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Abstract

Complexity and Delay Constrained Compression and Transmission of

Information

by

Emrah Akyol

This dissertation is concerned with optimal strategies for delay and complexity constrained

communications. The first part of the thesis studies optimal joint source-channel coding for

zero-delay communications. This problem, originally posed by Shannon in his seminal paper,

received recent attention due the increasing need for low delay and low complexity communica-

tions. The necessary conditions for optimality of encoding and decoding functions (mappings)

are derived and a corresponding numerical algorithm is proposed which is shown to discover

locally optimal mappings that outperform all prior results. The approach is then extended

to provide optimality conditions and design algorithms for distributed source channel coding.

The second part of the thesis is concerned with the conditions for linearity of optimal decoding

mappings, and of optimal estimators in general, in terms of source and noise densities and dis-

tortion measure. Specifically, the necessary and sufficient conditions for linearity of the optimal

estimator along with existence and uniqueness of source and noise densities that satisfy such

conditions, are derived. While there are several source-noise pairs that satisfy these conditions,

a property unique to Gaussians is also presented. The remainder of the thesis is focused on

low delay source coding methods including contributions to dithered quantization and trans-

form coding. Dithered (randomized) quantization which has traditionally been considered in

its natural setting of uniform quantization, is extended to encompass nonuniform quantizers by

dithering in the companded domain. The compressor and expander mappings are optimized

using the numerical tools derived for the source-channel mapping problem. Asymptotic prop-

erties of such a randomized quantizer are also analyzed. Finally, a long standing theoretical

problem of transform coding is solved. The necessary and sufficient condition for optimality of

a transform, in conjunction with variable rate quantization at high resolution is derived. This

condition not only determines when the Karhunen-Loeve transform (KLT) is optimal, but also

leads to an algorithm that obtains the optimal (non-KLT) transform. The optimal transform

is also derived for the setting of transform coding in conjunction with dithered quantization,

resulting in a universally optimal fixed rate source coding scheme.
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Chapter 1

Introduction

While Shannon’s point-to-point communication theorems [66] have profoundly revolutionized

the modern information age, advancing the theory to less simple settings has been more prob-

lematic. The model of communication between point-to-point links, “dumb” forwarding nodes,

encoder and decoders with unbounded complexity and delay, as assumed in the early semi-

nal contributions, does not capture key aspects of current and emerging networks. Wireless

networks consist of nodes that can act as the source, the destination and/or the relay and

can communicate in several different ways. Many new network applications are highly inter-

active, requiring very low delay, and are distributed in nature (peer-to-peer, mobile agents)

and hence, require the development of new communication and computing schemes with very

limited energy and delay. This thesis is focused on “theoretical” limits and “optimal” methods

of communication and compression systems that have such“practical” constraints.

1.1 Optimal Mappings for Joint Source Channel Coding

Shannon’s coding theorems assume achievability via unboundedly complex encoders and

decoders with potentially infinite sample delay. One pertinent and surprising result is that

transmission of Gaussian samples over an additive white Gaussian noise channel with matched

bandwidth is optimal in the sense that it yields the minimum achievable mean square error

between source and reconstruction [24]. This result demonstrates the potential of joint source

channel coding: such a simple scheme at “zero delay” provides the performance of the asymptot-

ically optimal separate source-channel coding system, without recourse to complex compression
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and channel coding schemes or asymptotically long delays.

To address the practical problem of transmitting a discrete time continuous alphabet source

over a discrete time additive noise channel, there are two main approaches: “analog communi-

cation” via direct amplitude modulation, and “digital communication” which typically consists

of quantization, error control coding and digital modulation. The main advantage and hence

proliferation of digital over analog communication is due to advanced quantization and error

control techniques, and the prevalence of digital processors. However, there are two notable

shortcomings: First problem is that error control coding (and to some extent also source cod-

ing) usually incurs substantial delay to achieve good performance. The other problem involves

adaptivity of digital systems to varying channel conditions due to underlying quantization.

