lengthy

derivations).
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Optimal Encoder : From the above equation, the optimal encoding index E(x) for

input vector x is

E(x) = arg min
i∈I

L∑
l=1

∑
q∈Bl

P (q)dq(x,D(i,S(l))),∀x

Optimal Bit-Selector : Similarly, the best set of bits to be retrieved for a particular

label (query-region/partition) is the one that minimizes the Lagrangian sum of the

distortion measure
∑

q∈Bl
P (q)dq(., .), averaged over the training set, and the retrieval

rate i.e.

S(l) = arg min
e∈B

∑
q∈Bl

P (q){ 1

|X |
∑
x

dq(x,D(E(x), e)) + λ|e|}, ∀l

Optimal Query-classification : The optimal labelling (grouping) of the queries would

be

C(q) = arg min
1≤l≤L

1

|X |
∑
x

dq(x,D(E(x),S(l))) + λ|S(l)|

Optimal Decoder : We use ie, to denote the sub-index extracted from i by retrieving

the bits in the positions indicated by e and D(i, e) to denote the corresponding code-

vector. By setting to zero, the partial derivatives of J w.r.t D(i, e)∀e ∈ B, we find the

optimal decoder to be

D(i, e) =
1

|Fi,e|
∑

x∈Fi,e

x,∀e, i

where Fi,e = {x : (E(x))e = (i)e}.

4.5.2 Algorithm for Design

We design the fusion coder by iteratively applying the conditions for optimality.

Upon convergence, we learn the parameters of the structure imposed on C such as the

centroids, prototypes, the nodes to be split etc. Once the structure of C has been learnt,

we re-optimize E ,D,S.
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4.6 Experimental Results

4.6.1 Data-sets

We tested our algorithm extensively on both synthetic and real data-sets, where

we evaluated the operational (retrieval) rate (Rr) vs. distortion D curves, for different

settings of storage complexity. A brief description of our data-sets follows.

SYNTH: Synthetic data

For the synthetic data-set SYNTH, the sensor sources were modelled as correlated

Gaussian sources (of unit variance i.e. σ2 = 1), with the correlation between sources

modelled as falling exponentially with distance. Specifically, if ρij represents the corre-

lation between sources Xi and Xj,

ρij = ρ|i−j| (4.24)

where −1 ≤ ρ ≤ 1. This correlation model can be expected when spatio-temporal sensor

fields are uniformly sampled [98]. We created synthetic data-sets with ρ = 0.3 and

ρ = 0.8, corresponding to low and moderately-high correlation data-sets, with M = 50

sources, each having 6000 training samples and 1,000,000 test samples. The performance

on the test-set is reported.

STOCKS: Real Data

The first real data-set, the STOCKS data-set, is available in the University of Cal-

ifornia, Riverside (UCR) Time-Series Data Mining Archive 1. It consists of M = 93

stocks, each having 3000 samples.

1The authors would like to thank Dr. Eamonn Keogh of the University of California, Riverside for
kindly providing the STOCKS data-set.
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Intel Berkeley Sensor Data: Real Data

The second real data-set used was the one generated by the Intel Berkeley Research

Lab2. Data were collected from 54 sensors deployed in the Intel Berkeley Research lab

between February 28 and April 5, 2004. Each sensor measures humidity, temperature,

light and voltage values once every 31 seconds. We retain data from those sensors that

generated in excess of 50,000 readings. This corresponds to temperature, light, humidity

and voltage readings from 15 sensors which is equivalent to 60 sources.

4.6.2 Query Distribution

We tested the performance of the fusion coder on several query distributions that

model real user behavior. Even though in theory, there are 2M − 1 possible queries,

typically, only a smaller subset of sources (say n) will normally requested at any time.

There are (M
n ) ways of selecting n out of M objects and for moderate values of M ,

even this might be very large. For example, if M = 30 and n = 4, 230 − 1 � 109and

(30
4 ) = 27405.

We describe exponential queries (”EXP”), which we believe are reasonable models for

real-user behavior. Queries request for contiguous neighborhoods of sources. We impose

a shifted exponential distribution on neighborhood size. In our sample distribution, on

an average 9 are requested and it is representative of 345 queries, that were randomly

generated. Even though the queries were chosen randomly, we ensured that each source

is requested by at least one query. Figure 4.3 is representative of this query distribution.

The probability is plotted versus the size of the query |q|. It is also to be noted that

even a query set of size 345 cannot be handled with the naive storage technique presented

in 2.8.2, i.e. compressing and storing every subset of sources separately, without paying

an enormous price in total storage.

2Download from http://db.csail.mit.edu/labdata/labdata.html
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Figure 4.2. “Neighborhoods” of sources (on a 1-D sensor array) of varying size
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Figure 4.3. EXP: Exponential Distribution on “neighborhood” (query) sizes for M = 50

sources

4.6.3 Fusion Coding (FC) vs. Joint Compression (VQ)

We compared the performance of joint compression and selective bit-retrieval for both

the synthetic and real data-sets (see Figures 4.4, 4.5 and 4.6). The joint compression

of the data set was performed by a Vector Quantizer (VQ) designed with the standard

Generalized Lloyd Algorithm (GLA) [62]. The performance of our proposed FC was

evaluated at two settings of storage, Rs = 4 and Rs = 6 bits. Since both systems

are designed iteratively, they are initialization dependent. We performed 20 different

runs with random codebook initializations (for both VQ and FC) and present the best

performance of each method.

For the synthetic data-set with ρ = 0.3 (Figure 4.4), FC is able to provide a speed-up

of nearly 3X at a distortion level of 9.1dB. For the synthetic data-set with ρ = 0.8 (Figure

4.5), there is a 3X speed-up over the joint compression technique, with average distortion

of 8.5dB. Additionally, there is also a distortion gain of nearly 1dB at a retrieval rate of

1 bit per sample.

