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Abstract—This paper considers the problem of minimizing the
communication cost for a general multi-hop network with cor-
related sources and multiple sinks. For the single sink scenario,
it has been shown that this problem can be decoupled, without
loss of optimality, into two separate subproblems of distributed
source coding and finding the optimal routing (transmission
structure). It has further been established that, under certain
assumptions, such decoupling also applies in the general case
of multiple sinks and arbitrary network demands. We show
that these assumptions are significantly restrictive, and further
provide examples to substantiate the loss, including settings where
removing the assumptions yields unbounded performance gains.
Finally, an approach to solving the unconstrained problem, where
routing and coding cannot be decoupled, is derived based on Han
and Kobayashi’s achievability region for multi-terminal coding.

Index Terms—Multi-hop sensor networks, distributed source
coding, multi-terminal information theory

I. I NTRODUCTION

Compression of sources in conjunction with communication
over a network has been an important research area, notably
with the recent advancements in distributed compression of
correlated sources and network (routing) design, coupled
with the deployment of various sensor networks. Encoding
correlated sources in a network, such as a sensor network
with multiple nodes and sinks, has conventionally been ap-
proached from two different directions. The first approach is
routing the information from different sources in such a way
as to efficiently recompress the data at intermediate nodes
without recourse to distributed coding methods (we refer to
this approach as joint coding via “explicit communication").
The second approach is exploiting the correlation between
sources while compressing at the nodes even if the sources
do not explicitly communicate with each other, i.e., distributed
source coding (DSC), and routing the information accordingly.
Relevant background on DSC and route selection in a network
is given in the next section.

For a single sink network, it has been shown that optimal
DSC followed by an optimal shortest path routing mechanism
is unbeatable with respect to minimizing the total communi-
cation cost when the cost is a convex function of the link data
rate [1], [2]. Also, it has been shown that for large networks,
DSC followed by optimum routing can have unbounded gains
compared to explicit communication [1]. But for the more
general network consisting of multiple sinks with arbitrary
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network demands, such a mechanism has been shown to be
optimal only under an important assumption. In this paper we
primarily look at the extent of sub-optimality caused due to
this assumption. Motivated by the potential unbounded gains
by removing the assumption, we design a solution to the
problem using prior results from multi-terminal information
theory.

The rest of the paper is organized as follows. In section
II, we discuss the related work. In section III we formulate
the problem and discuss the prior results to substantiate
the assumption. We present examples of settings to show
unbounded gains in section IV and propose a solution to the
unconstrained problem in section V.

II. BACKGROUND AND RELATED WORK

A. Distributed Source Coding

The field of DSC began in the seventies with the seminal
work of Slepian and Wolf [3]. They showed, in the con-
text of lossless coding, that side-information available only
at the decoder can nevertheless be fully exploited as if it
were available to the encoder, in the sense that there is
no asymptotic performance loss. Later, Wyner and Ziv [4]
derived a lossy coding extension that bounds the rate-distortion
performance in the presence of decoder side information. Han
and Kobayashi [5] extended the Slepian-Wolf result to general
multi-terminal source coding scenarios (see also [6]). We adopt
their results in this work.

B. Compression in Multi-hop Networks

A survey of routing techniques in sensor networks is
given in [7]. Most of these approaches only exploit inter-
source correlations via “explicit communication”, i.e., joint
compression is performed at intermediate nodes where all
information is available, without appeal to distributed coding
principles. However, such approaches tend to be wasteful at
all but the last hops of the communication path. Well designed
DSC could provide considerable performance improvement
and/or complexity/energy savings. Various aspects of DSC for
routing have been considered in a number of publications.
Cristascu et.al [1] considered joint optimization of Slepian-
Wolf coding and routing, and provided a solution to this
problem whose optimality depends on constraining assump-
tions. The scenario of multi-sink was considered in [8], where
a practical suboptimal distributed scheme was proposed. [9]
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provided a proof of the optimum communication route for
‘correlated data gathering’ is an NP complete problem, along
with low complexity suboptimal algorithms. [10] compared
different joint compression-routing schemes for a correlated
sensor grid and also proposed an approximate, practical, static
source clustering scheme to achieve compression efficiency.
Note that there has been considerable amount of work in the
field of network coding related to compression in networks
with capacity constraints [11], [12]. In this paper we restrict
ourselves to the conventional routing schemes and do not
consider the possibility of network coding at intermediate
nodes.