The performance saturates as channel signal-to-noise ratio (CSNR) increases well above the

threshold for which the system is designed. Another problem is the lack of “graceful degrada-

tion” below a CSNR threshold. Further, this threshold effect becomes more pronounced as the

system approaches optimal performance at the condition it was designed for. Analog systems

offer the potential to avoid these problems, with relatively simple encoders/decoders. However,

there are no known explicit methods to obtain such analog mappings for a general source and

channel, nor is the best mapping known for other than the most trivial cases, e.g., the scalar

Gaussian source-channel pair.

In this part of the thesis, closed form necessary conditions for optimality of the encoder

and decoder mappings are derived. The optimal mappings are then obtained using an iterative

algorithm that updates encoder and decoder mappings according to optimality conditions at

each iteration. Specifically, a gradient descent algorithm to find the locally optimal mappings

[2] for the point to point setting, which involves a source with known distribution which must

be transmitted over an additive noisy channel with known distribution to the designer. The

algorithm, as a natural consequence of being a gradient descent algorithm, guarantees only

local optimality. Similar local optimality problems also appear in well studied vector quantizer

design problem. One solution to that problem, namely ”noisy channel relaxation” is employed

to mitigate the local optimality effect.

The approach is then extended to network scenarios. Two different setups are of interest:

Decoder side information and distributed coding. For each of these scenarios, necessary condi-

tions for optimality is derived and based on those conditions, the locally optimal encoding and

decoding mappings are (numerically) found.

2



1.2 Linearity of Optimal Estimation

Communication systems use structured (linear, lattice, trellis) codes to reduce complexity.

Fortunately, such codes also have the potential to approach the limits promised by informa-

tion theory, i.e., such reduced complexity is free. In delay limited codes, from our analysis,

we observe that this is not the case. Zero-delay analog codes are highly nonlinear, do not

have an obvious useable structure, and vary with CSNR. The conditions for linearity of such

encoding-decoding mapping is closely related to the fundamental problem of linearity of opti-

mal estimation (regression) in the mathematical literature. Surprisingly, even the most basic

problems in the conditions for estimation setup are still open. The basic problem in estimation

theory, namely, source estimation from a signal received through a channel with additive noise,

given the statistics of both the source and the channel, is considered. The optimal estimator

that minimizes the mean square estimation error is usually a nonlinear function of the ob-

servation [43]. A frequently exploited result in estimation theory concerns the special case of

Gaussian source and Gaussian channel noise, a case in which the optimal estimator is guaran-

teed to be linear. An open follow-up question considers the existence of other cases exhibiting

such a “coincidence”, and more generally the characterization of conditions for linearity of op-

timal estimators for general distortion measures. The estimation problem in general has been

studied intensively in the literature. It is known that, for stable distributions (which of course

include the Gaussian case), the optimal estimator is linear [70, 21, 62, 47] for any signal to

noise ratios (SNR).

In this part of the thesis, we focus on this question: When is optimal estimation linear?

It is well known that, when a Gaussian source is contaminated with Gaussian noise, a linear

estimator minimizes the mean square estimation error. We analyze, more generally, the condi-

tions for linearity of optimal estimators. Given a noise (or source) distribution, and a specified

signal to noise ratio (SNR), we derive conditions for existence and uniqueness of a source (or

noise) distribution for which the Lp optimal estimator is linear. We then show that, if the noise

and source variances are equal, then the matching source must be distributed identically to the

noise. Moreover, we prove that the Gaussian source-channel pair is unique in the sense that

it is the only source-channel pair for which the mean square error (MSE) optimal estimator is

linear at more than one SNR values. Further, we show the asymptotic linearity of MSE optimal

estimators for low SNR if the channel is Gaussian regardless of the source and vice versa, for

high SNR if the source is Gaussian regardless of the channel. The extension to the vector

case is also considered where besides the conditions inherited from the scalar case, additional

constraints must be satisfied to ensure linearity of optimal estimator.

3



1.3 Optimal Randomized Quantization

Most sources of practical interest are in fact sources with “memory”, i.e., they exhibit

correlations. A computationally attractive approach to source coding is predictive coding.

Optimizing a predictive coding system, especially in network scenarios is complicated due to

nonlinear structure of quantization. For this purpose, either high resolution quantization are

employed although these systems are designed for very low rate. Alternatively, randomized

(dithered) quantizers, that renders the quantization error independent of the source, can be

employed. However, dithered quantizers suffer from performance loss due to uniform quantiza-

tion.