In the real data-set STOCKS (Figure 4.6), FC provides a ≈1.6X speed-up with
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Figure 4.5. Data-set SYNTH, ρ = 0.8

distortion 28dB and nearly 3.5dB less distortion at an average retrieval rate of 3 bits.

In the Intel Berkeley Lab data-set (Figure 4.7), we notice gains in the range of 2.6dB

at an average retrieval rate of 2 bits and 3.5dB at an average retrieval rate of 3 bits. FC

also provides ≈ 2X reduction in retrieval rate at a distortion of 26.2dB.

We also note that increasing Rs results in better performance of the selective retrieval

technique. This is possible since increasing storage allows more freedom in the design

of the bit-selector. However, this increase in gain is relatively marginal in the STOCKS

data-set. This is because the design algorithm gets trapped in local minima that riddle
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the cost surface.

4.6.4 Quantization of the Query-space

Once the queries were grouped as described in section 4.5.1, we partitioned the

query space with a decision tree [99] [100]. We preferred the decision tree over the

nearest neighbor/nearest prototype classifiers since the performance of the latter would

be dependent on meaningful distance/distortion metrics for the discrete query space

{0, 1}M . For example, if two sources are highly correlated, the request for either or
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both of them should have the same retrieval cost (subset of bits) and hence it would

make sense that these queries be handled together. It might be necessary to employ a

(linear/non-linear) transformation to a secondary feature space for the Euclidean norm

to make sense. On the other hand decision trees can operate on discrete data and

are known to be efficient classifiers in this setting. Hence, we expect the decision tree

paradigm to handle (unknown) queries.
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Figure 4.8. Data-set SYNTH, ρ = 0.3 with Query Quantization
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Figure 4.9. Data-set SYNTH, ρ = 0.8 with Query Quantization

During the training phase, the training set of queries were partitioned into L =

6 groups during the fusion coder design (as explained in section 4.5). Subsequently,
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a decision tree that performs this classification was constructed and the fusion coder

components were re-optimized. Next, a test set of 345 queries was extracted from the

same distribution. This new set of queries was classified by the decision tree and the

resulting distortion-retrieval rate performance of the system was evaluated.

We note a very small loss in performance of the system on the new set of queries as

compared (see Figures 4.4, 4.5, 4.8 and 4.9) and the performance advantages over the

joint compression (VQ) scheme are maintained.
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Chapter 5

Efficient Fusion Coder Design

In this chapter we describe approaches to reduce design complexity in fusion coding.

We first consider scalability of the (memoryless) fusion coder and note the exponential

growth in complexity of design with storage rate.

5.1 Fusion Coder Performance and Scalability

Consider an experimental example of memoryless correlated Gaussian sources of unit

variance Xm, 1 ≤ m ≤ M . The correlation between sources Xi and Xj is ρij = ρ|i−j|,

where −1 ≤ ρ ≤ 1. This correlation model is consistent with uniform sampling of a

linear sensor field [98]. Queries were assumed to be uniformly distributed over contiguous

“neighborhoods” of n sensors (see Figure 5.1). In our experiments, M = 50 sources and

any n = 10 contiguous sources are queried, which implies that |Q| = 41. We chose

ρ = 0.8 and generated a database of 40,000 vectors.

Figure 5.1. Neighborhood queries on a linear sensor array
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The fusion coder was designed at two storage rate constraints, Rs = 4 and Rs = 8.

The competing joint compression technique employed a vector quantizer (VQ), where

the compression rate Rs(= Rr) was varied from 1 to 8 bits per vector. Figure 5.2

provides the performance evaluation (ignore the “shared descriptions” results which

will be discussed in the next subsection). It is clear from the figure that the fusion

coder provides significant selective retrieval gains over naive joint compression (vector

quantization) of sources, and these gains increase with the allowed storage rate. This is

because at higher storage rates, there are more degrees of freedom in the design of the

bit-subset selector.
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Figure 5.2. Performance comparison of fusion coding for selective retrieval

It is, however, of considerable practical importance to note that the overall design

complexity of the optimal solution is O(2Rs). Given storage rate Rs, the encoding op-

eration involves searching for the best index out of 2Rs , i.e. the index that minimizes

the query averaged distortion. Note further that this encoding complexity also arises

during operation of the fusion coder, not only during offline design. The design of the

bit-subset selector searches for the best subset of Rs bits, out of 2Rs −1 candidates. The

codebook update operation and the codevector storage are also of O(2Rs) complexity.
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Thus, the system complexity (design, operational and codevector storage) grows expo-

nentially with storage rate. This implies that system design and operation scale poorly

with the allowed storage rate, which itself grows with the number of sources.

5.1.1 Implications

This represents a major practical concern. In order to design for practical sized

sensor networks, large storage rates are necessary. Secondly, real life signals exhibit

temporal correlations that are equally as significant as spatial correlations. The optimal

approach to exploit spatio-temporal correlations would be to fusion code over larger

block lengths. Even if Rs were small, we note the overall complexity growth is O(2nRs),

where n is the number of blocks. Clearly, fusion coding over several blocks is unfeasible

and hence, more efficient approaches are necessary. In subsequent sections, each of these

practical issues is tackled in a different manner. The Shared Descriptions idea, described

in section 5.2, enables scalability to large storage rates, while Predictive Fusion Coding

(section 5.3) is a low complexity technique to exploit spatio-temporal correlations over

long blocks.

5.2 The Shared Descriptions Approach

We now describe the “Shared Descriptions” reformulation of the fusion coding prob-

lem (originally presented in [101]) such that it enables explicit control of the complexity.

A structure needs to be imposed to constrain the complexity in a controlled way so as

to optimize tradeoff with performance. For example, in classical vector quantizer de-

sign, the split VQ structure might be preferred over full-search VQ because of its lower

codevector search complexity [62]. In an analogous fashion, we “split” the storage and

spread the complexity over a number of smaller (lower complexity) encoders. Since the

complexity is exponential in the storage rate this entails considerable complexity gains.

