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Abstract

This paper is concerned with optimal transform coding in conjunction with
dithered quantization. While the optimal deterministic quantizer’s error is
uncorrelated with the reconstructed value, the dithered quantizer yields quan-
tization errors that are correlated with the reconstruction but are white and
independent of the source. These properties offer potential benefits, but also
have implications on the optimization of the rest of the coder. We derive the
optimal transform for consequent dithered quantization. For fixed rate coding,
we show that the transform derived for dithered quantization is universally
optimal (for all sources), unlike the conventional quantization case where op-
timality of the Karhunen-Loeve transform is guaranteed for Gaussian sources.
Moreover, we establish variable rate coding optimality for Gaussian sources.

1 Introduction

Transform coding is a computationally attractive method of source coding and is
widely used in audio, image and video compression. In the basic transform cod-
ing setting, an input vector is linearly transformed into a vector in the transform
domain whose components (also called transform coefficients) are scalar-quantized.
The decoder reconstructs the quantized coefficients and performs a linear (inverse)
transformation to obtain an estimate of the source vector. The design goal is to find
the optimal transform pairs and bit allocation to scalar quantizers, which minimize
distortion. In general, transform coding underperforms optimal vector quantization
due to space filling loss in scalar quantizers, even if the transform generates indepen-
dent coefficients. However, due to its low complexity, transform coding is commonly
employed in practical multimedia compression systems.

Transform coding of correlated Gaussian sources has been extensively studied.
It is known that the Karhunen-Loeve transform (KLT) is the optimal transform for
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Figure 1: The general scheme of transform coding with scalar quantizers

Gaussian sources, in conjunction with optimal bit allocation and scalar quantization
[1, 2]. The suboptimality of KLT has been demonstrated for several source distri-
bution examples [3], and optimal transform coding for non-Gaussian sources remains
a largely open problem. Derivations establishing the optimality of KLT for Gaus-
sian sources typically involve the basic assumption on the quantization of transform
coefficients, in particular, the quantization error is orthogonal to the coefficient recon-
struction. While this assumption is valid for the optimal fixed rate quantization and
also for high rate quantization theory approximations, it does not hold for dithered
quantization.

Dithered (randomized) quantization1 has useful properties such as producing white
quantization noise independent of the source, and continuous reconstruction at the
decoder [4]. A deterministic quantizer cannot produce source independent quantiza-
tion noise in general or render the quantization error white if the source has memory.
The properties of continuous output range and white quantization noise are known
to be subjectively preferred by human audio-visual systems [4, 5]. Also, dithered
quantization is used to find a lower bound in universal compression [6], since the
quantization error is independent of the source distribution. In [7, 8, 9], many theo-
retical properties and extensions are studied for dithered lattice quantization based
on a key result, namely, the optimal dithered lattice quantizer asymptotically yields
Gaussian quantization noise thereby realizing the forward channel that achieves the
rate distortion bound when applied to a Gaussian source.

We note again that in the case of deterministic optimal quantization, the optimal
tranform is unknown for most distributions other than Gaussian [3]. A main premise
of this work is that for fixed rate coding, dithered quantization enables universal
transform coding, i.e., the optimality of the transform holds for all sources. (This
is not the case for variable rate coding due to the dependence of the coding rate on
the source distribution). Also, the quantization error is statistically orthogonal to
the source and hence may be viewed as an additive independent noise term which
in turn enables solving for the optimal transform by linear analysis (by solving a
matrix equation) in terms of the second order statics of the source. This is not the
case for optimal deterministic quantization, where difficulties include: i) the quan-
tization error term can only be approximated as an additive uncorrelated noise at
asymptotically high resolution; ii) the expected distortion depends on the type of
distribution of each transform coefficient which, except in the simple Gaussian source
case, depends non-trivially on the transform and makes it extremely challenging to
minimize the distortion with respect to the transform. Because of these difficulties,

1Only subtractive dithering is considered in this paper
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it is not straightforward to derive the optimal transform for non-Gaussian sources.
The motivation for this work stems from the realization that dithered quantization
holds considerable promise for circumventing the above difficulties and deriving the
optimal transform for all sources.