III. PROBLEM SETUP

A. Problem Formulation

Let a network be represented by an undirected graphG =
(V,E). Each edgee ∈ E is a network link whose communica-
tion cost depends on the edge weightwe. The nodesV consist
of N source nodes,M sinks, and|V | −N −M intermediate
nodes. Source nodei has access to source random variable
Xi. The joint probability distribution of(X1 . . . XN ) is known
at all the nodes. The sinks are denotedS1, S2 . . . , SM . Each
sink requests the information of a subset of sources. Let the
subset of nodes requested by sinkSj beV j ⊆ V . Conversely,
sourcei has to be reconstructed at a subset of sinks denoted
Si ⊆ {S1, S2 . . . , SM}. For any subset,B, of encoders, we
denote byXB = {Xi : i ∈ B}.

Define traffic matrix (or “request” matrix)T , for network
graph G as theN × M binary matrix that specifies which
sources must be reproduced at which sinks:

Tij =

{

1 if i ∈ V j

0 else,

i.e., V j = {i : Tij = 1} andSi = {Sj : Tij = 1}. We denote
byEi, the set of all paths from sourcei to its destination sinks
Si.

The cost of communication through a link is a function
of the bit rate flowing through it and the edge weight,
which we will assume for simplicity to be a simple product
f(r, we) = rwe, noting that the approach is directly extendible
to more complex cost functions. The objective is to minimize
the overall network cost (calculated given the set of link
rates and edge weights) for lossless reconstruction of source
information at appropriate sinks.

B. Prior Results

Highly relevant to this work are recent results from [1] on
“networked Slepian-Wolf”.

i) Single sink requesting all sources: It is key to observe here
that regardless of the rate allocation at the nodes, to minimize
the communication cost, source bits must traverse the network
through the minimum cost path to reach the destination
sink. This observation offers considerable simplification, as
it implies that optimization of the transmission structurecan
be done independently of rate allocation. Then, given the
optimal transmission structure, the optimal rate allocation can
be found. In fact, the optimal transmission structure can be

easily shown to be the shortest path tree (SPT) rooted at the
sink. Define

d∗i = min
P∈Ei

∑

e∈P

we

as the minimum total weight a bit encounters on its path from
source i to the sink. The remaining task is to find a rate
allocation at the sources so that the total communication cost is
minimized while ensuring lossless reconstruction. This implies
that the optimal rates allocated have to lie in the Slepian-Wolf
achievable rate region, which boils down to solving the linear
programming problem for the rates :

min
{Ri}N

i

N
∑

i=1

Rid
∗
i

subject to the Slepian-Wolf rate constraints.

∑

i∈Y

Ri ≥ H(XS |XSc) ∀S ⊆ {X1,X2 . . . XN} (1)

Remarkably, Liu et. al. [2] claim broader optimality of the
single sink networks of [1] (Slepian Wolf encoding and short-
est path routing): It is optimal over all possible joint coding-
routing schemes, including any processing at intermediate
nodes, i.e., network coding cannot improve the performance
when the link communication cost is a convex function of the
link data rate1.

ii) Multiple Sinks : Here we no longer assume that sinks
request all sources, hence we have a non-trivial request matrix
T , which specifies which sources need to be reproduced at
each sink. We further say that sourcei communicates with
sink Sj if the sink receives the bits transmitted by the source,
and denote this byi→ Sj . We define aN×M communication
matrix C as:

Cij =

{

1 if i→ Sj

0 else,

Note thatC andT need not be the same. For the multiple-sink
scenario, the above simple scheme of shortest path routing
and Slepian-Wolf encoding is shown to be optimal under the
following assumption [1]:

Assumption: Only requested sources, i ∈ V j , communicate
with sink Sj , i.e., C = T .

This assumption is clearly valid in the case of indepen-
dent sources, but questionable otherwise. An unrequested but
correlated source may provide less expensive information on
requested sources. We will show how this assumption leads to
substantial suboptimality. This assumption being the primary
motivation for this work, in the next section, we first illustrate
the sub-optimality using a simple example. Then we show
settings where the performance gains achievable by removing
the assumption is unbounded.