97



Each encoder now operates independently and we refer to the compressed bits produced

by each encoder as a shared description for reasons that will shortly become obvious.

We constrain the bit-selection module to select the subset of bits for a query from one

of the shared descriptions (see Figure 5.3). This restriction implies that each description

is in fact shared by a group of queries. Since each query is mapped to a particular

description and no query retrieves bits from two or more different descriptions, it follows

that the different encoders can operate independently of each other. If we employ two

encoders (two descriptions) which encode at rates R1
s and R2

s, then the net encoding

complexity is 2R1
s + 2R2

s rather than 2R1
s+R2

s .

To illustrate this property, let use i1 ∈ I1 and i2 ∈ I2 to denote the two partitions of

a typical encoding index i ∈ I, where I = I1 × I2 and i = (i1, i2). The space of queries

is now partitioned into groups of queries, one per shared description, though each query

in the group may still use a different subset of bits from their shared description. Let

A1 and A2 denote the two groups, where A1 ∪ A2 = Q and A1 ∩ A2 = φ. Then under

the chosen constraint, the optimal encoding rule transforms to ∀x ∈ X

E(x) = arg min
i

∑
q

P (q)dq(x,D(i,S(q)))

= arg min
i1,i2

{
∑
q∈A1

P (q)dq(x,D((i1, i2),S(q)))

+
∑
q∈A2

P (q)dq(x,D((i1, i2),S(q)))}

= arg min
i1∈I1,i2∈I2

(f(i1, A1) + g(i2, A2))

= (arg min
i1∈I1

f(i1, A1)), arg min
i2∈I2

g(i2, A2))

where f and g are suitably defined functions.

In a similar fashion it can be argued that the design complexity for the bit and

description selection is 2R1
s + 2R2

s and the net codevector update and storage complexity

is 2R1
s + 2R2

s . Thus the net system complexity is O(2R1
s + 2R2

s) << O(2R1
s+R2

s) = O(2Rs).

The performance of this “split encoder”/“shared description” formulation is presented in

Figure 5.2. There is a small performance loss relative to the unconstrained fusion coder,
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of about 0.2dB. However, the “shared description” setup considerably reduces system

complexity from O(256) to O(32). It also has significant performance advantages over

joint compression.

In general, let K be the number of descriptions/encoders. The kth encoder com-

presses the M-dimensional input vector x to Rk
s storage bits at each instant. The total

storage would be Rs =
∑

k Rk
s . Correspondingly, we introduce notation

Ek : R
M → Ik = {0, 1}Rk

s ,∀k = 1, ..., K (5.1)

for the K encoders.

For the kth description, we have the corresponding bit-selector as

Sk : Q → Bk = 2{1,...,Rk
s} (5.2)

Next, we use β : Q → K = {1, ..., K} to denote the description selector i.e. for query

q, bits are retrieved from description β(q).

The decoder is now modified to be the map

D :
K⋃

k=1

Ik × Bk × {k} → X̂ (5.3)

Given β(q) = k for some q, the decoder accesses the bits specified by Sk(q) in

description k and estimates X̂ = D(Ek(X), Sk(q), k). (Consequently, reconstruction

of the relevant sources is X̂(q), where we use the subscript q to indicate the relevant

sources.) If we denote the set of queries that are mapped to the kth description as

Ak = {q : β(q) = k}, the average distortion is evaluated as

D =
K∑

k=1

∑
q∈Ak

P (q)
1

|X |
∑
x∈X

dq(x,D(Ek(x),Sk(q), k)) (5.4)

where X is the training set. Likewise, the average retrieval rate is evaluated as

Rr =
K∑

k=1

∑
q∈Ak

P (q)|Sk(q)| (5.5)
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Figure 5.3. Shared Description Fusion Coder for Memoryless Sources

Let Ek represents the bits within description k that are actually used. Clearly,

Ek =
⋃
Ak

Sk(q) (5.6)

and

Rk
s,util = |Ek| = |

⋃
q∈Ak

Sk(q)| (5.7)

This implies that the true complexity of the kth encoder is O(2Rk
s,util). Hence, the total

storage and system complexity are evaluated to be

Rs,net =
K∑

k=1

Rk
s,util Cnet =

K∑
k=1

2Rk
s,util

Given a total storage capacity Rs, allowed average retrieval rate Rret, allowed system

complexity C and K shared descriptions, the optimal shared description fusion coder is

the solution to

arg min
E,D,S

D � Rs,net ≤ Rs, Cnet ≤ C, Rr ≤ Rret (5.8)

Equivalently, we seek solutions of

arg min
E,D,S

J = arg min
E,D,S

D + λRr � Cnet ≤ C, Rs,net ≤ Rs (5.9)

where λ ≥ 0 is a Lagrange multiplier. Now, it can be clearly seen that fusion coding [102]

is actually a special case of shared descriptions fusion coding (when C = ∞, K = 1).
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5.2.1 Necessary Conditions for Optimality

The Lagrangian cost J can now be written as

J =
K∑

k=1

∑
q∈Ak

P (q)

|X |
∑
x∈X

dq(x,D(Ek(x),Sk(q), k)) + λ

K∑
k=1

∑
q∈Ak

P (q)|Sk(q)|

Optimal Encoders : Given all the other mappings, it follows from (5.10) that the

optimal encoding index produced by encoder k for input vector x is

Ek(x) = arg min
i∈Ik

∑
q∈Ak

P (q)dq(x,D(i,Sk(q), k)),∀x

Optimal Codevectors : For k ∈ K, i ∈ Ik, e ∈ Bk, we define Fk = {x : (Ek(x))e =

(i)e}, and the optimal codevector is

D(i, e, k) =
1

|Fk|
∑
x∈Fk

x, ∀i ∈ Ik, ∀e ∈ Bk,∀k ∈ K

Optimal Bit-subset Selectors : Let B̃k = {e ∈ Bk : |e
⋃

Ek|+
∑
k′ �=k

|Ek′| ≤ Rs, 2
|e ⋃

Ek|+

∑
k′ �=k

2|Ek′ | ≤ C}. B̃k represents the valid set of bit-selections that do not violate the

storage and complexity constraints. Hence, the optimal bit-subset selection, given the

encoding indices and the codebook, is the rule ∀q, k

Sk(q) = arg min
e∈B̃k

λ|e| + 1

|X |
∑
x

dq(x,D(Ek(x), e, k))

