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Abstract—In this paper, we consider the problem of minimum
cost joint compression and routing for networks with multiple-
sinks and correlated sources. We introduce a routing paradigm,
called dispersive information routing, wherein the intermediate
nodes are allowed to forward a subset of the received bits on
subsequent paths. This paradigm opens up a rich class of research
problems which focus on the interplay between encoding and
routing in a network. What makes it particularly interesting is
the challenge in encoding sources such that, exactly the required
information is routed to each sink, to reconstruct the sources they
are interested in. We demonstrate using simple examples that our
approach offers better asymptotic performance than conventional
routing techniques. We also introduce a variant of the well known
random binning technique, called ‘power binning’, to encode
and decode sources that are dispersively transmitted, and which
asymptotically achieves the minimum communication cost within
this routing paradigm.

I. I NTRODUCTION

Signal compression of correlated sources for transmission
through multi-hop networks has recently attracted much at-
tention in the research community, primarily due to its di-
rect application in sensor networks. This paper considers the
problem of minimum cost communication in a multi-hop
network with multiple-sinks and correlated sources. Research
related to compression in networks can broadly be classified
into two camps. The first approach performs compression
at intermediate nodes without resorting to distributed source
coding (DSC) techniques. Such techniques tend to be wasteful
at all but the last hops of the communication path. The second
approach performs DSC followed by simple routing. Well
designed DSC followed by optimal routing can provide good
performance gains. This paper focuses on the latter category.

Multi-terminal source coding has one of its early roots in
the seminal work of Slepian and Wolf [1]. They showed, in
the context of lossless coding, that side-information available
only at the decoder can nevertheless be fully exploited as if
it were available to the encoder, in the sense that there is
no asymptotic performance loss. Later, Wyner and Ziv [2]
derived a lossy coding extension that bounds the rate-distortion
performance in the presence of decoder side information. Ex-
tensive work followed considering different network scenarios
and obtaining achievable rate regions for them, including [3],
[4], [5]. Han and Kobayashi [6] extended the Slepian-Wolf
result to general multi-terminal source coding scenarios.For a
multi-sink network, with each sink requesting for a subset of

sources, they characterized an achievable rate region for loss-
less reconstruction of all the requested sources at each sink.
Csiszar and Korner [7] provided an alternate, but equivalent
characterization of the achievable rate region.

There has also been a considerable amount of work on
joint compression-routing for networks. A survey of routing
techniques in sensor networks is given in [8]. [9] compared
different joint compression-routing schemes for a correlated
sensor grid and also proposed an approximate, practical, static
source clustering scheme to achieve compression efficiency.
Cristascu et.al [10] considered joint optimization of Slepian-
Wolf coding and a routing mechanism, we call ‘broadcasting’1,
wherein each source broadcasts its information to all sinks
that intend to reconstruct it. Such a routing mechanism is
motivated from the extensive literature on optimal routingfor
independent sources [11]. [12] proved the general optimality of
that approach for networks with a single sink. Recently, [13]
demonstrated its sub-optimality for the multi-sink scenario.
This paper takes a step further towards finding the best joint
compression-routing mechanism for a multi-sink network. We
note the existence of a volume of work on network coding for
correlated sources, eg. [14], [15]. But the routing mechanism
we introduce in this paper does not require possibly complex
network coders at intermediate nodes, and can be realized
using simple conventional routers. The approach does have
potential implications on network coding, but these are beyond
the scope of this paper.

The new routing paradigm we introduce, which we call,
“dispersive information routing” (DIR), is designed to forward
only the required information to each sink. We show from
basic principles that DIR achieves a lower communication
cost compared to broadcasting in a network, wherein the
sinks usually receive more information than they need. In
what follows we first motivate the routing paradigm using
a simple example. We also give the basic intuition for the
encoding scheme that achieves minimum communication cost.
We then formulate and solve using a general setting to find
the minimum cost achievable by DIR.

1Note that we loosely use the term ‘broadcasting’ instead of ‘multicasting’
to stress the fact thatall the information transmitted by any source is routed
to every sink that reconstructs the source. Also, our approach to routing is in
some aspects, a variant of multicasting.
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(a) Broadcasting (b) DIR (c) Wyner’s Setup

Fig. 1. Figure (a) shows the example considered. Figure (b) shows how dispersive information routing at the collector can be realized using a conventional
router - routing 3 smaller packets. Figure (c) depicts the resemblance between the DIR setup and the Wyner’s setup.

