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Abstract—This paper considers the design of efficient quantizers
for a robust distributed source coding system. The information is
encoded at independent terminals and transmitted across separate
channels, any of which may fail. The scenario subsumes a wide
range of source and source-channel coding/quantization problems,
including multiple descriptions and distributed source coding.
Greedy descent methods depend heavily on initialization, and
the presence of abundant (high density of) “poor” local optima
on the cost surface strongly motivates the use of a global design
algorithm. We propose a deterministic annealing approach for the
design of all components of a generic robust distributed source
coding system. Our approach avoids many poor local optima, is
independent of initialization, and does not make any simplifying
assumption on the underlying source distribution. Simulation
results demonstrate a wide spread in the performance of greedy
Lloyd-based algorithms, and considerable gains are achieved by
using the proposed deterministic annealing approach.

Index Terms—Deterministic annealing, distributed source
coding, sensor networks.

I. INTRODUCTION

N a distributed network of sensors, different sensors may be

designed to observe various physical quantities, e.g., tem-
perature, humidity, pressure, light, and sound. We may be in-
terested in efficient reconstruction of one or more physical en-
tities measured at different, spatially separated locations. Typi-
cally, the data communicated by networks of sensors exhibit a
high degree of correlation. Since the encoders at each sensor lo-
cation function independently, the system will not, in practice,
achieve the performance of optimal joint lossy compression of
the sources. A related issue is that of estimation of a source
from another correlated source. For example, if a sensor (or a
transmission channel) fails, then to obtain an estimate of data
being (or that would be) measured by the sensor, we can only
utilize information acquired from the other sensors (or chan-
nels). To achieve the dual objectives of obtaining the best pos-
sible compression efficiency from independent encoders and at-
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Fig. 1. Block diagram for robust distributed source coding.

taining system robustness, it is necessary that the code design
at all the terminals be performed jointly for a robust distributed
source coding system (see Fig. 1).

The robust distributed source coding model was first pro-
posed and studied in [1] and later in [2] and [3]. As pointed out
in [3], the model subsumes a variety of source coding problems
ranging from distributed source coding [4], [5] and the CEO
problem [6] to multiple description coding. Estimating a source
from another correlated source (see, e.g. [7] and [8]) is another
special case of the robust distributed coding problem. A good
design for the robust distributed coding system should be able
to take into account the correlation between the sources as well
as the possibility of a component failure.

Constructive and practical code design techniques for dis-
tributed coding using source and channel coding principles were
proposed, e.g., by Pradhan and Ramchandran in [9]. Existing
distributed coding system research can be roughly categorized
into two “camps”: one adopting ideas from channel coding (see,
e.g., [10] and [11]), some of which use turbo/low-density parity
check codes with large block-lengths and exploit long delays
to achieve good performance ([12]-[15]), and another building
directly on source coding methodologies [ 16]—[18]. The channel
coding approaches canconceivably be leveraged to addressrobust
distributed vector quantizer (RDVQ) design. However, these ap-
proachesappear mostsuitable when the sources canbe modeled as
noisy versions of each other, where the noise isunimodal in nature,
and are of limited use wherever the simplifying assumptions do
not apply. An illustrative example is when, say, temperature and
humidity are drawn from a mixture of joint Gaussian densities,
where the mixture components are due to varying underlying
conditions such as the time of day, pressure, etc. Further note
that the channel-coding strategies for RDVQ design will create
a long delay in the system and, not surprisingly, get closer to
the asymptotic bounds. However, the proposed source coding
schemes in this paper will have practically zero delay. Hence, the
channel coding and source coding methodologies will actually
solve substantially different problems.
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The source coding methodologies to design RDVQ can be
based on Lloyd’s algorithm [19], but they will suffer from the
presence of numerous “poor” local minima on the distortion-
cost surface, and thus will be critically sensitive to initializa-
tion. Clever initialization as proposed, for example, in the con-
text of multiple description scalar quantizer design [20] can help
mitigate this shortcoming. But such initialization heavily de-
pends on symmetries or simplifying assumptions, and no gener-
alizations are available to vector quantization nor to more com-
plicated scenarios such as RDVQ. Alternatively, a global opti-
mization scheme—i.e., a powerful optimization tool that pro-
vides the ability to avoid poor local optima and is applicable
to sources exhibiting any type of statistical dependencies, such
as deterministic annealing—can eliminate or substantially mit-
igate these shortcomings.

In [21], it has been shown that a deterministic an-
nealing-based approach offers considerable gains over ex-
tensions of Lloyd-like iterative algorithm and various schemes
employing heuristic initialization for the case of generic mul-
tiple description vector quantizer design. Numerous other
applications where deterministic annealing outperforms greedy
iterative algorithms can be found in a tutorial paper [22] and
references therein. In this paper, an iterative greedy algorithm
for RDVQ design is described that will underline the need for
a global optimization approach. We then derive and propose
a deterministic annealing approach for optimal RDVQ design
(our preliminary results appeared in [23]).