1Note that a capacity constraint makes the cost function non-convex
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Figure 1: A simple example to illustrate the suboptimality due
to the assumption

IV. SUBOPTIMALITY DUE TO THE ASSUMPTION

A. Example

The simple network of figure 1 connects two correlated
identically distributed sources (X1 andX2) and three sinks
(S1,S2,S3). Let the marginal source entropies beH(X1) =
H(X2) = H, and the conditional entropies beH(X1|X2) =
H(X2|X1) = h, where (h < H). SinksS1 and S3 request
for sourceX1 andX2, respectively, whereas sinkS2 requests
for both X1 and X2. The available communication links
are depicted in the figure 1. For simplicity, assume that
we = 1,∀e ∈ E.

The request matrixT is given by:

T =

[

1 1 0
0 1 1

]

Clearly, communication matrixC1 = T , allows for loss-
less reconstruction of the requested sources at each sink. Also,
there are 3 other communication mtarices which allow for loss-
less reconstruction. They are given by:

C2 =

[

1 1 1
1 1 1

]

C3 =

[

1 1 1
0 1 1

]

, C4 =

[

1 1 0
1 1 1

]

It is easy to see that the optimal communication cost for
each of the above cases is given by:

W1 = 3 ×H(X1) + 2 ×H(X2) = 5H

W2 = 3 ×H(X2) + 4 ×H(X1|X2) = 3H + 4h

W3 = 4 ×H(X1) + 2 ×H(X2|X1) = 4H + 2h

W4 = 3 ×H(X2) + 3 ×H(X1|X2) = 3H + 3h (2)

Clearly,W4 < W2,W3. It follows directly that if h/H <
2/3, i.e.,X1 andX2 are sufficiently dependent, thenC4 yields
a lower communication cost thanC = T . This simple example
establishes the suboptimality of the assumption due to inter-
source dependencies.

B. Asymptotic gains

It is of interest whether the gain due to eliminating the above
limiting assumption is bounded. We analyze the asymptotic
gain as the number/density of source nodes is increased within
a given spatial region. Consider a sensor network example

Figure 2: An example of a large network to illustrate asymp-
totic gains when all sources are allowed to communicate

shown in Fig. 2. The sources are distributed along several
radii of the unit circle and the sinks are located at a distance
d0 from the periphery. For the sake of simplicity, we assume
that there areN uniformly spaced sources on any radius and
there areM sinks (M radii) in the network. It is assumed
that a sink requests for all sources within a sub-interval of
length f ∈ [0, 1] on the radius connecting it with the center.
Therefore each sink requestsNf sources. The communication
cost of transmitting1 bit over a distanced is assumed to be
dl for a givenl.

Let f0 ∈ [0, 1− f ] be the distance of the requested interval
from the periphery. If we enumerate the source nodes on
the radius by0, 1, . . . , N − 1, where nodei produces source
Xi, then the nearest requested source isi0 = Nf0. The
sink requests for the subset of sources numbered(i0, i0 +
1, . . . i0+Nf). Under the assumption, only these sources may
communicate their information to the sink. We will evaluate
how much can be gained by allowing other (nearer) sources
to send their information as well.

We define gain,γ, as the ratio of the minimum communi-
cation cost achievable under the assumption (C = T ) to that
of an unconstrained competitor (C = C0) to be specified,

γ =
Cost(C = T )

Cost(C = C0)
(3)

We further introduce the following notation to denote condi-
tional entropies:

ai
(j1,j2)

= H(Xi|Xj1 ,Xj1−1 . . . Xj2) , j2 < j1

It follows that the minimum cost as a function ofi0 and f
whenC = T is given by:

Cost(C = T ) =
(

i0d
l + dl

0

)

H(Xi0) +

i0+fN
∑

i=i0+1

idlai
(i−1,i0)

(4)
Beyond the requested sources, the chosen competitor,C0, also
allows communicating information from all sources between
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the sink and the requested interval. The minimum cost when
C = C0 is given by:

Cost(C = C0) = dl
0H(Xi0) +

i0+fN
∑

i=2

idlai
(i−1,1) (5)

Note that the maximum gain achievable by discarding the
assumption is lower bounded byγ sinceC0 may conceivably
still be suboptimal. Also note thatγ could be less than1 for
cases whenC0 has a higher communication cost compared
to C = T . For those cases, the gain achievable by removing
the assumption is lower bounded by1. Remember that the
maximum gain equals1 if the sources are independent. To
calculate the costs, we next assume that the sources{Xi}
form a stationary Markov chain.