Optimal Description Selector : By reordering the terms of the Lagrangian, the op-

timal description for a particular query q, given the encoding indices and the codebook,

is the rule ∀q

β(q) = arg min
k∈K

min
e∈B̃k

λ|e| + 1

|X |
∑
x

dq(x,D(Ek(x), e, k))

If β(q) = k, we update Ek = Ek

⋃Sk(q), before optimizing for the next query. We

also note that the Ek update is necessary before the bit-selector optimization for the

next query.
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5.2.2 Design Algorithm

A natural design algorithm is to iteratively enforce the optimality conditions i.e.

optimize each mapping separately, while assuming that the remaining mappings are

optimal (and given). There exist only finite number of partitions of a finite training set

and there are only finite number of ways to partition bits and queries. As each step

of the iteration is monotone non-increasing in the cost, the algorithm must converge

to a locally optimal design in a finite number of iterations. However, since the cost

is not convex, this simple design approach is dependent on initialization, and multiple

runs with different (possibly random) initializations may be necessary to obtain a good

solution.

5.2.3 Simulation Results

For the same experimental model we considered before, we performed Shared De-

scriptions Fusion Coding (SDFC) at a storage rate of Rs = 24, with K = 3 descriptions.

The overall complexity constraint imposed was C = 768. The SDFC performance was

compared with two naive compression techniques that scale well with storage rate -

scalar quantization (at 1 bit per source) and split VQ. Since each query consists of 10

sources, scalar quantization is forced to retrieve 10 bits for every query. Split VQ is a

standard scheme in speech coding for scaling VQ to high dimensions (equivalent to a

large number of sources in our case) which translate into high rates. Here, we perform

split VQ by splitting the M = 50 sources into (roughly) equal sized groups and com-

pressing each group separately, where the total storage rate Rs = 24 is divided equally

among all the groups. The number of groups was varied over 24, 12, 8, 6 and 4. For

each such grouping of sources, we obtain a point on the retrieval rate-distortion curve.

From Figure 5.4, we note significant performance gains of SDFC over both scalar

quantization and split VQ. At the same retrieval rate, SDFC offers from 0.5dB to 1.6dB

decrease in distortion relative to split VQ. At the same level of distortion, SDFC provides
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Figure 5.4. SDFC vs. split VQ (joint compression) vs. Scalar Quantization

retrieval rate reduction by factors of 1.25X to 2X over split VQ and 2.5X over scalar

quantization. We also note that scalar quantization of sources (at 1 bit per source)

requires more than twice the storage of SDFC and split VQ.

5.3 Predictive Fusion Coding

Streaming data such as video/sensor streams exhibit significant temporal correlations

and efficient storage and retrieval would have to exploit these correlations as well. But,

as we shall show in subsequent sections, the design of optimal predictive fusion coders is

compounded both by the presence of the prediction loop and the need to accommodate a

(possibly exponentially) large query set. We describe a complexity constrained approach,

that derives and builds up from our earlier publication [103], and still yields huge gains

over naive joint compression (vector quantization (VQ) or predictive VQ) of all sources

and memoryless fusion coding.
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5.3.1 Optimal Predictive Fusion Coding

While time-correlations could conceivably exploited by fusion coding over larger

blocks, this would be a high complexity approach. Linear predictive coding, on the

other hand, is attractive as a low-complexity alternative that can yet exploit temporal

correlations. We first note that since all the sources Xm are available at the encoder,

they can be equivalently replaced by query-specific super sources i.e. vector sources of

the form X(q) = [..., Xm, ...]T ,∀m � qm = 1.

Now in an optimal (linear) predictive fusion coder (PFC), at every instant, each such

super source X(q) is predicted and all the prediction residuals are fusion coded to exploit

spatial correlations efficiently (see Figure 5.5). However, this imposes on the encoder the

need to accommodate the entire (possibly exponentially large) query set. This would

require |Q| prediction loops and the encoder would need to handle input vectors whose

size
∑

q∈Q |q| grows with the query set Q and hence, could be of impracticably high

complexity.

}

Q

SPZ
−1 D

E

X(Q)

Figure 5.5. Optimal Predictive Fusion Coding: Encoder
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5.3.2 Constrained Predictive Fusion Coding

Hence, we propose predictive fusion coding with constraints i.e. where queries and

sources share predictors. In the extreme situation, all queries share a single predictor.

In the general case, we assume K prediction loops are possible. We assume one-step

prediction and that the prediction matrix P is estimated from open-loop statistics. Fig-

ure 5.6 represents our predictive fusion coding encoder. We continue with the notations

developed in section ?? and introduce three new mappings.

β : Q → K = {1, ..., K}

SP : K → B = 2{1,...,Rs}

DP : I × B → X̂P ⊂ R
M

The mapping β, which we term the predictor selector, quantizes/partitions the query

space into K groups, each of which share a prediction loop. We allow for a predictor bit-

selection SP (k),∀k ∈ K for each of the K groups. At each instant, predictor k returns

an estimate of all sources, based on a subset SP (k) of the immediately past encoding

bits. We note that X̂P ⊆ R
MK and X̂ ⊆ R

MK . The prediction errors are fed as input

to the encoder E , which is now modified to be

E : R
MK → I (5.10)

The error residuals are compressed to the best possible index (set of encoding bits)

E(e1, ..., eK), that are then stored in the database. The compressed error residual êk =

DP (E(e1, ..., eK),SP (k)) is fed as input to the kth prediction loop/filter.