2 Optimal Transform Derivation

2.1 Prior Work

The main scheme of transform coding is given in Figure-1. A jointly Gaussian vector
x with covariance matrix Rx is first linearly transformed to obtain y = Ex, then
quantized to get ŷ = Q(y) which consists of scalar quantized samples. The quanti-
zation error vector is denoted as n = y − ŷ. At the receiver side, a linear estimator
is used to get an estimate of x as x̂ = Dŷ to minimize the mean square error,

J = E[(x− x̂)T(x− x̂)] = E[Tr((x− x̂)(x− x̂)T)] (1)

Note that we include the “trace” formulation of the criterion as it will be convenient
for matrix manipulations in the sequel. As is common, we assume for simplicity
that the source is zero mean and that MSE is the distortion criterion. Under these
assumptions, Huang and Schultheiss [10] first showed that the decoder should use the
inverse of the transform used in the encoder (in Figure 1, D = E−1 ). While this is a
natural and intuitive choice, it is not as trivial as it seems due to the non-linear nature
of quantization, and in fact depends on the optimality of the quantizers. The proof
exploits the statistical properties of the quantization error of the optimal quantizer,
specifically, the fact that the quantization error is uncorrelated with the output, i.e.,

E[ŷnT] = 0 (2)

Next, they showed that the optimal choice for transform matrix D is the transpose
of an orthogonal diagonalizing similarity transformation for Rx, i.e., the KLT of the
source, denoted as S. In other words, D = S satisfies

SRxS
T = Ψ (3)

where Ψ = diag(λ1, λ2, ..., λN) and λi’s are eigenvalues of Rx. For convenience we
will assume the ordering λ1 ≥ λ2 ≥, ..., λN with corresponding number of bits spent
on coefficients b1 ≥ b2 ≥ ... ≥ bN . Note that, the optimality of KLT for the optimal
fixed rate scalar quantizers does not require the high rate assumption. For a detailed
tutorial discussion of KLT optimality see [1], which also covers optimality of KLT at
high resolution in the case of variable rate (entropy) coding. More recent results [2]
establish the optimality of KLT for Gaussian sources without high rate assumptions
for both fixed and variable rate coding. However, that derivation minimizes the
distortion in the transform domain, which is equivalent to minimizing it in the original
domain if the transform is unitary. However, as will be shown shortly, in conjunction
with dithered quantization the optimal transform is not unitary. It hence requires a
method different from the one proposed in [2].
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Figure 2: The general scheme of entropy coded dithered quantization

2.2 Dithered Quantization

The purpose of dithered quantization is to render the quantization error independent
of the source, which can be achieved if certain conditions are met. Dithered quantiza-
tion is performed in the framework where the quantizer is uniform (−∆/2, ∆/2) and
the dither signal, z is uniformly distributed on (−∆/2, ∆/2), matched to quantizer
interval, as shown in Figure-2. A uniformly distributed dither signal, z, is added be-
fore quantization and the same dither signal is subtracted from the quantized value at
the decoder (only “subtractive dithering” is considered in this paper). The quantized
values are entropy coded, conditioned on the dither signal in the variable rate coding
case. Note in this case, the rate can be approximated by the conditional entropy of
the quantized values, H(Q(x + z)|z), which is dependent on the source distribution.
For fixed rate, both rate and distortion depend only on the second order statistics of
the source. Randomized (dithered) quantizers have been studied in the past [4] due
to their properties that differentiate them from deterministic quantizers, specifically:
white quantization error that is independent of the source, E[n2] = ∆2/12, and con-
sequently have useful implications on universal compression bounds [6]. Note that
source independent quantization noise cannot be achieved by a deterministic quan-
tizer, but it is possible to enforce that the quantization error be uncorrelated with
the source.

2.3 Simple Scalar Case

Some intuition is gained already from a simple scalar quantization setting. The
dithered scalar quantizer is equivalent to the case where scalar source x is corrupted
by i.i.d (quantization) noise n, which is uncorrelated with x. At the receiver, y = x+n
is available and best linear estimate for x is

x̂ = (
σ2

x

σ2
x + σ2

n

)y (4)

Note that an optimal deterministic quantizer would reconstruct x̂ = y [1]. This simple
observation of the scalar case already intuitively suggests that a unitary transform and
specifically KLT will not be optimal for dithered quantization. Next, let us assume
the source x is Gaussian, and allow for scaling coefficients α before quantization and
β after quantization. Let also f(b) be the distortion function of the dithered quantizer
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applied to unit variance, zero mean Gaussian at b bits. Then, σ2
n = α2σ2

xf(b) and
x̂ = β(αx + n). The optimal α, β will minimize J where

J = E[(x− β(αx + n))2]
= (1− βα)2σ2

x + β2σ2
n

= (1− βα)2σ2
x + β2α2σ2

xf(b)
= (1− 2βα + (1 + f(b))(βα)2)σ2

x

(5)

As expected, J depends on the scaling coefficients only through the product βα. By
the optimality condition ∂J/∂(βα) = 0, we obtain the optimal scaling

βα = 1/(1 + f(b)) (6)

Generalizing to transform coding of signal blocks we intuitively expect that KLT
followed by an appropriate diagonal scaling matrix would be optimal. The following
section concretizes this intuition in a precise statement and formally proves it.