1) Stationary Markov Chain: Denote the source entropies
and conditional entropies byH andh respectively(H > h),
i.e. H(Xi) = H andH(Xi|Xi−1) = h ∀i. Equations (4) and
(5) simplify substantially and the costs as functions ofi0 and
f are given by:

Cost(C = T ) =
(

Nf0d
l + dl

0

)

H +

(f0+f)N
∑

i=Nf0+1

idlh (6)

Cost(C = C0) = dl
0H +

(f0+f)N
∑

i=2

idlh (7)

For l = 1, lettingN → ∞ and expressingγ as a function
of f0 andf gives:

γ(f0, f) = 1 +

[

2f0 − cf2
0

2d0 + c (f0 + f)
2

]

(8)

wherec = limN→∞Nh(N)/H. Note that the sensor density
increases withN and the correlation increases correspond-
ingly, henceh(N) → 0. In the special case where the sources
are sampled from a continuous-space Gauss-Markov process,
c(N) → c wherec directly determines the exponential decay
of the correlation with distance. Pattem et.al [10] derivedan
empirical expression for joint entropy function for a real sensor
network scenario using a data-set pertaining to rainfall. Their
expression satisfies the above Markov property validating the
use of such a source model to obtain gains.

Next we assume that the sinks are allowed to request for any
Nf contiguous sources with equal probability. This implies
that the distribution for the closest source follows a uniform
density, i.e.i0 ∼ U(0, N − Nf + 1). Also, as the network
size grows,N,M → ∞, the distance between the sink and
the requested interval approaches a continuum and therefore
f0 follows a continuous uniform density, i.e.f0 ∼ U(0, 1−f).
The expressions for average costs as a function off are given
by:

Cost(C = T ) =
1

1 − f

1−f
∫

0

[(

Nf0d
l + dl

0

)

H
]

df0

+
1

1 − f

1−f
∫

0





(f0+f)N
∑

i=Nf0+1

idlh



 df0

Cost(C = C0) =
1

1 − f

1−f
∫

0



dl
0H +

(f0+f)N
∑

i=2

idlh



 df0

ForL = 1, evaluating the integrals and lettingN → ∞, we
get γ as a function off as:

γ(f) =
3 [(1 − f) + cf + 2d0]

6d0 + c(1 + f + f2)
(9)

Cases of interest:

• c(N) → 0 ⇒ γ(f) → 1 + ((1−f)/2d0). As the sources
become highly dependent,γ > 1 for f < 1. In the
Gauss-Markov setting this is the case that the correlation
coefficient approaches 1. Also, as the sinks approach the
periphery of the circle, i.e.d0 → 0, the gain grows
unboundedly regardless of the size of the requested
interval.

• f → 0 ⇒ γ = (6d0+3)/(6d0+c) : There are a large number
of sources and each sink requests for a very small subset.
Clearly, for small values ofc andd0, which is typically
the case in sensor networks,γ(f) � 1.

The bottom line is that there are considerable potential gains
if one removes the assumption.

V. OPTIMIZATION WHEN ASSUMPTION IS REMOVED

We next consider the problem of finding the optimum
communication cost when the assumption is removed. This
involves finding optimum communication matrix,C∗, the rate
allocation for each source and the route through the network
which minimize the total communication cost. Note that, in
this paper we only consider finding the optimum cost and
do not attempt to solve the issue with the complexity of the
optimization.