Deterministic annealing (DA) is motivated by the process of
annealing in statistical physics but is founded on principles of
information theory. It is independent of the initialization, does
not assume any knowledge about the underlying source distribu-
tion, and avoids many poor local minima of the distortion-cost
surface [22]. In DA, a probabilistic framework is introduced via
random encoding where each training sample of the input source
is assigned to a reproduction value in probability. The optimiza-
tion problem is recast as minimization of the expected distor-
tion subject to a constraint on the level of randomness as mea-
sured by the Shannon entropy of the system. The Lagrangian
functional can be viewed as the free energy of a corresponding
physical system and the Lagrangian parameter as the “tempera-
ture.” The minimization is started at a high temperature (highly
random encoder) where, in fact, the entropy is maximized and
hence all reproduction points are at the centroid of the source
distribution. The minimum is then tracked at successively lower
temperatures (lower levels of entropy) by recalculating the op-
timum locations of the reproduction points and the encoding
probabilities at each stage. As the temperature approaches zero,
the average distortion term dominates the Lagrangian cost and
a hard (nonrandom) encoder is obtained.

Further note that the channel-coding strategies for RDVQ de-
sign will create a long delay in the system and, not surprisingly,
get closer to the asymptotic bounds. However, the proposed
source coding schemes in this paper (both based on the Lloyd
approach and deterministic annealing approach) will have prac-
tically zero delay. Hence, the channel coding and source coding
methodologies will actually solve substantially different prob-
lems, and their comparison may be misleading.
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The rest of this paper is organized as follows. In Section II,
we state the problem formally, establish the notation, and de-
scribe an iterative greedy method based on Lloyd’s algorithm
for multiple prototype coder design. This will underline the need
of a global approach. In Section III, we derive the DA approach
to RDVQ design, provide its update formulas (necessary opti-
mality conditions), and discuss the phenomenon of phase tran-
sition in DA approach for RDVQ. Simulation results are given
in Section IV, followed by conclusions in Section V.

II. THE RDVQ PROBLEM AND ITERATIVE GREEDY METHODS

A. Problem Statement and Design Considerations

Consider the robust distributed source coding scenario in
Fig. 1. For brevity, we will restrict the analysis to the case of
two sources, but the model can be extended in a straightforward
fashion to an arbitrary number of sources. Here (X,Y) is a
pair of continuous-valued, independent identically distributed
(i.i.d.), correlated (scalar or vector) sources, which are inde-
pendently compressed at rates R; and R, bits per sample,
respectively. The encoded indexes ¢ and j are transmitted over
two separate channels, which may or may not be in working
order, and the channel condition is not known at the encoders.
The end-user tries to obtain the best estimate of the sources
depending on the descriptions received from the functioning
channels. Let (X 0,?0) denote the reconstruction values for
sources (X,Y’), which are produced by the central decoder
Dy, i.e., when information is available from both channels. If
only channel 1 (or 2) is working, then side decoder D; (or Ds)
is used to reconstruct (X1, Y1) (or (X2,Y?2)). The objective
of the RDVQ is to minimize the following overall distortion
function given rate allocations of R; and Rs:

Drpvo =E {)\0 [aod(X, X0) 4+ (1 — ao)d(Y, ?0)]

DY [ald(X,f(l) +(1- al)d(y,yl)}

o [a2d<x,f(2> + (1 - an)d(Y, W)]} )

where d(-, -) is an appropriately defined distortion measure and
an € [0,1] {n = 0,1,2} governs the relative importance of
the sources X and Y at decoder n. The first two terms in the
RDVQ cost of (1) contribute to the central distortion when both
channels work. Similarly, the remaining terms correspond to the
distortions for side decoders 1 and 2 when only one channel is
in working condition. The central distortion is weighted by Ag,
while the side distortions are weighted by A; and A2, whose
specific values depend on the importance we wish to give to
the side distortions as compared to the central distortion. In a
practical system, Ao, A1, and A, will often be determined by the
channel failure probabilities.

The RDVQ problem comprises the design of mappings from
the sources X and Y to indexes at the respective encoders and
of the corresponding reconstruction values at the three decoders.
To minimize the overall distortion for given transmission rates,
the correlation between the sources must be exploited. This may
be done by sending the same index for many, possibly noncon-
tiguous regions of the source alphabet on a channel and then
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using the information from the other source to distinguish be-
tween index-sharing regions. In the case that only one channel is
functioning, the RDVQ problem reduces to estimating a signal
from another correlated source. On the other hand, if both the
channels work and the central decoder is used, the problem re-
duces to that of correlated source coding. Locally optimal quan-
tizer design techniques for general networks (which encompass
the RDVQ model as well) and correlated source coding have
been proposed in the literature in [16]-[18], respectively. We
next adopt this framework and describe a locally optimal algo-
rithm using multiple prototypes (MP) for the design of a generic
RDVQ system. The MP approach can be viewed as combining
histogram or kernel-based techniques for source distribution es-
timation and quantizer design.