2.4 Optimal Transform for a Given Bit Allocation

Consider the problem: given bit allocation vector b = [b1, b2, ..., bN ] , find optimal
E and D transform matrices to minimize the MSE. Without loss of generality we
assume that the bit allocation vector is ordered, i.e., b1 ≥ b2 ≥ ... ≥ bN . From (1) the
MSE cost can be written in trace form as

J = E[Tr(x−DEx−Dn)(x−DEx−Dn)T] (7)

Since we use a dithered quantizer, quantization error is uncorrelated with y and with
x, i.e., E(xnT) = 0. So we can write:

J = Tr(DERxE
TDT + Rx + DRnD

T − 2DERx) (8)

As Rx does not depend on the transform, we may equivalently minimize

J1 = Tr(DERxE
TDT + DRnD

T − 2DERx) (9)

Suppose there is a single function f(.) to describe the rate distortion performance of
the scalar dithered quantization of each transform coefficent through

E[(yi − ŷi)
2] = σ2

i f(bi) (10)

where bi and σ2
i denote the number of bits allocated to coefficient yi and the variance

of coefficient yi respectively, for i = 1, 2, ..., N . Note we can assume the form f(bi) for
all transform coeficients irrespective of their distributions due to the basic properties
of dithered quantization. Also, since the quantization error is independent of the
source, we have

Rn = diag(σ2
1f(b1), σ

2
2f(b2), ..., σ

2
Nf(bN)) (11)
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Now, we define a convenient linear matrix operator, d(.) which sets to zero all off-
diagonal entries of the argument matrix. Specifically, d(A) = diag(a11, a22, ...aNN)
where A is some N ×N matrix. Note that,

Rn = d(ERxE
TΛ) (12)

where Λ = diag(f(b1), f(b2), ..., f(bN)). Also, it is straightforward to show (using
matrix basic operations or the linear operator properties) that

d(AΓ) = Γd(A) (13)

for any diagonal Γ matrix. The following is a useful auxilary lemma.

Lemma 1. For any arbitrary function matrix A, variable matrix B and constant
diagonal matrix Γ,

∂(d(AΓ))/∂B = Γd(∂A/∂B) (14)

Proof. Since both d(.) and differentiation are linear operators, they may be inter-
changed. Using (13) it is straightforward to obtain the lemma claim (14).

Let S denote any unitary matrix that diagonalize Rx as defined in (3). We write
E = Φ1S

T and D = SΦ2 for any arbitrary Φ1, Φ2 matrices.

Lemma 2. The optimal Φ1 and Φ2 matrices are diagonal.

Proof. DE = SΦ2Φ1S
T and ERxE

T = Φ1ΨΦT
1 . Substituting these expressions into

(9) we obtain

J1 = Tr(Φ2Φ1ΨΦT
1 ΦT

2 ) + Tr(Φ2d(ΛΦ1ΨΦT
1 )ΦT

2 )
− 2Tr(Φ2Φ1Ψ)

(15)

Rearranging the terms using the trace equality Tr(AB) = Tr(BA),

J1 = Tr(ΦT
2 Φ2(Φ1ΨΦT

1 + d(ΛΦ1ΨΦT
1 )))

− 2Tr(Φ2Φ1Ψ)
(16)

Setting ∂J1/∂Φ2 = 0, yields

2Φ2(Φ1ΨΦT
1 + d(ΛΦ1ΨΦT

1 ))− 2ΨΦT
1 = 0 (17)

Rearranging terms:

Φ2 = ΨΦT
1 (Φ1ΨΦT

1 + Λd(Φ1ΨΦT
1 ))−1 (18)

Setting ∂J1/∂Φ1 = 0 and applying Lemma-1, we obtain

(2ΨΦT
1 + (2ΛΨd(Φ1))Φ2Φ

T
2 − 2ΨΦT

2 = 0 (19)

and hence
Φ2 = (Φ1 + Λd(Φ1))

−1 (20)
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Note that we used the dithered quantization property that quantization noise is
independent of the source (with Gaussian source assumption for the variable rate case)
in this derivation, which implies ∂Λ/∂Φ1 = 0 and ∂Λ/∂Φ2 = 0. In conventional
quantization, Λ depends on the distribution of the transform coefficient which is hard
to track analytically. This point makes the solution difficult for non-Gaussian sources
(note for a Gaussian source yi’s are all Gaussian irrespective of the linear transform,
so ∂Λ/∂Φ1 = 0 and ∂Λ/∂Φ2 = 0 hold.) Substituting (18) into (16) yields