II. M OTIVATING EXAMPLE

Consider the network shown in figure 1a. There are three
sourcesX0,X1 and X2 and two sinksS1 and S2. Sink
S1 reconstructs the source pair(X0,X1), while S2 recon-
structs(X0,X2). SourceX0 communicates with the two sinks
through an intermediate node (called the ‘collector’) which
is functionally a simple router. The edge weights on each
path in the network are shown in the figure. The cost of
communication through a link is a function of the bit rate
flowing through it and the edge weight, which we will assume
for simplicity to be a simple productf(r, c) = rc in this
paper, noting that the approach is directly extendible to more
complex cost functions. The objective is to find the minimum
communication cost for lossless reconstruction of respective
sources at the sinks.

We first consider the communication cost when broadcasting
is employed [10] wherein the routers forward all the bits
received from a source to all the decoders that will reconstruct
it. In other words, routers are not allowed to “split a packet”
and forward a portion of the received information. Hence the
branches connecting the collector to the two decoders carrythe
same rates as the branch connecting encoder0 to the collector.
We denote the rate at whichX0,X1 andX2 are encoded by
R0, R1 andR2 respectively.

Using results in [10], it can be shown that the minimum
communication cost under broadcasting is given by the fol-
lowing linear programming formulation:

Cb = min{(C0 + C1 + C2)R0 + C11R1 + C22R2} (1)

under the constraints:

R1 ≥ H(X1|X0) , R0 ≥ H(X0|X1)

R2 ≥ H(X2|X0) , R0 ≥ H(X0|X2)

R1 + R0 ≥ H(X0,X1)

R2 + R0 ≥ H(X0,X2)

(2)

To gain intuition into dispersive information routing, we also
consider a special case of the network when the branch weights
are such thatC11, C22 � C0, C1, C2. Let us specialize the
above equations for this case. The constraintC11, C22 �
C0, C1, C2, forces sourcesX1 andX2 to be encoded at rates
R1 = H(X1) and R2 = H(X2), respectively. Therefore,

this scenario effectively captures the case when sourcesX1

and X2 are available at decoders1 and 2, respectively, as
side information. From equations (1) and (2) for minimum
communication cost,X0 is encoded at a rate:

R∗
0 = max {H(X0|X1),H(X0|X2)} (3)

and therefore the minimum communication cost is given by:

C∗
b = (C0 + C1 + C2) max {(H(X0|X1),H(X0|X2))}

+ C11H(X1) + C22H(X2)
(4)

Is this the best we can do? The collector has to transmit enough
information to decoder 1 for it to decodeX0 and hence the
rate is at leastH(X0|X1). Similarly on the branch connecting
the collector to decoder 2 the rate is at leastH(X0|X2). But
if H(X0|X1) 6= H(X0|X2), there is excess rate on one of the
branches.

Let us now relax this restriction and allow the collector node
to “split” the packet and route different subsets of the received
bits on the forward paths. We could equivalently think of the
encoder0 transmitting 3 smaller packets to the collector; first
packet has a rateR0,{1,2} bits and is destined to both sinks.
Two other packets have ratesR0,1 andR0,2 and are destined
to sinks 1 and 2 respectively. Technically, in this case, the
collector is again a simple conventional router.

We call such a routing mechanism, where each intermediate
node transmits a subset of the received bits on each of the for-
ward paths “Dispersive Information Routing” (DIR). Note that
unlike network coding, DIR does not require expensive coders
at intermediate nodes, but rather can always be realized using
conventional routers with each source transmitting multiple
packets into the network intended to different subsets of sinks.
Therefore, hereafter, we interchangeably use the concepts
of “packet splitting” at intermediate nodes and conventional
routing of smaller packets, noting the equivalence in the
achievable rates and costs. This scenario is depicted in figure
1b with the modified costs each packet encounters.

Two obvious questions arise - Does DIR achieve a lower
communication cost compared to broadcasting? If so, what is
the minimum communication cost under DIR?