During query processing, the process is reversed. For all queries, the stored bits

from the locations given by SP (β(q)) are extracted and the reconstructed residual

êβ(q) is fed into the prediction filter. For each query q, additional bits are extracted

(if necessary) and the output of the prediction filter X̃β(q) is augmented by êk,q =

D(E(e1, ..., eK),S(q)), to reconstruct the queried-sources X̂(q). At this point, we note

that the retrieval rate per sample for query q is Rq = |S(q) ∪ SP (β(q))| bits.
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In practice, we evaluate average performance over available training sets and assume

ergodicity i.e. an average evaluated over the training set is equivalent to ensemble

averaging. Let Ak = {q : β(q) = k}. We loosely use the notation ‖z‖2
q to denote∑

m qmz2
m. The net cost to be optimized is represented by

J = D + λRr

=
1

N

N∑
n=1

K∑
k=1

∑
Ak

P (q)(‖x(n) − (x̃k(n) + êq(n))‖2
q)

+λ

K∑
k=1

∑
Ak

P (q)|S(q)
⋃

SP (k)|

5.3.3 Design of Predictive Coding Systems

The design of predictive coding systems is complicated by the feedback loop of the

prediction filter [62]. It is a well understood fact that the optimal quantizers are matched

to the source statistics. However, in predictive coding, the quantizer compresses the
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prediction error between the source and an estimate of the source, based on the previous

reconstructed (quantized) source sample(s). Thus the prediction errors which will be

used to train the quantizer, themselves depend upon the quantizer parameters. Hence,

designing an optimal quantizer matched to the statistics of the prediction residual is a

challenging proposition.

Well known design methodologies for predictive coder design fall into two categories:

open-loop design and closed-loop design [62]. In the open loop design, the error residuals

are generated from the source i.e. without the quantizer in the loop and these are used to

design a quantizer. In closed-loop design, we iterate between generating error residuals,

with the quantizer fixed and optimizing the quantizer, given the error residuals. Thus on

the one hand quantizer design in open-loop, while stable, is sub-optimal due to mismatch

between quantizer and closed-loop error residuals (except at high rates). On the other

hand in closed-loop design, the design procedure is always in closed-loop but this is

known to be inherently unstable (except at high rates), as the training set and statistics

of the training set changes with every iteration in an extremely unpredictable fashion

[104].

The asymptotic closed loop (ACL) design principle [104] [105] is a best-of-both worlds

approach. It designs the system always in open loop, using the same training set within

each iteration to design all components and hence, is stable. However, from one itera-

tion to the next, the training set of error residuals is gradually modified till asymptot-

ically they match the true residuals generated by the prediction loop. In other words,

asymptotically the prediction loop is closed. Given a source sequence X = {x(n)} and

assuming superscript p to denote iteration number, the philosophy of ACL design can

be abstracted in the following sequence of steps (see Algorithm 2).

From step 7, it is clear that each quantizer is applied to error residuals that were

used to train it i.e. there is no mismatch between the error residuals and the quantizers.

Additionally, we note that in step 4 we are creating the error residuals in one go, without
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Algorithm 2 VQ-ACL(X , Rs)

1: Set p = 1, design predictors from open-loop error statistics, initialize quantizer

parameters

2: Generate a sequence of source reconstructions

X̂ = {x̂p(n)}.

3: Increment p.

4: Create the source predictions X̃ based on X̂ i.e. x̃p(n) = P x̂p−1(n − 1)

5: Create error residuals ep(n) = x(n) − x̃p(n)

6: Use error residuals to optimize/update quantizer parameters.

7: Evaluate êp(n) = Qp(ep(n))

8: Update X̂ such that x̂p(n) = x̃p(n) + êp(n)

9: Evaluate cost Dp.

10: If |Dp−1−Dp|
Dp−1 < ε, STOP

else GOTO step 3.

going through the prediction loop. Thus, in each iteration it is design in open loop. Next,

in step 2 we force x̃p(n) = Px̂p−1(n − 1) and in step 5, we force x̂p(n) = x̃p(n) + êp(n).

Equivalently,

x̂p(n) = P x̂p−1(n − 1) + Qp(x(n) − P x̂p−1(n − 1)) (5.11)

If Qp was the quantizer at iteration p, as p → ∞, Qp ≈ Qp−1 since the quantizer updates

become vanishingly small close to convergence. This implies that x̂p(n) ≈ x̂p−1(n) and

x̃p(n) = P x̂p−1(n − 1) ≈ Px̂p(n − 1), i.e. asymptotically, the loop is closed. The reader

is directed to [105] for a detailed discussion on convergence criteria and asymptotic

behaviour in ACL design.
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Application to Predictive Fusion Coding

In the predictive fusion coder, the need to impose complexity constraints on the

number of predictions loops possible makes for an important break from the conventional

predictive coder design, in that there exists a module (SP ) that lies within the prediction

loop. SP cannot be optimized in open loop form since it exists in the prediction loop.

Hence, it is not possible to design predictive fusion coders through (stable) open-loop

design. For the same reason, a closed loop design of predictive fusion coders would be

difficult, since an update of SP would not be possible without a proper “handle” on the

error residuals. Since the targeted application of predictive fusion coding is for large

networks of sources, the coding rate (per source) Rs

M
would be very low, leaving ACL as

the only viable design methodology.

5.3.4 Predictive Fusion Coder Design by ACL

We extend the asymptotic closed loop (ACL) design principle towards the design of

predictive fusion coding systems in the following manner. The ACL predictive fusion

decoder is shown in Figure 5.8.

In subsequent discussion, the superscript p denotes the iteration number, the sub-

script k indexes the prediction loop group, while the parenthesized n denotes time. If
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I ∈ {0, 1}Rs is a typical encoding index and f ⊂ {1, ..., Rs}, we use the notation If to

denote the sub-index formed by the bits in I at the locations in f . The error residuals at

iteration p, ∀k ∈ K, {ep
k(n)} are encoded to the indexes (stored vectors of bits) {Ip(n)}.