Traditionally, dithered quantizers have been considered within their natural setting of uni-

form quantization framework. In this paper we extend conventional dithered quantization to

nonuniform quantization, where dithering is performed in the companded domain. Closed form

necessary conditions for optimality of these compressor and expander mappings are derived for

both fixed and variable rate randomized quantization. The optimal mappings are numerically

obtained by updating the mappings based on necessary conditions. Moreover, deterministic and

randomized quantizers that are constrained to provide quantization error uncorrelated with the

source are studied. Numerical results are presented for the Gaussian source and it is shown that

the proposed quantizer outperforms the conventional dithered quantizer as well as the deter-

ministic quantizer with quantization error uncorrelated with the source. In the second part of

the paper, we investigate whether random coding is necessary to achieve (asymptotic) optimal-

ity while imposing uncorrelated quantization error. We show that for a Gaussian source, the

optimal vector quantizer with asymptotically high dimension that renders quantization error

uncorrelated with the source must be a randomized one. In this situation, random encoding in

rate-distortion theory is not merely a tool to characterize the performance bounds, but is, in

fact, a required property of the quantizers achieving such bounds.

1.4 Optimal Transform Coding

Another practical form of reducing redundancy is transform coding which is widely used

in audio, image and video compression. In the basic transform coding setting, an input vector

is linearly transformed into a vector in the transform domain whose components are scalar-

quantized. The decoder reconstructs the quantized coefficients and performs linear (inverse)

transformation to obtain an estimate of the source vector. The design goal is to find the optimal

transform pair and bit allocation to scalar quantizers, which minimize distortion. In general,

transform coding underperforms optimal vector quantization due to space filling loss in scalar
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quantizers, even if the transform generates independent coefficients. Nevertheless, due to its

low complexity, transform coding is commonly employed in practical multimedia compression

systems [27, 20]. Although transform coding has been extensively studied, optimal transform

is known only for a small set of source distributions. Optimal transform coding has remained

an open problem for decades. In their seminal paper, Huang and Schulthesis have shown

[38] that if the vector source is Gaussian and the bit budget is asymptotically large, then the

Karhunen Loeve transform (KLT) is the optimal transform for fixed-rate coding. In a more

recent paper Goyal, Zhuang and Vetterli improve that result by showing that KLT is optimal

for Gaussian sources without making any high resolution assumptions [26]. The optimality of

KLT in transform coding of Gaussian sources is often explained intuitively by the assertion

that scalar quantization is better suited to the coding of independent random variables than to

the coding of dependent random variables. Thus, the optimality of KLT for transform coding

of Gaussian sources is understood to be a consequence of the fact that it yields independent

transform coefficients. The application of KLT in transform coding of non-Gaussian sources is

then justified using the intuitive argument that KLT’s coefficient decorrelation represents, for

general sources, a rough approximation to the desired coefficient independence [15].

In this part of the thesis, we focus on the fundamental theoretical problem of optimal

transform coding. The main result is a necessary and sufficient condition for optimality of a

transform in conjunction with variable rate coding at high resolution. Specifically, we show

that the optimal transform is the one that minimizes the divergence between the joint distri-

bution of the coefficients and the product of their marginals. Note furthermore that this result

not only resolves the question of when KLT is optimal (at high resolution), but it also deter-

mines the optimal transform when it is not KLT. This result connects the transform coding

problem to the well studied problem of “source separation”. Inspired from the vast amount of

source separation algorithms, we propose an algorithm to derive the optimal transform. Finally,

we derive the optimal transform in conjunction with dithered quantization.While the optimal

deterministic quantizer’s error is uncorrelated with the reconstructed value, the dithered quan-

tizer yields quantization errors that are correlated with the reconstruction but are white and

independent of the source. These properties offer potential benefits, but also have implications

on the optimization of the rest of the coder. We derive the optimal transform for consequent

dithered quantization. For fixed rate coding, we show that the transform derived for dithered

quantization is universally optimal (for all sources), unlike the conventional quantization case

where optimality of the Karhunen-Loeve transform is guaranteed for Gaussian sources
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Chapter 2