Let CA be the set of all communication matrices that allow
for loss-less reconstruction of the requested sources at each
sink. Note that for anyC ∈ CA, at least the requested
sources must communicate with each sink. We first pick some
C ∈ CA. It determines the subset of sinks that a source has
to transmit its information to. We denote byEi(C) the set of
all paths from sourcei to the corresponding subset of sinks.
From arguments similar to that in [1], the optimum route
from the source to these sinks is determined by a spanning
tree optimization (minimum Steiner tree). More specifically,
for each source nodei, the optimum route is obtained by
minimizing the cost over all trees rooted at nodei which span
all sinks that nodei communicates with (determined byC).
Mathematically:

d∗i (C) = min
P∈Ei(C)

∑

e∈P

we (10)
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It is known that the Steiner tree optimization is NP - Complete
and hence requires approximate algorithms to solve in practice.
Again it is key to note that, immaterial of the rate allocation at
the nodes, for a fixed communication matrix, the total cost a
bit from sourcei encounters isd∗i (C). Therefore the remaining
task of finding a rate allocation for each source can be solved
independent of the Steiner tree optimization.

For a fixed request matrixT , the entire achievable rate
region for loss-less reconstruction of the requested sources
depends on the communication matrix. We denote this region
by RT (C). The optimum rate tuple that minimizes the com-
munication cost,{R1(C), R1(C) . . . RN (C)}, must therefore
lie in RT (C). Hence, having found the optimum weights,
d∗i (C), the optimum rate tuple can be determined as follows:

min
{Ri(C)}N

i

N
∑

i=1

Ri(C)d∗i (C)

subject to,

{R1(C), R1(C) . . . RN (C)} ∈ RT (C) (11)

and we denote the optimum cost byD∗(C).
A single letter characterization of the entire region,RT (C),

is still unknown. Han and Kobayashi provide a partial achiev-
able region for the problem and we use their results to
characterizeRT (C). We denote the subset of encoders that
communicate with sinkj by Σj(C) = {i : Cij = 1}. Let
U1, U2 . . . UN be auxiliary random variables on finite sets
satisfying the following Markovian properties:

• The random variablesUΣj(C) are conditionally indepen-
dent givenXΣj(C) ∀j.

• For eachi ∈ Σj(C), the conditional distribution ofUi

givenXΣj(C) depends onXi alone.

For each such set of axillary random variablesU =
{U1, U2 . . . UN}, defineRT (C,U) as the set of all the rate
tuples,{R1, R2 . . . RN}, satisfying the following constraints.
For eachj ∈ {1 . . . N} and allS ⊆ Σj(C):

∑

i∈S

Ri ≥ I(XS , US |UΣj(C)\S) + ψS(C) (12)

where
ψS(C) =

∑

i∈S

max
k:Tik=1

H(Xi|UΣk(C))

Then RT (C) is given by the closure ofRT (C,U) over all
auxiliary random variablesU satisfying the above properties:

RT (C) = ∪URT (C,U) (13)

Note that due to its dependence on auxiliary random variables
an explicit characterization ofRT (C) is hard, except for
some particular communication matrices. If we choose the
communication matrix to be equal toT and the auxiliary
random variablesUi = Xi ∀i, equation (12) becomes the
usual Slepian - Wolf constraints given in [1]. i.e. for each
j ∈ {1 . . . N} and allS ⊆ V j :

∑

i∈S

Ri ≥ H(XS |XV j\S) (14)

The optimum communication cost,D∗, is the minimum over
all C ∈ CA:

D∗ = min
C∈CA

D∗(C) (15)

and the corresponding communication matrix that minimizes
is C∗. Note that the number of admissible communication
matrices (i.e. the cardinality of the setCA), usually grows of
the order of2N×M . Hence,2N×M D∗(C) are to be computed
to find the optimum. It is clear from the above result that, if the
sources are allowed to communicate with any sink, finding the
rate allocation for each source and the transmission structure
through the network cannot, in general, be decoupled.

VI. CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of optimizing
the communication cost for a general network with multiple
sinks and arbitrary network demands. We showed that the
assumption under which this problem was solved earlier is
highly limiting. We also gave examples of scenarios where the
gain by removing the assumption is unbounded. We proposed
a theoretical solution to the problem using results from multi-
terminal information theory. Future research directions include
design of low complexity algorithms to find close to optimal
solutions. Also, this work takes a step closer towards finding
the best joint coding-routing scheme for general networks.
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