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Abstract—This paper considers the problem of minimizing the network demands, such a mechanism has been shown to be
communication cost for a general multi-hop network with cor-  gptimal only under an important assumption. In this paper we
related sources and multiple sinks. For the single sink scenario, primarily look at the extent of sub-optimality caused due to

it has been shown that this problem can be decoupled, without _, . . . . .
loss of optimality, into two separate subproblems of distributed this assumption. Motivated by the potential unbounded gain

source coding and finding the optimal routing (transmission DYy removing the assumption, we design a solution to the
structure). It has further been established that, under certan problem using prior results from multi-terminal informati
assumptions, such decoupling also applies in the general caseheory.

of multiple sinks and arbitrary network demands. We show  Tng rest of the paper is organized as follows. In section

that these assumptions are significantly restrictive, and furthe Il we di the related work. In tion 1l we formulat
provide examples to substantiate the loss, including settings where " € discuss the relate OrK. sectio € formulate

removing the assumptions yields unbounded performance gains. the problem and discuss the prior results to substantiate
Finally, an approach to solving the unconstrained problem, where the assumption. We present examples of settings to show

routing and coding cannot be decoupled, is derived based on Han unbounded gains in section IV and propose a solution to the
and Kobayashi’s achievability region for multi-terminal coding.  ,nconstrained problem in section V

Index Terms—Multi-hop sensor networks, distributed source
coding, multi-terminal information theory Il. BACKGROUND AND RELATED WORK

A. Distributed Source Coding

The field of DSC began in the seventies with the seminal
Compression of sources in conjunction with communicatiogork of Slepian and Wolf [3]. They showed, in the con-

over a network has been an important research area, notabht of lossless coding, that side-information availabieyo

with the recent advancements in distributed compression @f the decoder can nevertheless be fully exploited as if it

correlated sources and network (routing) design, coupl@gre available to the encoder, in the sense that there is

with the deployment of various sensor networks. Encoding asymptotic performance loss. Later, Wyner and Ziv [4]

correlated sources in a network, such as a sensor netwggtived a lossy coding extension that bounds the ratertisto

with multiple nodes and sinks, has conventionally been apgerformance in the presence of decoder side information. Ha

proached from two different directions. The first approa&h hnd Kobayashi [5] extended the Slepian-Wolf result to gainer

routing the information from different sources in such a wapulti-terminal source coding scenarios (see also [6]). Wampa

as to efficiently recompress the data at intermediate nodfsir results in this work.

without recourse to distributed coding methods (we refer to

this approach as joint coding via “explicit communicatipn” g Compression in Multi-hop Networks

The second approach is exploiting the correlation between . . . .

sources while compressing at the nodes even if the sourceé‘ survey of routing techniques in sensor netvv_orks IS

do not explicitly communicate with each other, i.e., dmtted 9'VeN N [71. M.OSt Of. th?se gpproaches 'only e”xp'lon' Inter-

source coding (DSC), and routing the information accoriing source correlations via “explicit communication”, i.eqirjt

Relevant background on DSC and route selection in a netw pression 1s p_erformeq at |ntermed|ate_no_des w_here al
is given in the next section. information is available, without appeal to distributeddica

For a single sink network, it has been shown that optimB inciples. However, such approaches tend to be wasteful at

DSC followed by an optimal shortest path routing mechanis ISbCUt thelcljast hO%S of the'gomrtr)}umcat]:on path. Well designe
is unbeatable with respect to minimizing the total communP could provide considerable performance improvement

cation cost when the cost is a convex function of the link da?z{‘dlor complexity/energy savings. Various aspects of DSC f

rate [1], [2]. Also, it has been shown that for large networkéoqting have ?ein con;(ijder%d_ir) a nu_mper_of poJbgcat?ons.
DSC followed by optimum routing can have unbounded ga“%nstascu et.al [1] considered joint optimization of Stpi

compared to explicit communication [1]. But for the moréNOIf coding and routing, and provided a solgt!on o this
general network consisting of multiple sinks with arbiyrarpmblem whose optimality depends on constraining assump-
tions. The scenario of multi-sink was considered in [8], mehe

The work was supported by the NSF under grant CCF-0728986 a practical suboptimal distributed scheme was proposdd. [9
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provided a proof of the optimum communication route foeasily shown to be the shortest path tree (SPT) rooted at the
‘correlated data gathering’ is an NP complete problem, @lomsink. Define

w_ith low _cc_)mplexity sul_)optima! algorithms. [10] compared d = min Zwe

different joint compression-routing schemes for a cotesla PeE (=

sensor grid and also proposed an approximate, practiedit; st

source clustering scheme to achieve compression efficieng§ the minimum total weight a bit encounters on its path from
Note that there has been considerable amount of work in tpurced to the sink. The remaining task is to find a rate
field of network coding related to compression in networkgllocation at the sources so that the total communicatishiso
with capacity constraints [11], [12]. In this paper we restr minimized while ensuring lossless reconstruction. Thiglies
ourselves to the conventional routing schemes and do &t the optimal rates allocated have to lie in the SlepiantftW
consider the possibility of network coding at intermediatachievable rate region, which boils down to solving thedine

nodes. programming problem for the rates :
N
I1l. PROBLEM SETUP min R;d*
A. Problem Formulation (R}