We first aim to find the minimum cost using DIR
if C11, C22 � C0, C1, C2 (i.e. R1 = H(X1) and
R2 = H(X2)). To establish the minimum cost one may



(a) DIR (b) Wyner’s setup

Fig. 2. Venn Diagram - Blue indicates what is needed by decoder 1 alone,
red indicates what is needed by decoder 2 alone and green in the shared
information. Figure (a) shows the diagram for the DIR settingand figure (b)
for the Wyner’s setting.

first identify the complete achievable rate region for the
rate tuple {R0,1, R0,{1,2}, R0,2} for lossless reconstruction
of X0 at both the decoders. Then one finds the rate
point that minimizes the total communication cost, deter-
mined using the modified weights shown in figure 1b. Be-
fore attempting a final solution, it is worthwhile to con-
sider one operating point,P1 = {R0,1, R0,{1,2}, R0,2} =
{I(X2;X0|X1),H(X0|X1,X2), I(X1;X0|X2)} and provide
the coding scheme that achieves it. Extension to other “inter-
esting points” and to the whole achievable region follows in
similar lines. This particular rate point is considered first due
to its intuitive appeal as shown in a Venn diagram (figure 2).

Wyner considered a closely resembling network [5] shown
in figure 1c. In his setup, the encoder observes2 sources
(X1,X2) and transmits3 packets (at ratesR0,1, R0,{1,2}, R0,2

respectively), one meant for each subset of sinks. The
two sinks reconstruct sourcesX1 and X2 respectively.
He showed that, the rate tuple{R0,1, R0,{1,2}, R0,2} =
{H(X1|X2), I(X1;X2),H(X2|X1)} is not achievable in gen-
eral and that there is a rate loss due to transmitting a
common bit stream; in the sense that individual decoders
must receive more information than they need to reconstruct
their respective sources. Wyner defined the term “Common
Information”, here denoted byW (X1;X2) as the minimum
rateR0,{1,2} such that{R0,1, R0,{1,2}, R0,2} is achievable and
R0,1 + R0,{1,2} + R0,2 = H(X1,X2). He also showed that
W (X1;X2) = inf I(X1,X2;W ) where theinf is taken over
all auxiliary random variablesW such thatX1 → W →
X2 form a Markov chain. Wyner showed that in general
I(X1;X2) ≤ W (X1;X2) ≤ max(H(X1),H(X2)). We note
in passing, an earlier definition of common information [16]
which measures the maximum shared information that can
be fully utilized by both the decoders. It is less relevant to
dispersive information routing.

At a first glance, it might be tempting to extend Wyner’s
argument to the DIR setting and sayP1 is not achievable in
general, i.e., each decoder has to receive more information
than it needs. But interestingly enough, a rather simple coding
scheme achieves this point and simple extensions of the coding
scheme can achieve the entire rate region. Note that in this
section, we only provide intuitive arguments to validate the
result. We derive a variant of the “random binning paradigm”

in section III for the general setup.
We focus on encoder0, assuming that encoders1 and 2

transmit at the respective source entropies. Encoder0 observes
a sequence ofn realizations of the random variableX0. This
sequence belongs to the typical set,τn

ε , with high probability.
Every typical sequence is assigned3 indices, each independent
of the other. The three indices are assigned using uniform pmfs
over [1 : 2nR

0,1 ], [1 : 2nR0,{1,2} ] and [1 : 2nR0,2 ] respectively.
All the sequences with the same first index,m1, form a bin
B1(m1). Similarly binsB2(m2) andB3(m3) are formed for
indices m2 and m3. Upon observing a sequenceXn

0 ∈ τn
ε

with indicesm1,m2 andm3, the encoder transmits indexm1

to decoder1 alone, indexm3 to decoder2 alone and index
m2 to both the decoders.

The first decoder receives indicesm1 andm2. It tries to find
a typical sequencêXn

0 ∈ B1(m1) ∩ B2(m2) which is jointly
typical with the decoded information sequenceXn

1 . As the
indices are assigned independent of each other, every typical
sequence has uniform pmf of being assigned to the index
pair {m1,m2} over [1 : 2n(R0,1+R0,{1,2})]. Therefore, having
received indicesm1 andm2, using counting arguments similar
to Slepian and Wolf [1], [4], the probability of decoding error
asymptotically approaches zero if:

R0,1 + R0,{1,2} ≥ H(X0|X1) (5)

Similarly, the probability of decoding error approaches zero at
the second decoder if:

R0,2 + R0,{1,2} ≥ H(X0|X2) (6)

Clearly (5) and (6) imply thatP1 is achievable. In similar lines
to [1], [4], the above achievable region can also be shown to
satisfy the converse and hence is the complete achievable rate
region for this problem. We refer to such a binning approach as
‘Power Binning’ as multiple independent indices are assigned
to each (non-trivial) subset of the decoders - power set. Also
note that the difference in Wyner’s setting was that the two
sources were to be encoded jointly for separate decoding of
each source. But in our setup, sourceX0 is to be encoded for
lossless decoding at both the decoders.