Optimal Analog Mappings

2.1 Introduction

One of the fascinating results in information theory is that uncoded transmission of Gaus-

sian samples, over a channel with additive white Gaussian noise (AWGN), is optimal in the

sense that it yields the minimum achievable mean square error between source and reconstruc-

tion [24]. This result demonstrates the potential of joint source-channel coding: Such a simple

scheme, at no delay, provides the performance of the asymptotically optimal separate source and

channel coding system, without recourse to complex compression and channel coding schemes

that require asymptotically long delays. However, it is understood that, in general, the best

source channel coding system at fixed finite delay may not achieve Shannon’s asymptotic coding

bound (see eg. [13]).

Nevertheless, the problem of obtaining the optimal scheme for a given finite delay is an

important open problem with considerable practical implications. To the practical problem

of transmitting a discrete time continuous alphabet source over a discrete time additive noise

channel, there are two main approaches: “analog communication” via direct amplitude mod-

ulation, and “digital communication” which typically consists of quantization, error control

coding and digital modulation. The main advantage (and hence proliferation) of digital over

analog communication is due to advanced quantization and error control techniques, as well

as the prevalence of digital processors. However, there are two notable shortcomings: first,

error control coding (and to some extent also source coding) usually incurs substantial delay
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to achieve good performance. The other problem involves limited adaptivity of digital systems

to varying channel conditions, due to underlying quantization or error protection assumptions.

The performance saturates due to quantization as the channel signal to noise ratio (CSNR)

increases beyond the regime for which the system was designed. Also, it is difficult to obtain

“graceful degradation” of digital systems with decreasing CSNR, when it falls below a certain

threshold due to the error correction code in use. Further, such threshold effects become more

pronounced as the system performance approaches the theoretical optimum. Analog systems

offer the potential to avoid these problems. As an important example, in applications where

significant delay is acceptable, a hybrid approach (i.e., vector quantization + analog mapping)

was proposed and analyzed [55, 71] to circumvent the impact of CSNR mismatch where, for

simplicity, linear mappings were used and hence no optimality claims made. Perhaps more

importantly, in many applications (e.g., multimedia streaming) delay is a paramount consider-

ation. Analog coding schemes are low complexity alternatives to digital methods, providing a

“zero-delay” transmission which is suitable for such applications.

There are no known explicit methods to obtain such analog mappings for a general source

and channel, nor is the best mapping known for other than the trivial case of the scalar Gaussian

source-channel pair. Among the few practical analog coding schemes that have appeared in the

literature are those based on the use of space-filling curves for bandwidth compression, originally

proposed more than 50 years ago by Shannon [67] and Kotelnikov [46]. These were recently

extended in the work of Fuldseth and Ramstad [17], Chung [11], Ramstad [59], Wernersson

et.al. [78], and Hekland et.al. [33], where spiral-like curves are explored for transmission of

Gaussian sources over AWGN channels for bandwidth compression (m > k) and expansion

(m < k). It is also noteworthy that a similar problem was solved in [49] albeit under the

stringent constraint that both encoder and decoder be linear. A similar problem, formulated in

the context of digital systems, was also studied by Fine [16]. Certain extensions of Fine’s work

can be found in [22]. Properties of the optimal mappings have been considered, over the years,

in [67, 83, 74]. Shannon’s arguments[67] are based on the topological impossibility to map

one region to another region in a “one-to-one”, continuous manner, unless both regions have

the same dimensionality. On this basis, he explained the threshold effect common to various

communication systems. Moreover, Ziv [83] showed that for a Gaussian source transmitted over