{ep
k(n)} form the training set at iteration p and are computed as

ep
k(n) = x(n) − x̃p

k(n) = x(n) − P x̂p−1
k (n − 1)

⇒ ep
k(n) = x(n) − P [êp−1

k (n − 1) + x̃p−1
k (n − 1)]

If β(q) = k, x̂p
q(n) = x̃p

k(n) + êp
q(n). Note that while êp

k(n) = DP (Ip(n),SP (k)),

êp
q(n) = D(Ip(n),S(q)).

During iteration p − 1, we seek to minimize the cost at iteration p. Asymptotically

this does not matter, but this subterfuge is useful in obtaining effective update rules for

SP and DP , since both êp−1
k (n − 1) and êp

q(n) affect x̂p
q(n).

The distortion at iteration p is evaluated as

Dp =
1

N

N∑
n=1

K∑
k=1

∑
Ak

P (q)(‖x(n) − (x̃p
k(n) + êq(n))‖2

q) (5.12)

while the retrieval rate at iteration p is evaluated as

Rp
r = Rr =

K∑
k=1

∑
Ak

P (q)|S(q)
⋃

SP (k)| (5.13)

Correspondingly, Jp = Dp + λRr. We next present update rules based on ACL for pre-

dictive fusion coder design.

Encoder Update : At iteration p, ∀n,, we update the encoding as

Ip(n) = arg min
I∈I

K∑
k=1

∑
q∈Ak

P (q)‖ep
k(n) −D(I,S(q))‖2

q

Query Bit-subset Selector Update : We update S in the following fashion.

S(q) = arg min
f∈B

λ|f
⋃

SP (k)| + 1

N

∑
n

‖ep
k(n) −D(Ip(n), f)‖2

q
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∀q, where k = β(q).

Query-Codebook Update : Let F = {n : Ef (x(n)) = If} and Hk = {q : q ∈
Ak,S(q) = f}. ∀I ∈ I, f ∈ B we set

D(I, f) = arg min
z

∑
n∈F

∑
k

∑
q∈Hk

P (q)‖ep
k(n) − z‖2

q

Predictor Bit-subset Selector Update : On the other hand, the bit-selection for

the prediction loop(s) is updated as,

SP (k) = arg min
f∈B

∑
q∈Ak

P (q)(λ|S(q)
⋃

f | + 1

N

∑
n

‖ep
k(n) −D(Ip(n),S(q))‖2

q)

∀k ∈ K, where ep
k(n) = x(n)−P [êp−1

k (n−1)+x̃p−1
k (n−1)] and êp−1

k (n−1) = DP (Ip−1(n−
1), f),∀k.

Predictor-Codebook Update : Let F̃ = {n : Ef (x(n− 1)) = If}, ∀I ∈ I, f ∈ B. Let

Gk = {q : q ∈ Ak, SP (β(q)) = f} and ẽφ,k(n) = x(n) − P [φ + x̃p−1
k (n − 1)]. We update

the predictor-codevectors as

DP (I, f) = arg min
φ

∑
n∈F̃

K∑
k=1

∑
Gk

P (q)‖ẽφ,k(n) − êq(n)‖2
q

Predictor Selector Update : In every iteration, we partition the query space into

K groups, where members of each group share a prediction loop. The rule followed for

updating β is

β(q) = arg min
k∈K

λ|SP (k)
⋃

S(q)| + 1

N

∑
n

‖ep
k(n) −D(I(n),S(q))‖2

q

∀q, where ep
k(n) = x(n)− P [êp−1

k (n− 1) + x̃p−1
k (n− 1)] and êp−1

k (n− 1) = DP (Ip−1(n−
1), SP (k)),∀k.

ACL algorithm for Predictive Fusion Coder Design

The design algorithm that minimizes J = D +λRr cost (for a given Lagrange multi-

plier λ) is presented in Algorithm 3. The design is initialization dependent and several

runs with different initializations might be necessary to obtain a good solution.

111



Algorithm 3 PFC-ACL (X , Rs, K, λ)

1: Initialize (e.g. randomly) all query-codebooks and predictor-codebooks, bit-selectors

SP , S, design prediction matrix P , set p = 0

2: Increment p

3: Compute the new set of source reconstructions {x̂p
k(n)}, source predictions {x̃p

k(n)},

error residuals (training set) {ep
k(n)}, ∀k ∈ K

4: Update encoding indexes

5: Update query bit-subset selection

6: Update query-codebooks

7: Update predictor bit-subset selection

8: Update predictor codebooks

9: Update predictor selector

10: Close the loop and evaluate the Lagrangian Jp = Dp + λRp
r .

11: If |Jp−1−Jp|
Jp−1 < ε, STOP

Else go to step 2.

5.3.5 Simulation Results

We used the first order Gauss-Markov source model for our simulations i.e. Xm(n) =

βmXm(n−1)+Wm(n), where {Wm(n)}M
1 are i.i.d, zero-mean, unit variance jointly Gaus-

sian random variables with the pairwise correlation coefficient ρjk = E[Wj(n),Wk(n)]

= ρ|j−k|. In all our simulations, βm = 0.8,∀m and ρ = 0.95. This model would be repre-

sentative of a linear sensor array. Our query distribution was a uniform distribution over

contiguous ”neighborhoods” of n sensors (see Figure 5.9). In our experiments, M = 100

sources and any n = 10 contiguous sources are queried, which implies that |Q| = 91

and
∑

q |q| = 910 >> M = 100. In all our experiments, the maximum allowed storage

capacity was Rs = 6 bits and a training set of length 3000 samples was used.

We first consider closed loop design of the PFC for the λ = 0 setting, where the cost
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Figure 5.9. Neighborhood Queries on a Linear Sensor Array

function equals the distortion. At this setting, all bit-selectors are free to retrieve all

stored bits and hence, the performance with constrained and unconstrained number of

prediction loops is identical. We also note that this design is identical to the design of

predictive VQ by closed loop.