The minimum cost operating point is the point that satisfies
equations (5) and (6) and minimizes the cost function:

C∗
DIR = min

{

(C0 + C1)R0,1 + (C0 + C2)R0,2

+ (C0 + C1 + C2)R0,{1,2}

} (7)

The solution is either one of the two points
P2 = {0,H(X0|X1),H(X0|X2) − H(X0|X1)} or
P3 = {H(X0|X1) − H(X0|X2),H(X0|X2), 0}
and both achieve lower total communication cost
compared to broadcasting (C∗

b - equation (4)) for any
C0, C1, C2 � C11, C22. Not surprisingly, the operating point
is within the Han and Kobayashi achievable rate region [6]
(where network costs and routing constraints are ignored).

The above coding scheme can be easily extended to the
case of arbitrary edge weights. The rate region for the tuple



{R1, R2, R0,1, R0,{1,2}, R0,2} and the cost function to be
minimized are given by:

CDIR = min
{

C11R1 + C22R2 + (C0 + C1)R0,1

+ (C0 + C2)R0,2 + (C0 + C1 + C2)R0,{1,2}

}

(8)

under the constraints:

R1 ≥ H(X1|X0)

R0,1 + R0,{1,2} ≥ H(X0|X1)

R1 + R0,1 + R0,{1,2} ≥ H(X0,X1)

R2 ≥ H(X2|X0)

R0,2 + R0,{1,2} ≥ H(X0|X2)

R2 + R0,2 + R0,{1,2} ≥ H(X0,X2)

(9)

If R1 = H(X1) andR2 = H(X2) (9) specializes to (5) and
(6). Also, it can be easily shown that the total communication
cost obtained as a solution to the above formulation is always
lower than that for broadcasting,Cb (equations (1) and (2)) if
C0, C1, C2 > 0.

III. G ENERAL PROBLEM SETUP ANDSOLUTION

A. Problem Formulation

Let a network be represented by an undirected graph
G = (V,E). Each edgee ∈ E is a network link whose
communication cost depends on the edge weightwe. The
nodesV consist ofN source nodes,M sinks, and|V |−N−M
intermediate nodes. Source nodei has access to source random
variableXi distributed over alphabetXi. The joint probability
distribution of (X1 . . . XN ) is known at all the nodes. The
sinks are denotedS1, S2 . . . , SM . A subset of sources are to
be reconstructed (losslessly) at each sink. Let the subset of
source nodes to be reconstructed at sinkSj be V j ⊆ V .
Conversely, sourcei has to be reconstructed at a subset of
sinks denoted bySi ⊆ {S1, S2 . . . , SM} 2. We denote the set
{1 . . . N} by Σ and the set{1 . . . M} by Π. The objective
is to find the minimum communication cost achievable using
dispersive information routing at all intermediate nodes in the
network. Note that, in this paper, we assume that only sources
to be reconstructed at any sink communicate with the sink
(i.e., there are no ‘helpers’ [7]). The more general case of
DIR with every source (possibly) communicating with every
sink will be addressed in the sequel. The general setting in the
context of conventional routing was addressed in [13].

Hereafter, we use the following notation. For any random
variableX, we useXn to representn independent realizations
of the random variable and the corresponding alphabet byXn.
For any sets, |s| denotes the cardinality of the set and2s

denotes the power set.2s\φ denotes all the non-empty subsets
of the sets. For any sets = {k1, k2 . . . k|s|} ⊆ Σ we use
Xs to denote{Xi : i ∈ s} and the corresponding alphabet
Xk1

×Xk2
× . . .Xk|s|

by Xs.

2Note that the case of side information at the decoder can be trivially
included in this formulation withwe = 0 on the branch connecting the side
information source and the decoder.