Let a network be represented by an undirected gidph
(V, E). Each edge € E is a network link whose communica-
tion cost depends on the edge weight The noded’ consist
of N source nodes) sinks, andV|— N — M intermediat'e ZR’L' > H(Xg|Xge) VS C X1, Xo... Xy} (1)
nodes. Source nodehas access to source random variable
X;. The joint probability distribution of X ... X ) is known
at all the nodes. The sinks are denot&d S- ..., Sy,. Each Remarkably, Liu et. al. [2] claim broader optimality of the
sink requests the information of a subset of sources. Let tpiggle sink networks of [1] (Slepian Wolf encoding and short
subset of nodes requested by sifikbe V7 C V. Conversely, est path routing): It is optimal over all possible joint cogh
sourcei has to be reconstructed at a subset of sinks denoté@titing schemes, including any processing at intermediate
S C {S1,S,...,Su}. For any subset3, of encoders, we hodes, i.e., network coding cannot improve the performance
denote byX; = {X; : i € B}. when the link communication cost is a convex function of the

Define traffic matrix (or “request” matrixY", for network link data rate’.
graph G as theV x M binary matrix that specifies which ii) Multiple Snks : Here we no longer assume that sinks

subject to the Slepian-Wolf rate constraints.

ey

sources must be reproduced at which sinks: request all sources, hence we have a non-trivial requesixmat
. ; T, which specifies which sources need to be reproduced at
1 if i€V ; ) . .
Ti; = 0 else each sink. We further say that source&ommunicates with

sink S; if the sink receives the bits transmitted by the source,
e, Vi ={i:T;; =1} andS* = {S; : T;; = 1}. We denote and denote this by — S;. We define aV x M communication
by E°, the set of all paths from souréeo its destination sinks matrix C' as:
St e
The cost of communication through a link is a function Cij = { é Ifl i — 5
of the bit rate flowing through it and the edge weight, else,

which we will assume for simplicity to be a simple produckyste thatc' and" need not be the same. For the multiple-sink
[ (r,we) = rwe, noting that the approach is directly extendiblgcenario, the above simple scheme of shortest path routing

to more complex cost functions. The objective is to minimizg,q4 Slepian-Wolf encoding is shown to be optimal under the
the overall network cost (calculated given the set of ””}‘bllowing assumption [1]:

rates and edge weights) for lossless reconstruction ofceour

information at appropriate sinks. Assumption: Only requested sources, i € V7, communicate

with sink S;, i.e, C =T.

B. Prior Results

Highly relevant to this work are recent results from [1] on This assumption is clearly valid in the case of indepen-
“networked Slepian-Wolf”. dent sources, but questionable otherwise. An unrequestied b

i) Sngle sink requesting all sources: It is key to observe here correlated source may provide less expensive information o
that regardless of the rate allocation at the nodes, to nEeimrequested sources. We will show how this assumption leads to
the communication cost, source bits must traverse the mketwsubstantial suboptimality. This assumption being the arim
through the minimum cost path to reach the destinationotivation for this work, in the next section, we first illteste
sink. This observation offers considerable simplificatias the sub-optimality using a simple example. Then we show
it implies that optimization of the transmission structwan settings where the performance gains achievable by removin
be done independently of rate allocation. Then, given tilee assumption is unbounded.
optimal transmission structure, the optimal rate allaratan
be found. In fact, the optimal transmission structure can be'Note that a capacity constraint makes the cost function roomex



_ 1 A £ .
Figure 1: A simple example to illustrate the suboptimalibed =~ \‘ < fx ff ig X d do
to the assumption i . w .
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IV. SUBOPTIMALITY DUE TO THE ASSUMPTION . )
Figure 2: An example of a large network to illustrate asymp-

totic gains when all sources are allowed to communicate
The simple network of figure 1 connects two correlated

identically distributed sourcesX(; and X5) and three sinks

(51,52,53). Let the marginal source entropies B X;) = shown in Fig. 2. The sources are distributed along several

H(X3) = H, and the conditional entropies W&(X;|X,) = radii of the unit circle and the sinks are located at a distanc

H(X3|X,) = h, where(h < H). Sinks S; and Ss request d, from the periphery. For the sake of simplicity, we assume

for sourceX; and X», respectively, whereas sink requests that there areV uniformly spaced sources on any radius and

for both X; and X,. The available communication linksthere areM sinks (M radii) in the network. It is assumed

are depicted in the figure 1. For simplicity, assume thgiat a sink requests for all sources within a sub-interval of

A. Example

we =1,Ve € E. length f € [0,1] on the radius connecting it with the center.
The request matri¥’ is given by: Therefore each sink requestsf sources. The communication
11 0 cost of transmittingl bit over a distancel is assumed to be
T = { 01 1 ] d' for a givenl.