From the plot of the true closed loop (distortion) cost variation with iteration (Figure

5.10), it is clear that closed loop design is very unstable. Next, we consider the ACL

design of PFC for the λ = 0 case (Figure 5.11). The true closed loop cost (distortion)

gradually decreases with iteration, even if not monotonically. Also, note that the cost

estimate by the PFC-ACL algorithm converges with the true cost at a large iteration i.e.

asymptotically the loop is closed. Also, note similar convergence in Figure 5.12, where

the cost variation is plotted versus iteration for the λ = 20, K = 1 predictor loop case.

We finally compare the closed-loop performance of the predictive fusion coder (de-

signed by Algorithm 3), with three competing techniques - (memoryless) vector quantizer

(VQ) and predictive VQ (which compress all sources jointly i.e. they are joint compres-

sion techniques) and (memoryless) fusion coder (FC). The joint compression (here, VQ)

techniques are compelled to retrieve all the compressed data i.e. Rr = Rs and can reduce
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Figure 5.10. PFC Design by Closed Loop, λ = 0
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retrieval rate (time) only by reducing the compression (storage) rate (see Figure 5.13).
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Figure 5.13. Joint Compression (VQ) versus Fusion Coding

We note significant gains of the predictive fusion coding over the three competing

methods. We obtain distortion gains about 2 dB over VQ, 1.5 DB over the FC and 1

dB over predictive VQ at Rr = 2 bits.The bigger gains over VQ and FC are possible

because time-correlations were exploited by the predictive FC. A nearly 1.5X reduction in

retrieval rate was achieved over the predictive vector quantizer, given the same distortion

of D = 10.5 dB. In the very low rate region, we note that the FC has a slightly better

performance than predictive FC. Since we constrained the predictive FC to have only

prediction loop, in the low rate region |SP ∪ S(q)| = |SP | = 1, ∀q. As we allow more

prediction loops, there would be greater freedom in designing the query bit-selector S(q),

and the performance gets better. Note that in Figure 5.13, we show a performance plot

with 6 prediction loops as well.
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Chapter 6

Conclusion and Future Work

In this thesis, two important applications of source coding in database management

were studied, namely fast search in high-dimensional multimedia databases and efficient

storage/fast retrieval (fusion coding) in correlated source databases. We now briefly

recap the main contributions and indicate directions for future research.

6.1 Main Results

The main results are as follows

• We presented a VQ/clustering based index for exact k-nearest neighbor (kNN)

search in high-dimensional databases, which promises to combat the curse of di-

mensionality. The failure of traditional tree-based indexing has led to compression

based indexes, wherein kNN search is performed over a compressed data-set. How-

ever, techniques such as VA-File, ignore correlations across feature dimensions.

On the other hand, known clustering based methods eliminate irrelevant clusters

through (ultimately weak) distance bounds to rectangles and spheres bounding

clusters. We proposed a cluster distance bound (the hyperplane bound), where
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query-cluster distance is bounded by projecting the query onto a separating hyper-

plane boundaries and complementing with the cluster-hyperplane distance (cluster

support). Experiments conducted on several large real data-sets reveal substantial

gains over known indexing methods.

• The Euclidean distance performs a perceptually poor approximation of image sim-

ilarities. Hence, similarity searching over image databases is often an iterative

process where after each round or periodically, user feedback is used to update a

Mahalanobis distance measure. We derived a basic property of point-to-hyperplane

Mahalanobis distance, which enables efficient recalculation of such query-cluster

distance bounds as the Mahalanobis weight matrix is varied. Thus, retrieval of

perceptually relevant images is possible, since Mahalanobis weights can be tuned

to user perceptions by feedback.

• We improved upon the hyperplane bound, by recasting the estimation of query-

cluster distance as the minimization of a norm subject to linear constraints (in-

duced by the separating hyperplanes). By this formulation, we search over all sep-

arating hyperplanes and all possible points of intersection between the separating

hyperplanes. Norm minimization over linear constraints is a convex optimization

problem and can be solved in polynomial time (polynomial in number of dimen-

sions d and constraints M). Moreover, since Mahalanobis distances (with positive

definite weight matrices) are also norms, cluster distance estimation is also possi-

ble under changing weight matrices. This results in significant improvements over

hyperplane bounds for both Euclidean and Mahalanobis distances, with a small

(polynomial in d and M) increase in computations.

• We identified an important application of source coding in correlated source databases,

wherein correlated sources need to be fusion stored for efficient future retrieval of

select subsets. Given only statistics of future queries, a tradeoff between storage

rate (space), retrieval rate (time) and distortion (quality) needs to be optimized.
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We presented a Fusion Coder (FC) to optimize this tradeoff, derived its optimality

properties and presented an iterative algorithm for its design. Additionally, we

present initialization heuristics to avoid poor local minima in iterative design. Fi-

nally, we suggest methods to reduce design complexity growth with query-set size

and adapt to new queries.

• By imposing constraints on FC modules, we obtained a “Shared Descriptions”

framework, where tradeoffs between storage rate, retrieval rate, distortion and

complexity are possible. The proposed Shared Descriptions Fusion Coder includes

FC as a special case and with bounds on design complexity, allows scalability to

large storage rates. This allows for better tradeoffs between distortion and retrieval

rate and provides significant gains over several naive quantization schemes.

• We developed a low-complexity Predictive Fusion Coder to exploit spatio-temporal

correlations in data-streams. Predictive coding avoids the exponentially high de-

sign complexity entailed by fusion coding over large blocks of data. However, the

design of optimal PFCs is complicated by the feedback loop and the need to ac-

commodate a prediction loop for every element of a (possibly exponentially) large

query set at the encoder. We imposed constraints on the number of prediction

loops and designed PFCs through the Asymptotic Closed Loop principle. Huge

gains over memoryless FC and joint compression were observed.