B. Obtaining modified costs

DIR requires each sourcei to transmit a packet to ev-
ery set of sinks that reconstructXi, i.e., one packet to all
s ∈ 2Si

\φ. Denote the packets transmitted by encoderi by
P i

1, P
i
2 . . . P i

|2Si\φ|
. Let Ei

s be the set of all paths from source

i to the subset of sinkss ∈ 2Si

\φ. The optimum route for
packetP i

s from the source to these sinks is determined by a
spanning tree optimization (minimum Steiner tree) [11]. More
specifically, for each packetP i

s , the optimum route is obtained
by minimizing the cost over all trees rooted at nodei which
span all sinksSj ∈ s. The minimum cost of transmitting
packetP i

s with Ri,s bits from sourcei to the subset of sinks
s, denoted bydi(s), is given by:

di(s) = Ri,s min
Q∈Ei

s

∑

e∈Q

we (10)

Having obtained the modified costs for each packet in the
network, our next aim is to find the rate region and the
minimum communication cost will then follow directly from
a simple linear programming formulation.

C. Entire rate region

An ε−DIR code (f1, f2 . . . fN , h1, h2 . . . hM ) of block
lengthn for the sourcesX1,X2 . . . XN for givenV j ∀j ∈ Π,
is the following set of mappings:

• The encoders :fi : Xn
i → {(0, 1)Mi

s} ∀i ∈ Σ, s ∈

2Si

\φ, where M i
s are positive integers. PacketP i

s has
M i

s bits in it and is routed from sourcei to the subset of
sinkss.

• The decoders :hj : (0, 1)Mj → Xn
V j ∀j ∈ Π, where

(0, 1)Mj is the set of all possible bit sequences received
by decoderSj . Denote byMi,j , the total number of bits
transmitted from sourcei to sink Sj . i.e.:

Mi,j =
∑

s∈2Si
\φ, s3j

M i
s (11)

ThenMj is the total number of bits received by decoder
Sj and is given by:

Mj =
∑

i∈V j

Mi,j (12)

A rate tuple{Ri
s} ∀i ∈ Σ, s ∈ 2Si

\φ is said to be achievable,
if there exists anε−DIR code with all the mappings defined
as above and satisfying:

Pr [Xn
V j 6= hj (∪i∈V j fi(X

n
i ))] < ε (13)

M i
s < n(Ri

s + ε) (14)

Define R∗
DIR to be the set of rate tuples that satisfy the

following constraints∀j ∈ Π and∀t ∈ 2V j

\φ:

∑

i∈t

∑

s∈2Si
\φ, s3j

Ri
s ≥ H

(

Xt|XV j\t

)

(15)

Theorem. R∗
DIR is the entire rate region.



Proof: Codebook design and power binning:At en-
coder i, associate each typical sequenceXn

i ∈ τn
ε with

2Si

\φ independently generated indices, each according to
a uniform pmf over [1 . . . 2nMi

s ]. The indices are denoted
by mi

s ∀s ∈ 2Si

\φ. All sequences which are assigned the
samek’th index m are said to fall in the same binBi

k(m)

∀k ∈ {1 . . . 2Si

\φ} and∀m ∈ {1 . . . 2nMi
s}.

Encoding: Each encoder observesn realizations of the
random variableXi. If Xn

i ∈ τn
ε , it transmits indexmi

s ∈

{1 . . . 2nMi
s} to the subset of sinkss. Therefore the rate of

packet from sourcei to the subset of sinkss is M i
s. Remember

that this packet encounters a total cost ofdi(s) before reaching
the sinks. IfXn

i /∈ τn
ε the encoder transmits index1 to all

s ∈ 2Si

\φ.
Decoding: Each decoderj receives all indicesmi

s such
that s 3 j and i ∈ V j . The decoder tries to find a
jointly typical sequence tuple{X̂i : i ∈ V j} such that
X̂i ∈ ∩

s∈2Si\φ, s3j
Bi

s(m
i
s). If it does not find any jointly

typical sequence tuple, it declares an error.
Error Analysis: An error occurs due to one of the causes:

(1) Any encoder observesXn
i /∈ τn

ε . The probability of this
event is< ε for sufficiently largen by the weak law of large
numbers.
(2) Any decoder fails to find a jointly typical sequence tuple:
We denote the index tuple,{mi

s : s 3 j} by mi,j . As all
the indices are independent of each other and are drawn from
uniform pmf’s, each typical sequenceXn

i is assignedmi,j

with a uniform pmf over[1 . . . 2nMi,j ]. Decoderj receives
mi,j ∀i ∈ V j . From arguments similar to [4], [1], the
probability of decoder error at decoderj is < ε if for all
t ∈ 2V j

\φ:
∑

i∈t

Mi,j ≥ n(H
(

Xt|XV j\t

)

+ ε) (16)

The achievable rate region given in (15) follows directly by
substituting (11) in (16). Also note that at each decoder, the
converse follows similarly to the converse to the usual Slepian
and Wolf setup. Hence,R∗

DIR is the entire rate region.
It is worthwhile to note that the same rate region can

be obtained by applying results of Han and Kobayashi [6],
assuming|2Si

\φ| independent encoders at each source, albeit
with a more complicated coding scheme involving multiple
auxiliary random variables. But, Han and Kobayashi ignore
the network routing and cost constraints in their formulation
and hence have no motivation for the encoders to transmit
multiple packets into the network.