Specifically, we have a training set 7, which consists of
N data pairs for (possibly scalar or vector) correlated sources
(X,Y). Each source is assumed to be ii.d. We design a
high-rate vector quantizer J; for X using a standard VQ
design algorithm such as Lloyd’s algorithm [19] or DA [22].
(21 assigns training set data points to one of the X regions,
Cr. The disjoint Voronoi regions C} span the source space,
and a prototype x, is associated with each of them. Next, each
Voronoi region is mapped to one of the Z = {1,..., I'} indexes
via a mapping v(k) = 4, to which we refer as Wyner-Ziv
(WZ) mapping (the name loosely accounts for the fact that the
scenario involves lossy coding with side information whose
asymptotic performance bound was given in [5]). The index
¢ is then transmitted across the channel. An example of WZ
mapping for a scalar source X with X = 8 and Z = 3 is
given in Fig. 2. The region associated with index ¢ is denoted
Ry = Ukm(k):i G-

We similarly define quantizer Qo, regions C?, Rj’, and pro-
totypes ¥; in the Y domain. Here, the £ Voronoi regions are
mapped to J indexes via WZ mapping w(l) = j. At the central
decoder, we receive indexes in Z x J and generate reconstruc-
tion values £; and {; (where £¥; € X°, (i,7) € T x J etc.).
At the side decoder 1 (or 2), the received index is in Z(J), and
reconstruction values are i (%) and g} (§7). Note that we use
uppercase letters for a random variable and lowercase letters to
denote their particular realization.

(b)
Fig. 2. (a) Breakup of encoder in robust distributed coding and (b) an example of Wyner—Ziv mapping from prototypes (Voronoi regions) to indexes.

The distortion for a data pair (z,y) and corresponding index
pair (7, ) is given by

Dnet(x7y7i7j) = )\and ($7:ﬁ?]) + Alald (x/iﬁzl)
T

+ Aaaad ( ,ii) + Xo(1 — ap)d (y7 'g?j)
+ (1 —ar)d (y,97)
+ o1 — a2)d (y,57) - )

The net distortion in (1) that we seek to minimize simply av-
erages the distortion from all the source data points. In the next
subsection, we outline an iterative greedy strategy for the design
of aRDVQ system. The design strategy is based on the multiple
prototype framework and is similar in spirit with the algorithms
presented in [16]-[18] for various versions of correlated source
coding.

B. Greedy Iterative Design Strategy

The high-rate quantizers @J; and Q2 for X and Y may be
designed using a standard quantizer design algorithm such as
Lloyd’s algorithm [19] or DA [22] (to minimize the distortion
between the source and the prototypes). Note that the actual ob-
jective is to minimize the distortion between the sources and
their reconstruction values, and the primary task of the high rate
quantizers is to discretize the source. As long as the output rate
of these quantizers is sufficiently high (in comparison to the
transmitted rate), the performance loss due to such discretization
will be marginal. Although the output of the high-rate quantizer
is not directly transmitted over the channel, a large number of
prototypes can incur a significant overhead in terms of the pro-
cessing and storage complexity of the encoder. This limits the
allowable rate of these quantizers in practice. In such circum-
stances, careful design of the quantizer modules will be critical
for the overall system performance. A design strategy for the
case of limited encoder-storage/processing complexity where
the quantizer modules are optimized for the distributed source
coding scenario was presented in [24].

In this paper, we focus on the setting where storage at the
encoders is not a critical issue, and the quantizer modules Q1
and Q2 may simply have high rate. Given fixed ()1 and Q5 (see
Fig. 2), the WZ mappings v and w, as well as the reconstruction
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values at various decoders, can be optimized iteratively by using
a Lloyd-like iterative algorithm. The equations for updating the
various entities are as follows.

1) WZ Mapping for X: Fork =1, ..., K, assign k to index ¢,

such that
v(k) =i =arg mln Z Dt (2, 9,7, §)- 3)
(z,y)ET;
xGCI

2) WZ Mapping for Y: For |l = 1,..., L, assign [ to index 7,

such that
U)(l) = ] = argmj/n Z Dllet($7?/77;7.j/)' (4)
’ (z,y)ET;
vea)
3) Reconstmction Values forX:Foralli=1,...,Z7and j =
o J, find z J;”, 11 and £J2 such that
i?j = arg n;(i)n Z d(x,ap) Q)
(ny)GT;meRf,
yeRé{
i = arg n(gn Z d(z,aq) (6)
(z,y)ET ;xERY
33? = arg min Z d(z,az). 7

az

. Yy
(z,y)€T;yER

The corresponding update equations for the reconstruction
values of Y have not been reproduced here but can be trivially
obtained by symmetry.

At this point, we reemphasize that it is the WZ module that ex-
ploits the correlation between the quantized versions of source.
The above technique optimizes the WZ mappings from proto-
types to indexes for X and Y and the final reconstruction values
at the various decoders in an iterative manner. We will thus
refer to the above design algorithm as the Lloyd approach (LA).
LA inherits from the original Lloyd’s algorithm the interrelated
shortcomings of getting trapped in poor local minima and de-
pendence on initialization. The suboptimality of LA will be ob-
served experimentally in the results section. These issues call
for the use of a global optimization scheme, such as DA. We
next present the DA algorithm and the necessary conditions for
optimality in RDVQ design.