AWGN channel, no single practical modulation scheme can achieve optimal performance at all

noise levels, if the channel rate is greater than the source rate (i.e., bandwidth expansion). It

has been conjectured that this property holds whenever the source rate differs from the channel

rate [74]. Our own preliminary results appeared in [2, 3]. It is noteworthy that analog mappings

were found to be useful in related applications of low delay relaying, see eg.,[44] and references

therein.
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In this chapter, we investigate the problem of obtaining vector transformations that opti-

mally map between the m-dimensional source space and the k-dimensional channel space, under

a given transmission power constraint, and where optimality is in the sense of minimum mean

square reconstruction error. We provide necessary conditions for optimality of the mappings

used at the encoder and the decoder. Note that virtually any source-channel communication

system (including digital communication) is a special case of such mappings, as shown in Fig-

ure 2.2. A digital system, including quantization, error correction and modulation, boils down

to a specific mapping from the source space Rm to the channel space Rk. Hence the derived

optimality conditions are generally valid and subsume digital communications as an extreme

special case. Based on the optimality conditions we derive, we propose an iterative algorithm to

optimize the mappings for any given m, k (i.e., for both bandwidth expansion or compression)

and for any given source-channel statistics. To our knowledge, this problem has not been fully

solved, except when both source and channel are scalar and Gaussian. We provide examples of

such m : k mappings for source-channel pairs and construct the corresponding source-channel

coding systems that outperform the mappings obtained in [17, 11, 59, 78, 33, 37].

The second part of the chapter extends the approach to the scenario of source-channel

coding with decoder side information (i.e., the decoder has access to some other correlated

source). This setting, in the context of pure source coding, goes back to the pioneering work of

Slepian and Wolf [72] and Wyner and Ziv [79]. Finally, we consider distributed source-channel

coding where multiple correlated sources are encoded separately and transmitted over different

channels to a common decoder. An important practical motivation for this setup is sensor

networks where sensor measurements are correlated but are not encoded jointly as the sensors

are distributed in space. This problem has also been studied extensively, especially for Gaussian

sources [76, 75, 77].

The derivation of the optimality conditions for distributed source channel coding is a direct

extension of the point-to-point case, but the distributed nature of this setting results in highly

nontrivial mappings. Straightforward numerical optimization of such mappings is susceptible

to get trapped in one of the numerous local minima that riddle the cost functional. Note,

in particular, that in the case of Gaussian sources and channels, linear encoders and decoder

(automatically) satisfy the necessary conditions of optimality while, as we will see, careful

optimization obtains considerably better mappings that are far from linear.
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⊕
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Ŷ ∈ Rk
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Encoder
g : Rm → Rk

Decoder
h : Rk → Rm

Figure 2.1. A general block-based point-to-point communication system

2.2 Problem Formulation

2.2.1 Preliminaries and Problem Definition

Point to point

We consider the general communication system whose block diagram is shown in Figure

2.2. An m-dimensional vector source X ∈ Rm is mapped into a k-dimensional vector Y ∈ Rk

by function g : Rm → Rk, and transmitted over an additive noise channel. The received vector

Ŷ = Y + N is mapped by the decoder to the estimate X̂ via function h : Rk → Rm. The noise

N is assumed to be independent of the source X. The m-fold source density is denoted fX(x)

and the k-fold noise density is fN (n). Let G and H denote the sets of all square integrable

functions {g : Rm → Rk} and {h : Rk → Rm}, respectively.

The objective is to minimize, over the choice of encoder g ∈ G and decoder h ∈ H, the

distortion

D[g,h] = E{||X− X̂||2} (2.1)

subject to the average power constraint,

P [g] = E{||g(X)||2} ≤ PT (2.2)

where PT is the specified transmission power level. Bandwidth compression-expansion is deter-

mined by the setting of the source and channel dimensions, k/m. The power constraint limits

the choice of encoder function g. Note that, without a power constraint on g, the CSNR is

unbounded and the channel can be made effectively noise free.

Decoder side information

As shown in Figure 2.2, there are two correlated vector sources X1 ∈ Rm1 and X2 ∈ Rm2

with a joint density fX1,X2(x1,x2). X2 is available only to the decoder, while X1 is mapped

to Y ∈ Rk by the encoding function g : Rm1 → Rk and transmitted over the channel whose

additive noise N ∈ Rk, with density fN (n), is independent of X1,X2. The received channel
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Figure 2.2. Source-channel coding with decoder side information

output Ŷ = Y+N is mapped to the estimate X̂1 by the decoding function h : Rk×Rm2 → Rm1 .