J1 = Tr(ΦT
2 ΨΦT

1 )− 2Tr(Φ2Φ1Ψ) (21)

Noting that Ψ is diagonal and using the trace equalities Tr(A) = Tr(AT) and
Tr(ABC) = Tr(CAB), we get Tr(ΦT

2 ΨΦT
1 ) = Tr(Φ1ΨΦ2) = Tr(Φ2Φ1Ψ) and

hence

J1 = −Tr((Φ2Φ1Ψ) (22)

Plugging (20) into (22) we get

J1 = −Tr((Φ1 + Λd(Φ1))
−1Φ1Ψ) (23)

Now, J1 is a function of only Φ1. Hence, setting the partial derivative with respect
to Φ1 to zero, ∂J1/∂Φ1 = 0 and using matrix inversion lemma [11]

(I + Λ)−1 = Φ1(Φ1 + Λd(Φ1))
−1

= I−Λd(Φ1)(Φ1 + Λd(Φ1))
−1 (24)

(Λ + I)−1 is a diagonal matrix, since Λ and I are both diagonal. Λd(Φ1) is also
diagonal since it is the product of two diagonal matrices. The remaining factor
(Φ1 + Λd(Φ1))

−1 must therefore be diagonal, which requires Φ1 to be diagonal, i.e.,
Φ1 = d(Φ1). Similar reasoning applied to (20) yields the conclusion that Φ2 is also
diagonal.

Now, we can state the main theorem.

Theorem. For given ordered bit allocations b1 ≥ b2 ≥, ..., bN , the E, D transform
matrices that minimize MSE for dithered scalar quantization are given by

E = Φ1S
T,D = SΦ2 (25)

for any Φ1, Φ2 diagonal matrices that satisfy

Φ1Φ2 = (I + Λ)−1 (26)

and S is the KLT matrix defined in Eq-3. Moreover, the distortion is

J =
N∑

i=1

λi
f(bi)

1 + f(bi)
(27)
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Proof. Using Lemma-2 and Tr(ΓΘΩ) = Tr(ΘΓΩ) for any diagonal matrices Θ, Γ,
Ω, Eq-16 can be written as:

J = Tr((I−Φ2Φ1)Ψ) (28)

MSE is only a function of Φ1Φ2, not depending on individual values of Φ1 or Φ2.
By (20) and Lemma-2 the optimality condition on Φ1Φ2 follows directly: Φ1Φ2 =
(I + Λ)−1

There are possibly N ! distinct S matrices that satisfy (3) corresponding to N !
permutations of distinct eigenvalues of Rx. To select the optimal S matrix, we need
the optimal ordering of eigenvalues with respect to the ordering of bit allocations, as
is standard practice with KLT and as is described, e.g., in [2]: higher rate should be
allocated to the component that corresponds to larger eigenvalue. We are trying to
minimize J , i.e., maximize J2 where,

J2 = Tr(Φ1Φ2Ψ)
= Tr(Ψ(I + Λ)−1)

=
N∑

i=1

λi

1+f(bi)

(29)

Both λi and 1+f(bi) terms are positive, the maximum is achived when λi are in reverse
order relative to 1 + f(bi) [12]. Since f(bi) is a decreasing function of bi, λi should be
ordered as is bi, namely in decreasing order. Hence, the optimal permutation of the
rows of S is the one that provides (λ1 ≥ λ2 ≥, ..., λN) when the bit allocation vector
is ordered such that (b1 ≥ b2 ≥, ..., bN)

For the given E, D matrices, the bit allocation should minimize MSE. If we
write MSE in terms of quantization function and ordered eigenvalues using the main
theorem,

J =
N∑

i=1

λi
f(bi)

1 + f(bi)
(30)

Note that if standard KLT is used the distortion is

JKLT =
N∑

i=1

λif(bi) (31)

which is strictly larger than that of the proposed transform.

3 Discussion

We derived the optimal transform for subsequent dithered quantization. The optimal
transform consists of KLT followed by a diagonal scaling matrix. For fixed rate
coding, this transform is universally optimal (for all sources). In the case of variable
rate coding, it is shown to be optimal for Gaussian sources. As future work, we will
investigate the possible use of this transform in practical compression systems where
the source distribution is not necessarily Gaussian.
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