III. THE DETERMINISTIC ANNEALING APPROACH

A. Derivation

A formal derivation of the DA algorithm is based on princi-
ples borrowed from information theory and statistical physics.
Here the standard deterministic encoder is replaced by a random
encoder, and the expected distortion is minimized subject to an
entropy constraint that controls the “randomness” of the solu-
tion. By gradually relaxing the entropy constraint, we obtain an
annealing process that seeks the minimum distortion solution.
More detailed derivation and the principle underlying DA can
be found in [22].

Given the RDVQ setup, we separately design quantizers Q1
and Q- for the two sources using DA [22]. As mentioned ear-
lier in Section II-B, the rationale for this separate design is that
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as long as the number of prototypes per index is large, the cor-
relation between the quantized versions of the sources can be
fully exploited within the WZ mapping modules of the encoders.
This means that efficient WZ mappings from prototypes to in-
dexes is crucial for the overall system performance. The DA
approach for RDVQ optimizes these mappings and the recon-
struction values jointly, is independent of the initialization, and
converges to a considerably better minimum.

The high-rate quantizer (); for source X assigns each data
point in the training set for source X to a prototype z;. We
define binary variables that specify the deterministic quantizer

rule
1,
ckh = 0

The random WZ mapping is specified by the probability vari-
ables r;), = Pr[i|k] = Pr[z;, € RY], i.e., the probability that
the kth prototype x;, falls in the (random) cell R} . The effective
probability that a point z belongs to the random cell 7 is thus
given by

if Ql(:v) =

otherwise

®)

Pijz = PI‘ :I? € R Zrﬂkckh: )]
Similarly, in the Y domain, we define
1 ifQa(y) =1
“ly = {07 otherwise (10)
rjp = Prljll] = Prly; € RY] and p;;, = Prly € RY] =
Zl rj\lcl|y- Note that
(11)

ch‘x =1 and Zc”y =1
k 1

since a data point is associated with only one prototype.
The probabilistic equivalent of the distortion function
Drpvq in (1) that we seek to minimize is

Z Zplle_]lJ net €Y, Lv./)

(z,y)€T 1,7

== > ckpcyrierinDne(r,y,4,5)  (13)

(’I’y)ETkl’L]

D= (12)

1
N
i

subject to a constraint on the joint entropy H of the system.

Here N is the number of data points in the training set. This
is equivalent to the following Lagrangian minimization:

min {L=D-TH}

(ORI ACARUASCIRUSR TR

(14)

where the “temperature” T plays the role of Lagrange param-
eter.

The joint entropy of the system is H =
HX,Y,K,L,I,J) = HX,Y)+ H(K,I|X)+H(L,J|Y),
since by construction, the source variables X and Y, prototypes
K and L, and transmitted indexes I and J form a Markov
chain: J — L - Y — X — K — I. Also, H(X,Y) is the
source entropy and is unchanged by the encoding decisions
for a given training set. The solution will therefore depend on
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the conditional entropy terms H(K,I|X) and H(L,J|Y).

H(K,I|X) is given by
Z ch\xrﬂk IOg Ck|m7"z|k)
(m y)ET ki

_1 Z ch\x’rﬂk IOg r1|k)

(:ryGT k,i

H(K,I|X) =
(15)

using the fact that cg, in (8) can take values zero and one only.
Here the base of logarithm is two. Similarly, H(L, J|Y") is given

by
N Z Zcz|y7“]|110g rilt)-

(z,y)eT Lj

H(L,J|Y) = (16)

Next, we derive the necessary conditions for minimizing the
Lagrangian cost in (14).

B. Update Equations for RDVQ Design

At a fixed temperature 7', the objective function in (14) is
convex in terms of the probabilities ;)3 and rj;. The optimal
expressions for ;) and rj); are given by

e_Dki/T e_Dlj/T
rilk = —Z e*Dki’/T and 7‘]'“ = 42 Q*Dlj’/T (17)
,L‘/ jl
where
Dy = E[Dnet(X, Y4, J)| X € CF]
Dy =FE [Dpet (X, Y, I, )|Y € Cly] . (18)

The distortion term Djy; can be interpreted as the average distor-
tion for the data points that belong to the kth Voronoi region (for
source X) and are being mapped to the sth transmitted index.
The encoding probability r;;, follows a Gibbs distribution. At
a particular temperature 7', the kth Voronoi region will be most
associated with the ¢th index for which the average distortion
Dy; is minimum (for a fixed k, r;;, will be maximum for the
sth index when Dy; < Dy, Vi’ # 1). Note that the kth Voronoi
region is still associated with the other indexes but at lower prob-
abilities. However, at the limit 7" — 0, these association prob-
abilities become either one or zero, and a hard mapping rule is
obtained.

We next give the expressions for the reconstruction values in
the case of the squared-error distortion measure. The general ap-
proach is clearly not restricted to this choice of distortion mea-
sure

#% =E[X|X € R?,Y € RY], i!=FE[X|X € R!]
i =B [X]Y € R]]. (19)

These update rules are relatives of the standard centroid rule
and are simply weighed by the various association probabilities.
Also note that side decoder 2 does not have access to X, and
the reconstruction of X is done solely based on the information
received from source Y. By the symmetry in the problem, the
decoding rules for Y can be trivially obtained and will not be
reproduced here.