Let fo € [0,1 — f] be the distance of the requested interval
Clearly, communication matrix(y = T, allows for loss- from the periphery. If we enumerate the source nodes on
less reconstruction of the requested sources at each dstk. Athe radius byo, 1,..., N — 1, where node produces source
there are 3 other communication mtarices which allow fos40sx;  then the nearest requested sourceijis= N fy. The
less reconstruction. They are given by: sink requests for the subset of sources numbeigdi, +
1,...i9+ N f). Under the assumption, only these sources may
1 1 1 11 1 11 0 communicate their information to the sink. We will evaluate
Ca = { 1 11 } Cs = [ 0 1 1 } , Ca = { 1 1 1 ] how much can be gained by allowing other (nearer) sources
. . o to send their information as well.
It is easy to see that the optimal communication cost for We define gainy, as the ratio of the minimum communi-

each of the above cases is given by: cation cost achievable under the assumption=( 7') to that

Wi= 3xH(X;)+2xH(Xy)= 5H of an unconstrained competitof' (= Cy) to be specified,
Ws= 4x H(X1)+2x H(Xz|X))= 4H +2h 7= Cost(C = Cy)

Wy= 3x H(X2)+3x H(X1|X2)= 3H+3h (2) We further introduce the following notation to denote cendi

Clearly, W, < Wy, Ws. It follows directly that if h/H < tional entropies:
2/3,i.e.,X; andXQ are sufficiently dependen_t, thén, yields aéjhh) =H(X;|X;,, Xj,-1...Xj,) , j2<ii
a lower communication cost thar = 7. This simple example . o
establishes the suboptimality of the assumption due ta-intdf follows that the minimum cost as a function af and f
source dependencies. whenC =T is given by:

. . io+fN
. Asymptolic gains | . Cost(C = T) = (iod +db) H(X;)) + Y id'al,
It is of interest whether the gain due to eliminating the abov il ’
limiting assumption is bounded. We analyze the asymptotic (4)
gain as the number/density of source nodes is increasethwitBeyond the requested sources, the chosen compétipglso
a given spatial region. Consider a sensor network examplbows communicating information from all sources between



the sink and the requested interval. The minimum cost when
C = (Cy is given by: 1—f

Cost(C=T) = ﬁ / (N fod' + diy) H] dfy
0

o+ fN
Cost(C = Co) = dyH(X;)) + »_ id'al;, ;) (5) L [N
=2 s / > id'h| dfo
- f 0 li=Nfot1
Note that the maximum gain achievable by discarding the 1—f

o : ) N
assumption is lower bounded bysinceC; may conceivably Cost (o th)

1 l - gl
still be suboptimal. Also note that could be less thar for (C=C) = 1—f / doH + Z idh | dfo
cases wher(y has a higher communication cost compared 0 =2

to C = T. For those cases, the gain achievable by removingFor L = 1, evaluating the integrals and lettidg — co, we
the assumption is lower bounded hy Remember that the get~ as a function off as:

maximum gain equald if the sources are independent. To

calculate the costs, we next assume that the soufégs ~(f) 311 =J) +cf+2;l°]
form a stationary Markov chain. Gdo +c(1+f+f?)

9)

1) Sationary Markov Chain: Denote the source entropies Cases of interest:

and conditional entropies bif andh respectively(H > h), ¢ ¢(N) = 0 = 7(f) — 1 + ((=9/2d,). As the sources
i.e. H(X;) = H and H(X;|X;_,) = h Vi. Equations (4) and become highly dependent; > 1 for f < 1. In the

(5) simplify substantially and the costs as functionspand Gauss-Markov setting this is the case that the correlation
f are given by: coefficient approaches 1. Also, as the sinks approach the

periphery of the circle, i.edy — 0, the gain grows
unboundedly regardless of the size of the requested

L ot interval.
Cost(C=T) = (Nfod +do)H+ Y idh(6) f — 0=~ = (6d0+3)/(6dy+c) : There are a large number
=N fot+1 of sources and each sink requests for a very small subset.
(fo+fIN Clearly, for small values of andd,, which is typically
Cost(C'=Cy) = dyH+ Y  idh ) the case in sensor networks(f) > 1.