D. Finding the Minimum Cost

The minimum cost follows directly from a simple linear
programming formulation:

min
R̄∈R∗

DIR

N
∑

i=1

|2Si
\φ|

∑

s=1

Ri
s × di(s) (17)

It can be easily seen that the minimum cost achievable using
DIR is lower than broadcasting for most source distributions.

IV. CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of optimizing
the communication cost for a general network with multiple
sinks and correlated sources under a routing paradigm called
dispersive information routing. Unlike network coding, such a
routing mechanism can always be realized using conventional
routers with sources transmitting multiple packets, each meant
for a subset of sinks. We proposed a coding scheme that
asymptotically achieves the optimum cost under the routing
paradigm. Future work includes extending the work to the
more general case where sources may communicate with sinks
that do not reconstruct them, and designing practical (finite
delay) joint coder-routers that achieve low communication
costs.

ACKNOWLEDGMENTS

The work was supported in part by the National Science
Foundation under grant CCF-0728986.

REFERENCES

[1] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,”IEEE. Trans. on Information Theory, vol. 19, pp. 471–480, Jul
1973.

[2] A. D. Wyner and J. Ziv, “The rate-distortion function forsource coding
with side information at the decoder,”IEEE Trans. on Information
Theory, vol. 22, pp. 1–10, Jan 1976.

[3] T. Berger, Multiterminal source coding. lecture notes presented at
CISM, Udine, Italy, 1977.

[4] T. M. Cover, “A proof of the data compression theorem of slepian and
wolf for ergodic sources,”IEEE Trans. on Information Theory, vol. IT-
21, pp. 226 – 228, Mar 1975.

[5] A. Wyner, “The common information of two dependent random vari-
ables,”IEEE Trans. on Information Theory, vol. 21, pp. 163 – 179, Mar
1975.

[6] T. S. Han and K. Kobayashi, “A unified achievable rate region for a
general class of multiterminal source coding systems,”IEEE Trans. on
Information Theory, vol. IT-26, pp. 277–288, May 1980.

[7] I. Csiszar and J. Korner, “Towards a general theory of source networks,”
IEEE Trans. on Information Theory, vol. IT-26, pp. 155–165, Mar 1980.

[8] H. Luo, Y. Liu, and S. K. Das, “Routing correlated data in wireless
sensor networks: A survey,”IEEE Network, vol. 21, no. 6, pp. 40–47,
2007.

[9] S. Pattem, B. Krishnamachari, and G. Govindan, “The impact of spatial
correlation on routing with compression in wireless sensor networks,”
ACM Trans. on Sensor Networks, vol. 4, no. 4, 2008.

[10] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “Networked slepian -
wolf: Theory, algorithms and scaling laws,”IEEE Trans. on Information
Theory, vol. 51, no. 12, pp. 4057–4073, 2005.

[11] H. Cormen, Thomas, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms, second edition. McGraw-Hill Sci-
ence/Engineering/Math, Jul 2001.

[12] J. Liu, M. Adler, D. Towsley, and C. Zhang, “On optimal communication
cost for gathering correlated data through wireless sensornetworks,”
in proceedings of the 12th annual international conference onmobile
computing and networking. ACM, 2006.

[13] K. Viswanatha, E. Akyol, and K. Rose, “Towards optimum cost in
multi-hop networks with arbitrary network demands,” inproceedings
of International Symposium on Information Theory, Jun 2010.

[14] T. Ho, M. Medard, M. Effros, and R. Koetter, “Network coding for
correlated sources,” inproceedings of CISS, 2004.

[15] A. Ramamoorthy, “Minimum cost distributed source coding over a
network,” in proceedings of International Symposium on Information
Theory (ISIT), Jun 2007, pp. 1761–1765.

[16] P. Gacs and J. Korner, “Common information is far less than mutual
information,” Problems of Control and Information Theory, pp. 149–
162, 1973.