In the annealing process, we begin at a high temperature and
track the optimum at successively lower temperatures. At high
temperature, all the reproduction points are at the centroid of

the source distribution, and a prototype is associated with all the
indexes with equal probability. More specifically, at high tem-
perature, minimizing the Lagrangian L implies maximizing the
entropy H. This is achieved by assigning all the reproduction
points to the centroid of source distribution (which results in
maximum randomness and hence maximum entropy), and thus
the global minimum is achieved at high temperature. As the
temperature is lowered,! a bifurcation point is reached, where
the existing solution is no longer an “attractor” solution, in the
sense that small perturbation may trigger the discovery of a new
solution where reproduction points are now grouped into two or
more subsets. Intuitively, at this particular temperature, the orig-
inal system configuration (which was a minimum at higher tem-
peratures) becomes a saddle point. To minimize the Lagrangian
cost, it is therefore beneficial to move to a newer minimum
by slightly perturbing the reproduction points. We refer to this
process of bifurcation as the first phase transition in analogy
to statistical physics. The corresponding temperature is called
“critical temperature.” The subsets of reconstruction points fur-
ther bifurcate at lower temperatures, and each bifurcation can be
considered as a phase transition that occurs at the corresponding
critical temperature. The expression for the critical temperature
for the first phase transition is derived in Appendix A. This gen-
eralizes the critical temperature results for the case of a) mul-
tiple-description vector quantizer [21] and for b) single-source
vector quantizer [22]. The overall DA algorithm for design can
be summarized by the following steps.

1) Start at a high temperature (above critical temperature for
first phase transition).

2) Atafixed temperature 7', perturb the reconstruction values
and minimize the free energy in (14) by iterating between
the following two steps until convergence:

a) fix the reconstruction values in (19) to compute the
encoding probabilities using (17);

b) fix the encoding probabilities and optimize the recon-
struction values using (19).

3) Reduce the temperature T« 67

4) If T' < Tihreshold, Stop; else goto 2).

Note that both steps 2a) and b) are monotone nonincreasing in
the cost. In case 7' is not a critical temperature and the original
state is already a minimum, the perturbed reconstruction values
return to their respective original positions after step 2). Finally,
at the limit of zero temperature, the algorithm will reduce to
the locally optimal algorithm for RDVQ design described in
Section II-B.

While the method is motivated by the ability of annealing
procedures in physics/chemistry to find the global minimum (or
ground state), it is not a stochastic procedure, such as “simulated
annealing” [25]. The costly computation involved in simulating
the random evolution of the system is replaced by minimization
of an expected functional, namely, the free energy. This is, in
fact, a deterministic procedure.

IV. SIMULATION RESULTS
We give examples for various settings in an RDVQ system to
demonstrate the gains of the deterministic annealing approach

Tn our simulations, we used the exponential cooling schedule T «— &7,
6 < 1.
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TABLE I

RDVQ SETTINGS FOR FIRST FOUR SIMULATION RESULTS

Source Model

Vector Dimension

Jointly Gaussian

Jointly Gaussian

Jointly Gaussian

Eal il e

Mixture of Gaussians

—_| 0o = | =

over the iterative greedy method described in Section II-B. The
greedy method is referred to as LA since it inherits the interre-
lated shortcomings of getting trapped in poor local minima and
dependence on initialization, similar to the original Lloyd’s al-
gorithm [19] and its vector extension [26] for quantizer design.
To avoid any potential fairness issues, we decided to design the
high-rate quantizers J; and Q2 using DA for both competing
approaches. This design could obviously have been done using
Lloyd’s algorithm for the LA contender, but we prefer to elim-
inate concerns regarding poor minima in the quantizer design.
The focus of the paper is on Wyner—Ziv mappings optimization
(and reconstruction values) given fixed high-resolution quan-
tizers. In all the simulations, the LA algorithm was run 20 times
with different initializations, while DA was run only once (DA
is independent of initialization). The training set consisted of
4000 samples, while the test set had size 40 000. We first briefly
enlist the important parameters in the first four RDVQ settings
in Table L.

In the first three examples, X and Y are assumed to be drawn
from a jointly Gaussian source with zero means, unit variances,
and correlation coefficient 0.9. In the last example, the source
are assumed to come from a mixture of Gaussians.

Example 1: A scalar RDVQ is designed in the first example.
The distortion weighting parameters A; and A5 for the side de-
coders are both set to 0.01, while )\ is set to one. The rates ;
and Ry are 3 and 4 bits, while the number of prototypes for X
and Y is 64 and 128, respectively. The source weight parameters
are g = 0.5, 1 = 1,and ao = 0, 1i.e., each side decoder recon-
structs its corresponding source; decoder 1 reconstructs X and
decoder 2 reconstructs Y, while at the central decoder, both the
sources are reconstructed with equal importance. The results de-
picting optimization performance on the training set are shown
in Fig. 3. Here DA outperforms the best solution obtained by
LA by ~1.3 dB. The difference between the best and worst dis-
tortions of LA is ~2.9 dB, which illustrates the fact that greedy
methods are heavily dependent on initialization and are highly
likely to get trapped in a local minimum. For the test set, the
net distortion obtained by the best LA (by best we mean the ini-
tialization which led to the best training set data performance)
versus single run DA was —15.18 and —15.95 dB (gain of 0.77
dB), respectively.