6.2 Future Directions

We conclude this chapter by discussing open research issues and future work.
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6.2.1 Fusion Coding

While a number of FC design issues were tackled, we believe a substantial amount

of work lies ahead to make fusion coding more practically applicable. On the theoretical

side, while a single letter characterization of an achievable rate region for asymptotically

lossless fusion coding was identified in [82], it is unknown if this is also a strict character-

ization. An equally important aspect is the study and characterization of rate-distortion

functions for lossy fusion codes.

On the practical side, a very important objective is to reduce the sensitivity to ini-

tialization. While the heuristics for bit-selector initialization were discussed, we note

multiple initializations were still necessary. Hence, a globally optimal design methodolo-

gies such as deterministic annealing [106], which is initialization independent, would be

more suitable. A second open issue is in how variable length fusion coding can be per-

formed. Different indexes occur with unequal probability and could be assigned different

code-lengths, and thus save on overall storage. However, if known variable length code

designs were directly applied, we notice an immediate conflict, as the freedom for query

specific bit-selection is now compromised. Thus, variable length fusion coding would

need to optimize the trade-off between storage and retrieval rates. Other open problems

are in multi-stage/scalable fusion coder design, i.e. for users with varying bandwidths

and fusion coding for error-resilient retrieval i.e. when channel errors are possible.

At very high compression (storage) rates (Rs), there might be a need to resort to

transform coding techniques, where a linear transform (followed by scalar quantization)

is combined with bit-selection to optimize the storage-retrieval trade-off. Possibly, by

combining transform fusion coding with ideas from [91], VA+-File [61], and VA-Stream

[81], a framework for similarity search over an arbitrary subset of data-streams might

be possible.
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6.2.2 Large Scale Distributed Quantization

Distributed quantization [107][108] is often a necessary tool for energy efficient data

collection from sensor networks. However, the design of distributed quantizers suffers

from the “curse of dimensionality” i.e. exponential growth of storage requirement with

the size of the network and transmission rates of the sources. An intuitive approach

toward reducing decoder storage complexity would be to identify (select) bits that are

relevant to a particular source reconstruction and trade against reconstruction quality.

Thus, a bit-selector could be used to trade-off the decoder storage against distortion,

much as was performed in Shared Descriptions Fusion Coding [101]. More generally, we

could consider a scenario where fusion encoding is performed in the network, thereby

eliminating a high complexity encoder at the fusion center. The computational com-

plexity of such an encoder is now completely distributed across the network, for a small

performance in penalty. However, the search space is exponentially large and additional

constraints/heuristics would be necessary to obtain practical designs.

6.2.3 Similarity Search

In indexing, we note the cluster-distance bounding approach is actually a fast database

decoding strategy, while the clustering/VQ is the encoding counterpart. Next, note that

the optimal cluster distance bounding by norm minimization has a striking similarity

with VA-File decoding. While we believe that GLA/K-means optimizes the encoding

for several real data-sets, this does not seem to be the case for synthetic data-sets, such

as the uniform data-set, where the VA-File provides better performance. It would be of

interest to identify why the disparity, if any, and thus unify and optimize the encoding

procedure as well.

Often image similarities are modelled through a transformation induced by a ker-

nel. While kernels were initially introduced in the context of support vector machine

design [109], their use in modelling image similarity is also known [52]. Extending our
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indexing strategy to handle such transformations would be a next step. A promising ap-

proach would build on the secondary (Gramm-Schmidt) feature extraction and indexing

procedure described for kernel VA-Files [110] [111]. Kernels are also used in modelling

similarity in other databases, such as the use of the Fisher kernel in protein databases

[112, ] and audio classification [113]. Hence, successful indexing of kernels could have

wide reaching impact. Finally, we note that while the Gaussian kernel is commonly

used for the design of support vector machines, the transformations it induces does not

change nearest neighbors to a query vector. However, indexing this transform space,

by indexing the secondary features extracted, could have different clustering (encoding)

and hence lead to different IO performance from the original feature space. It could

be worthwhile to consider if and under what conditions indexing through such similar

induced transformations (that do not change the nearest neighbors) leads to better IO

performance.

In practice, approximate similarity search is often preferred given its reduced IO

complexity as well as the inherent approximation of user perceptions by feature vectors

and distances. Several approaches to approximate kNN search based on VQ/clustering

are known [53] [54], the index design is often initialization dependent. By suitably

combining with a globally optimal design framework, such as deterministic annealing

[106], better designs would be possible.
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Appendix A

A Contribution Towards Reducing

Computations in the VA-File

The first of phase of VA-File based indexing eliminates all those feature vectors

whose query-distance lower bound dLB(q,x) is greater than the kth highest upper bound

dk
UB,sort(q). Then, in the second phase we access survivors in increasing order of lower

bounds. The search stops when the lower bounds are greater than kth smallest true

distance i.e. distance of the query to the kth nearest neighbor.

Let X be the whole data set. Let XI be the elements eliminated after the first round

of VA-File filtering. Let XII be the elements eliminated after the second round of VA-

File filtering i.e. assuming only the second phase happens. Let dkNN(q) be the distance

of kth nearest neighbor xk from the query q.

By definition,

∀x ∈ XII , d(x,q) ≥ dkNN(q) (A.1)

and

∀x ∈ XI , d(x,q) ≥ dk
UB,sort(q) (A.2)
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Additionally,

dkNN(q) ≤ dk
UB,sort(q) (A.3)

This is true since the converse would imply a contradiction, i.e. if dk
UB,sort(q) ≤ dkNN(q),

it would mean that there are at least k elements whose distance is smaller than dkNN(q)

i.e. xk is NOT the kth nearest neighbor.

∴ XI ⊆ XII (A.4)

This shows that the phase I of VA-file can be avoided without any performance

degradation and consequently upper bound calculation can be eliminated, reducing the

total number of computations by almost 50%.
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