=2 The bottom line is that there are considerable potentialgyai

if one removes the assumption.
Forl =1, letting N — oo and expressing as a function
of fo and f gives: V. OPTIMIZATION WHEN ASSUMPTION IS REMOVED

We next consider the problem of finding the optimum
communication cost when the assumption is removed. This
(8) involves finding optimum communication matri&,*, the rate
allocation for each source and the route through the network
which minimize the total communication cost. Note that, in

wherec = limy_..c Nh(N)/H. Note that the sensor densitythis paper we only consider finding the optimum cost and
increases withV and the correlation increases correspondl® not attempt to solve the issue with the complexity of the
ingly, henceh(N) — 0. In the special case where the source@Ptimization.

are sampled from a continuous-space Gauss-Markov proces$;et Ca be the set of all communication matrices that allow
¢(N) — ¢ wherec directly determines the exponential decafor loss-less reconstruction of the requested sourcesdit ea
of the correlation with distance. Pattem et.al [10] deriwed Sink. Note that for anyC’ € C4, at least the requested
empirical expression for joint entropy function for a reahsor SOUrces must communicate with each sink. We first pick some
network scenario using a data-set pertaining to rainfdikil C € Cjy. It determines the subset of sinks that a source has

expression satisfies the above Markov property validatieg tt0 transmit its information to. We denote #y (C) the set of
use of such a source model to obtain gains. all paths from sourcé to the corresponding subset of sinks.

From arguments similar to that in [1], the optimum route

Next we assume that the sinks are allowed to request foraf 1 the source to these sinks is determined by a Spannin
N f contiguous sources with equal probability. This implietree optimization (minimum Steiner tree More); ec'?’ all 9
that the distribution for the closest source follows a umifo ptimization (mi ,' u ! ): . pectly,

for each source nodé the optimum route is obtained by

density, i.€.ip ~ U(0, N~ Nf + 1). Also, as the network a*ninimizing the cost over all trees rooted at nodehich span

size grows,N, M — oo, the distance between the sink an Il sinks that node communicates with (determined
the requested interval approaches a continuum and therefpy S'N«s that node communicates (dete ed k).
athematically:

fo follows a continuous uniform density, i.¢s ~ 4(0,1— f).
The expressions for average costs as a functiofi afe given d(C)= min W, (10)
by: ' PEE(

2fo — Cfg
2dy + ¢ (fo + f)°

v(fo. f) =

c
) ecP



It is known that the Steiner tree optimization is NP - Complet The optimum communication codD*, is the minimum over
and hence requires approximate algorithms to solve inipeact all C € Cy:
Again it is key to note that, immaterial of the rate allocatt D* = min D*(C) (15)
the nodes, for a fixed communication matrix, the total cost a
bit from sourcei encounters ig(C)). Therefore the remaining and the corresponding communication matrix that minimizes
task of finding a rate allocation for each source can be solvisdC*. Note that the number of admissible communication
independent of the Steiner tree optimization. matrices (i.e. the cardinality of the sély), usually grows of
For a fixed request matrig’, the entire achievable ratethe order o2"V**. Hence2V** D*(C) are to be computed
region for loss-less reconstruction of the requested ssurdo find the optimum. It is clear from the above result thathd t
depends on the communication matrix. We denote this regig@urces are allowed to communicate with any sink, finding the
by Rr(C). The optimum rate tuple that minimizes the comtate allocation for each source and the transmission sict
munication cost{R;(C), R,(C) ... Rx(C)}, must therefore through the network cannot, in general, be decoupled.
lie in Rr(C). Hence, having found the optimum weights,

d:(C), the optimum rate tuple can be determined as follows: VI. CONCLUSION AND FUTURE WORK
N In this paper we addressed the problem of optimizing
min ZRi(C)d?(C) the communication cost for a general network with multiple
(RO} sinks and arbitrary network demands. We showed that the
subject to, assumption under which this problem was solved earlier is

highly limiting. We also gave examples of scenarios wheee th
gain by removing the assumption is unbounded. We proposed
{R1(C), Ra(C) - Rn(C)} € RBr(C) (1) a theoretical solution to the problem using results fromtmul

and we denote the optimum cost By (C). terminal information theory. Future research directiordude

A single letter characterization of the entire regidty,(C), ~design of low complexity algorithms to find close to optimal
is still unknown. Han and Kobayashi provide a partial achiewolutions. Also, this work takes a step closer towards figdin
able region for the problem and we use their results tbe best joint coding-routing scheme for general networks.
characterizeRr(C). We denote the subset of encoders that
communicate with sinkj by X;(C) = {i : C;; = 1}. Let REFERENCES
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