The problem is to find optimal mapping functions g,h that minimize the distortion

D[g,h] = E{||X1 − X̂1||2} (2.3)

subject to average power constraint

P [g] = E{||g(X)||2} ≤ PT (2.4)

Distributed coding

As shown in Figure 2.3, two correlated vector sources X1 ∈ Rm1 and X2 ∈ Rm2 with

a joint density fX1,X2(x1,x2), are independently transmitted to the receiver. Noise variables

N1 ∈ Rm1 ,N2 ∈ Rm2 are assumed to be independent of each other and of the sources X1,X2,

and have densities fN1(n1), fN2(n2), respectively. Both X1 and X2 are mapped by encoding

functions g1 : Rm1 → Rk1 and g2 : Rm2 → Rk2 and transmitted over the noisy channels. At

the decoder, X̂1 and X̂2 are generated by h1 : Rk1 × Rk2 → Rm1 and h2 : Rk1 × Rk2 → Rm2 .

As before, the problem is to find optimal mapping functions g1,g2,h1,h2 that minimize the

distortion

D[g1,g2,h1,h2] = E{||X1 − X̂1||2 + ||X2 − X̂2||2} (2.5)

subject to the average power constraint per encoder,

P [g1] = E{||g1(X)||2} ≤ P1 , P [g2] = E{||g2(X)||2} ≤ P2 (2.6)

2.2.2 Asymptotic Bounds for Gaussian Source and Channel

Although the problem we consider is delay limited, it is insightful to consider asymptotic

bounds obtained at infinite delay. From Shannon’s source and channel coding theorems, it is
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Figure 2.3. Distributed source-channel coding

known that, asymptotically, the source can be compressed to R(D) bits (per source sample) at

distortion level D, and that C bits can be transmitted over the channel (per channel use) with

arbitrarily low probability of error, where R(D) is the source rate-distortion function, and C

is the channel capacity, (see eg.[13]). The asymptotically optimal coding scheme is the tandem

combination of the optimal source and channel coding schemes, hence mR(D) ≤ kC must hold.

By setting

R(D) =
k

m
C (2.7)

one obtains a lower bound on the distortion of any source-channel coding scheme. Next, we

specialize to Gaussian sources and channels, which we will mostly use in the numerical results

section, while emphasizing that the proposed method is generally applicable to any source and

noise densities. The rate-distortion function for the memoryless Gaussian source of variance

σ2
x, under the squared-error distortion measure is given by

R(D) = max(0,
1
2

log
σ2
x

D
) (2.8)

for any distortion value D ≥ 0. The capacity of the AWGN channel is given by

C =
1
2

log(1 +
PT
σ2
n

) (2.9)

where PT is the transmission power constraint and σ2
n is the noise variance. Plugging (4.40)

and (2.9) in (4.39) we obtain the optimal performance theoretically attainable (OPTA):

DOPTA =
σ2
x

(1 + PT
σ2
n

)
k
m

(2.10)

Note that OPTA is derived without any delay constraints and may not be achievable by

a delay-constrained coding scheme. No achievable theoretical bound is known for joint source

channel coding with limited delay, although there are recent results that tighten the outer

bound, see eg. [41].
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For source coding with decoder side information, it has been established for Gaussians and

MSE distortion that there is no rate loss due to the fact that the side information is unavailable

to the encoder [79]. Similar to the derivation above, OPTA can be obtained for source-channel

coding with decoder side information, by equating the conditional rate distortion function of

the source (given the side information) to the channel capacity.

The two encoder distributed source coding problem, with Gaussian sources and MSE dis-

tortion has been analyzed in [75]. OPTA can be derived by setting the rate distortion function

of [75] to the channel capacity.

2.3 Optimality Conditions

We proceed to develop the necessary conditions for optimality of the encoder and decoder

subject to the average power constraint (2.2) in the point-to-point communication setup. The

distributed cases will be considered afterwards, where optimality conditions are derived along

similar lines.