Example 2: Here, a scalar RDVQ is designed. The distortion
weighting parameters Ao, A1 and As are set to be 1, 0.005, and
0.01, while the rates Ry and R, are 2 and 3 bits, respectively.
The number of prototypes for both X and Y is 64. The source
weight parameters are ag = a1 = as = 0.5 to give equal
importance to each source at all the decoders. The results are
shown in Fig. 4. The net distortion obtained for the test set for
best LA versus single run DA was —12.06 and —13.08 dB (gain
of 1.02 dB), respectively.

{Ao, A1, A2} | {ao, 1,00}
{1,0.01 ,0.01 } {0.5,1,0}
{1,0.005,0.01} {0.5,0.5,0.5}
{1,0,0} {0.5,-,-}
{1,0,0} {0.5,—,-}
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Fig. 3. Comparison between LA and DA approaches for R, = 3, R, = 4,
K=64,L =128, 00 = 0.5, 01 = 1,02 = 0, A0 = 1, A1 = A2 = 0.01.
Net distortion from DA is —16.98 dB, while LA gives best and worst distortion
as —15.69 and —12.77 dB, respectively. For ease of comparison, a line along

which constant D,,.. = —16.98 dB is drawn.
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Fig. 4. Comparison between LA and DA approaches for R; = 2, Ry = 3,
K=L=64, 00 = a1 = as = 0.5, g = 1, A\; = 0.005, A\, = 0.01.
Net distortion from DA is —13.44 dB, while LA gives best and worst distortion
as —12.18 and —10.54 dB, respectively. For ease of comparison, a line along
which constant D,,.. = —13.44 dB is drawn.

Example 3: A distributed quantizer of dimension two is de-
signed in this example (i.e., \g = 1 and A\; = Ay = 0, implying
that both the channels function and only the central decoder is
used at the receiver). Both the sources are transmitted at rate of
2 bits and given equal importance (i.e., g = 0.5). The simula-
tion result is given in Fig. 5. The distortion achieved by DA and
best run LA approach are —12.75 and —10.85 dB, respectively.
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Fig. 5. Comparison between LA and DA approaches for a distributed vector
quantizer of dimension two. Ry = R = 2 bps, K = £ = 128, op = 0.5,
Ao = 1, A1 = Ay = 0. Net distortion from DA is —12.75 dB, while LA
gives best and worst distortion as —10.85 and —10.01 dB, respectively. For
ease of comparison, a line along which constant D,,.; = —12.75 dB is drawn.
Achievable distortion as promised in [27] is —15.61 dB.

The theoretically achievable (asymptotic) distortion at the cor-
responding rates and correlation coefficients as promised in [27]
is —15.61 dB.2 Here the DA approach is roughly 2.86 dB away
from the asymptotic bound of the distortion, and the greedy LA
approach is a further 1.9 dB away. Note that the distortion from
the LA and DA approaches can be further reduced if entropy
coding is employed or the dimension of the quantizers is in-
creased.

Example 4: In the next example (see Fig. 6), X and Y are
drawn from a mixture of four joint Gaussians. Such a situation
can arise, for example, when sources correspond to the tem-
perature and humidity readings and the different mixture com-
ponents are due to varying underlying conditions such as the
time of day, pressure, etc. Here A\ = As = 0, g = 0.5, and
the source rates are 3 bits/sample. In our simulations, the mix-
tures components are assumed to be equiprobable. The means
for X, Y and correlation coefficients for the four components
are taken as {0, 0, 0.87}, {1,0.5,0.9}, {—1, 1, —0.92}, and {2,
—1, —0.95} respectively. The variance of X and Y in all the
components of the mixture was taken to be one. The distortion
values achieved by DA and from the best and worst LA algo-
rithm are —13.59, —12.74, and —9.87 dB (DA gains 0.85 and
3.72 dB over best and worst LA), respectively.

The next simulation result (see Fig. 7) depicts the variation
in weighted distortion for the LA (best of 20 runs) and DA ap-
proaches for a scalar RDVQ system with the number of pro-
totypes for the sources. Here \g = 1, Ay = A2 = 0.01, and
ag = a1 = ag = 0.5 and the source rates R; and R are kept
fixed at 3 bits. As the number of prototypes is increased, the WZ
mappings can possibly combine more noncontiguous regions
together and utilize the intersource correlation more efficiently.

2To calculate the distortion bounds from [27], we have assumed that the in-
dividual source distortions will be approximately the same and hence equal to
the average distortion, since both sources have similar statistics, are encoded at
the same rate, and are given equal importance at the decoder.
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Fig. 6. Comparison between LA and DA approaches for a distributed vector
quantizer for sources coming from a Gaussian mixture model. 21 = Ry =
3bps, K = L =64,y = 0.5, \g = 1, A\; = A» = 0. Net distortion from
DA is —13.59 dB, while LA gives best and worst distortion as —12.74 and
—9.87 dB, respectively. For ease of comparison, a line along which constant
Dyney = —13.59 dB is drawn.

—e— LA Approach
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Weighted Distortion (in dB)

_155 . . . . .
10 20 30 40 50 60 70

Number of Prototypes
Fig. 7. Comparison between LA and DA approaches when the number of

source prototypes is varied for Ry = Ry = 3 bps, &g = a3 = ay = 0.5;
Ao = 1, A = Ay = 0.01.

Note that even for a large number of prototypes, the greedy LA
approach underperforms the DA approach, justifying the use of
a global optimization tool for a robust distributed quantizer de-
sign. Also, after a point, increasing the number of prototypes
does not lead to reduction in the distortion cost. This implies
that only a sufficiently large number of prototypes (in compar-
ison to the transmitted indexes) is required for achieving a good
system performance. Further, note both the greedy LA and de-
terministic annealing-based methods are extendible to incorpo-
rate entropy coding, but such extension is omitted for brevity.
Finally, a note on system complexity. The design complexity
of DA-based algorithm is higher than that of the LA approach. In
our simulations, the DA approach took on average 20-25 times
longerthanforasinglerun of LA approach. Theruntime of the DA
algorithm can be further reduced by simple schemes outlined in
[22], but this is tangential to the work presented in this paper. For
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completeness, we just outline a simple procedure to accelerate the
DA algorithm. In DA, almost all the interesting activity happens
near the phase transitions, when the codevectors split and move
to different locations to minimize the cost. In between the phase
transitions, the codevectors remain at the same locations, and the
changes in distortion cost are insignificant. Thus, the cooling be-
tween phase transitions can be done in a rapid fashion without
actually compromising the algorithm performance. We have not
pursued the above idea for accelerating the DA approach in be-
tween the phase transitions in this paper and have used the simple
exponential cooling schedule for DA. Further, instead of starting
from ahigh temperature, the DA algorithm can be initialized from
atemperature slightly above the critical temperature for first phase
transition, since above this temperature, there is only one global
minimum on the cost surface (see the result for critical tempera-
ture for firstphase transitionin the Appendix). Note thatthe design
complexity of DA is a one-time cost only. During operation, hard
quantizers are used, and both the DA and LA approaches have the
same operational complexity.

V. CONCLUSIONS

We have proposed a multiple prototype-based deterministic
annealing approach for the design of quantizers for a robust
distributed source coding system. The approach is general and is
applicable to a wide gamut of coding and quantization problems
such as multiple descriptions, distributed source coding, CEO
problem, etc. This approach assumes no prior knowledge about
the underlying probability distribution of the sources, eliminates
the dependence on good ad-hoc initial configurations, and avoids
many poor local minima of the distortion cost surface. The nec-
essary conditions (and update equations) for system design are
derived and presented. Simulation results comparing DA with
an iterative Lloyd-like algorithm are shown. Significant im-
provements confirm the advantage of using a global optimization
scheme such as DA forrobustdistributed vector quantizer design.

APPENDIX

Recall that DA finds the trivial global optimum at “high tem-
perature,” where all the reproduction points coincide at the center
of mass of the source distribution. The first “phase transition” cor-
responds to the bifurcation of the reproduction points into sub-
sets. The temperatures at which various phase transitions occur
are called the critical temperatures. Here we derive the expression
for the critical temperature corresponding to the first phase tran-
sition for RDVQ. The result will be a generalization of the critical
temperature for special cases such as multiple-description vector
quantizer, single source vector quantizer, etc.

Without loss of generality, we assume that the phase transition
occurs for code vectors corresponding to index ¢ (representing
source X ), and the number of code vectors increases from one
to two. (There can be a phase transition to more than two code
vectors, but the necessary condition for bifurcation can be ob-
tained by assuming that the number of code vectors increases to
only two.) At high temperature (greater than the critical temper-
ature for the first phase transition), all the association probabil-
ities are equal (uniform) and the code vectors for both sources
will be located at their respective centroids.
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The expression of the Lagrangian cost in (14) that needs to
be minimized is

L=b-TH (20)
1 . .
- N Z Z cklmc”yri|k7lj|anet($7y,l7]>
zy€eT |k lij
+T ch\xﬁ|klog(7"z|k)+z cllyrj|llog(7"j|y) Q1)

ki l,j

where Dyet(,y,1%,7) is given in (2) and the last two terms are
for the source entropies H(K,I|X) and H(L, J|Y), respec-
tively, defined in (15) and (16). Since we are assuming only one
possible value for index j (phase transition occurs for code vec-
tors corresponding to index ¢), the second entropy term is zero.
Also ), ¢, = 1 from (11) since a training set point for ¥ will
map only to one out of £ possible prototypes. Hence the above
expression reduces to