2.3.1 Optimal Decoder Given Encoder

Let g be fixed. Then the optimal decoder is the minimum mean square error (MMSE)

estimator of X given ŷ, i.e.,

h(ŷ) = E{X|ŷ} (2.11)

Plugging the expressions for expectation, we obtain

h(ŷ) =
∫

x fX|Ŷ (x|ŷ) dx. (2.12)

Applying Bayes’ rule

fX|Ŷ (x|ŷ) =
fX(x)fŶ |X(ŷ|x)∫
fX(x) fŶ |X(ŷ|x) dx

(2.13)

and noting that fŶ |X(ŷ|x) = fN [ŷ − g(x)], the optimal decoder can be written, in terms of

known quantities, as

h(ŷ) =

∫
x fX(x) fN [ŷ − g(x)] dx∫
fX(x) fN [ŷ − g(x)] dx

(2.14)
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2.3.2 Optimal Encoder Given Decoder

Let h be fixed. Our goal is to minimize MSE subject to the average power constraint. Let

us write MSE explicitly as a functional of g

D[g] =
∫ ∫

[x− h(g(x) + n)]T[x− h(g(x) + n)]fX(x)fN (n)dxdn (2.15)

To impose the power constraint, we construct the Lagrangian cost functional:

J [g] = D[g] + λ{P [g]− PT } (2.16)

to minimize over the mapping g. To obtain necessary conditions we apply the standard method

in variational calculus [51]:
∂

∂ε

∣∣∣∣
ε=0

J [g(x) + εη(x)] = 0 (2.17)

for all admissible variation functions η(x). Note that, since the power constraint is accounted

for in the cost function, the variation function η(x) need not be restricted to satisfy the power

constraint (all continuous differentiable functions η : Rm → Rk are admissible). Applying the

above condition, we get∫ {
λg(x)−

∫
h′(g(x) + n)[x− h(g(x) + n)]fN (n)dn

}
η(x)fX(x)dx = 0 (2.18)

where h′ denotes the Jacobian of the vector valued function h. The equality for all admissible

variation functions, η(x), requires the expression in braces to be identically zero (more formally

the functional derivative [51] vanishes at an extremum point of the functional). This gives the

necessary condition for optimality as

∇J [g] = 0 (2.19)

where

∇J [g]=λfX(x)g(x)−
∫

h′(g(x)+n)[x−h(g(x)+n)]fN (n)fX(x)dn (2.20)

Unlike the decoder, the optimal encoder is not in closed form but a necessary condition

for optimality is given. We summarize these results in the main theorem for the point-to-point

setting:

Theorem 2.1. Given source and noise densities, a coding scheme (g, h) is optimal only if

g(x)=
1
λ

∫
h′(g(x)+n) [x−h(g(x)+n)]fN (n)dn (2.21)

h(ŷ) =

∫
x fX(x) fN [ŷ − g(x)] dx∫
fX(x) fN [ŷ − g(x)] dx

(2.22)
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where varying λ provides solutions at different levels of power constraint PT . In fact, λ is the

slope of the distortion-power curve: λ = dD
dPT

.

The theorem states the necessary conditions for optimality but they are not sufficient, as

is demonstrated in particular by the following corollary.

Corollary 2.2. For Gaussian source and channel, the necessary conditions of Theorem 2.1 are

satisfied by linear mappings g(x) = kgx and h(y) = khy for some kg,kh.

Although linear mappings satisfy the necessary conditions of optimality for the Gaussian

case, they are known to be highly suboptimal when dimensions of source and channel do not

match, i.e., m 6= k. Hence, this corollary illustrates the existence of poor local optima and the

challenges facing algorithms based on these necessary conditions.

2.3.3 Optimality Conditions for Coding with Decoder Side Informa-

tion

Optimality conditions for the settings of decoder side information (Figure 2.2) can be

obtained by following similar steps. We note, in particular, that for these settings a similar

result to Corollary 2.2 holds, i.e., for Gaussian sources and channels linear mappings satisfy the

necessary conditions. Surprisingly, even in the matched bandwidth case, linear mappings will

be shown to be suboptimal in the results section for such settings. This observation highlights

the need for powerful numerical optimization tools. Let the encoder g be fixed. Then, the

optimal decoder is the MMSE estimator of X1:

h(ŷ,x2) = E{X1|ŷ,x2}. (2.23)

Plugging the expressions for expectation, applying Bayes’ rule and noting that fŶ |X1
(ŷ|x1) =

fN [ŷ − g(x1)], the optimal decoder can be written, in terms of known quantities, as

h(ŷ) =

∫
x1 fX1,X2(x1,x2) fN [ŷ − g(x1)] dx1∫
fX1,X2(x1,x2) fN [ŷ − g(x1)] dx1

. (2.24)