1 ..
L :N Z Zck|zcl|yri\anot(wvyJ?J)
z,y€T |k,

+T Zcmxmklog(mk) (22)
ki
1 . .
-N Z ch\m\kl)net(%ywd)
z,y€T | k,i
+T 4D exparipelog(ran) | - (23)

ki

Next we make a simplifying assumption that the number of
prototypes (output of the high-rate quantizer (), see Fig. 2) is
large, and there are as many prototypes as the number of data
points. Hence there is one-to-one correspondence between a
data point and a prototype and

Tk = Pr[zy € RY] = Prlz € Rf] = pj|o- (24)

Using (24) and Ek Chle = 1 from (11), the expression of free
energy in (23) can be rewritten as

L:% Z Zp“anot(l',y,i,j)""T Zpl|Ilo'g(p‘|I)

z,y€T L 1 7
(25)
We assume squared-error distortion measure for further anal-
ysis. We further write D,..; as D" to explicitly indicate that the
distortion at first phase transition (pt) is only affected by index
i (the only possible value of j is one). The expression for D
can be simplified as

th =)o {ao (J;—a??j:l)z-i-(l—ao) (y_g?jzl)z}
+ 1 {on (2=2) +(1-an) (y-31)°}
2 {02 (o-321,) 4 (1-02) (y—3221) } - 26)

The reconstruction values for central and side decoder 1 are

the same at high temperature at the source centroid, i.e., :i'?j =
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#} (since j takes only one value) and similarly for Y. Using this
and combining terms, Df’ ! reduces to

Dg’t = ()\00(0-}-)\1061) (:I?—.QAZ})Z
+{o(l-ap)+ 1 (1—a)} (y—??il)z
+ az (w—d2y) FAa(1-an) (y—92-1)” . @7)

We define the covariance matrices for the source data as fol-
lows:

— . t
z,yeT
1
Cry = > (@ = pa)(y— )
z,yeT
1
Cyy =N Z (y—uy)(y—uy)t (28)
z,yeT

where /1, and 1, are the respective source means. For notational
convenience, we define 31 = Agag + A1y and B2 = Ap(1 —
Oé(]) + )\1(1 — Ozl).

At the phase transition, the code vectors #}_; and £}_, for X
(and similarly for Y') will separate and move to new respective
different locations. At the critical temperature for phase transi-
tion, the system solution changes from a minimum to a saddle
point. Equivalently, the Hessian matrix of the free energy (L)
with respect to the code vectors (£1_;, 41_,, 91, and §_,) will
no longer be positive definite, and its determinant will vanish.

For the calculation for the Hessian matrix, we first compute
the association probabilities p;), from (8), (9), and (17) or by
directly minimizing the free energy L with respect to p;|,.. The
association probability p;|, is given by

=D /T

_prt
e v "

and can be substituted in (23). It can be shown by straight-
forward derivation that the Hessian matrix is given by (30) as
shown at the top of the page, where [ is the identity matrix and
superscript £ denotes matrix transposition.

Setting the Hessian matrix determinant to zero yields

det KI — %ﬂlc’m> <I — %ﬂgny> — 4[;;2/820_”,0;1/ =0.
(€29
The above equation is implicit in the critical temperature 7'.
We next obtain and interpret an explicit solution for special
cases of RDVQ.
1) Single Source Vector Quantizer (say for X ): Here, only one
channel will be present, i.e., Ay = 1; \¢g = A2 = 0 and
only source X will be of interest, i.e., a; = 1. Therefore,

we have 1 = 1 and 3 = 0, and (31) reduces to det[] —
(2/T)C..] = 0. This implies that the critical temperature
for the first phase transition will be at 7' = 2-y,,, where -,
is the largest eigenvalue of C,,, and matches the basic DA
result in [22].

2) Multiple Descriptions Vector Quantizer: Here the two

sources are identical, i.e., Y = X. The expression in
(31) reduces to det[I — (2/T)(f1 + [B2)Cuz]. Also
b1 4+ B2 = Ao + A1. The critical temperature for the first
phase transition will be 2, (Ao + A1), which was also
derived in [21].

3) Jointly Gaussian Scalar Sources: For zero-mean sources

X and Y with respective variances o2 and o, and correla-
tion coefficient p, the condition in (31) reduces to

(1 - 2—5102> ( - 2—5202> 4P pae o (3

T °* T Y T2 Ty

The expression for 7,,;; can be found by solving the above

equation. If 2 = o, = o and both sources are given
equal importance during reconstruction (1 = (2), we

have Terit = (Mo + A1)o?(1 + |p|). When the sources are
perfectly correlated (p = 1), this reduces to the multiple
description case for scalar sources as expected (Y = X).
For the case when p = 0 (uncorrelated sources), Te.i¢
reduces to {\g + A1 }o2. This can be interpreted as fol-
lows: when X and Y are perfectly correlated (p = 1), the
sources are spread along one direction only (inthe X — Y
plane). On the other hand, as p decreases from one to zero,
the sources (in X — Y space) are spread in an isotropic
fashion along all the directions. Thus, there is more sym-
metry in the system, and it will take longer for the code-
vectors to split as we lower the temperature during the
annealing process. Therefore, the critical temperature de-
creases to a lower value as p decreases (analysis for nega-
tive values of p is similar).
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