Now, let us assume that the decoder h is fixed. The distortion is expressed as a functional

of g:

D[g] = E{||[X1 − h(g(X1) + N,X2)]||2} (2.25)
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We construct the Lagrangian cost functional:

J [g] = D[g] + λ {P [g]− PT } . (2.26)

To obtain necessary conditions we apply the standard method in variational calculus:

∇J [g](x1,x2) = 0, ∀x1, x2 (2.27)

where

∇J [g](x1,x2) =λfX1,X2(x1,x2)g(x1)

−
∫

h′(g(x1)+n,x2)[x− h(g(x) + n,x2)]fN (n)fX1,X2(x1,x2)dn (2.28)

2.3.4 Optimality Conditions for Distributed Coding

Now, we focus on the distributed coding setup.(Figure 2.3). Assume that the two en-

coders are fixed. Then, the optimal decoders are h1(ŷ1, ŷ2) = E[X1|ŷ1, ŷ2] and h2(ŷ1, ŷ2) =

E[X2|ŷ1, ŷ2].

Next, we fix the decoders and find the encoders g1,g2 that minimize the total cost

J = D[g1,g2] + λ1 {P [g1]− P1}+ λ2 {P [g2]− P2} (2.29)

where

D[g1,g2]= E{||X1−h1(g1(X1)+N1,g2(X2)+N2)||2

+||X2−h2(g1(X1)+N1,g2(X2)+N2)||2} (2.30)

The necessary conditions are derived by requiring

∇J [g1](x1,x2) = ∇J[g2](x1,x2) = 0 ∀x1, x2, (2.31)

where ∇J [g1](x1,x2) = ∂J
∂g1

and ∇J [g2](x1,x2) = ∂J
∂g2

. For more details on the underlying

variational calculus method, see [51]. where ∇J [g1](x1,x2) = ∂J
∂g1

and ∇J [g2](x1,x2) = ∂J
∂g2

[51].

2.4 Algorithm Design

The basic idea is to iteratively alternate between the imposition of individual necessary

conditions for optimality, and thereby successively decrease the total Lagrangian cost. Iterations
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are performed until the algorithm reaches a stationary point. Imposing optimality condition

for the decoder is straightforward, since the decoder can be expressed as closed form functional

of known quantities, g(x), fX(x) and fN (n). The encoder optimality condition is not in closed

form and we perform steepest descent search in the direction of the functional derivative of the

Lagrangian with respect to the encoder mapping(s) g (g1, g2 for two encoder case). By design,

the Lagrangian cost decreases monotonically as the algorithm proceeds iteratively. The update

for the various encoders is stated generically as

gi+1(x) = gi(x)− µ∇J[g] (2.32)

where i is the iteration index, ∇J[g] is the directional derivative and µ is the step size. At

each iteration i, the total cost decreases monotonically and iterations are kept until conver-

gence. As initialization for the encoder mapping optimization, previously proposed heuristic

suboptimal mappings [11, 59] can be used. Note that there is no guarantee that an iterative

descent algorithms of this type will converge to the globally optimal solution. The algorithm

will converge to a local minimum. An important observation is that, in the case of Gaussian

sources and channels, the linear encoder-decoder pair satisfies the necessary conditions of op-

timality, although, as we will illustrate, there are other mappings that perform better. Hence,

initial conditions have paramount importance in such greedy optimizations. A preliminary low

complexity approach to mitigate the poor local minima problem, is to embed in the solution

the noisy relaxation method of [18, 45]. We initialize the encoding mapping(s) with random

initial conditions and run the algorithm at very low CSNR (high Lagrangian parameter λ).

Then, we gradually increase the CSNR (decrease λ) while tracking the minimum until we reach

the prescribed CSNR (or power PT for a given channel noise level).

2.5 Results

We implemented the above algorithm by numerically calculating the derived integrals. For

that purpose, we sampled the distribution on a uniform grid. We also imposed bounded support

(−3σ to 3σ) i.e., neglected tails of infinite support distributions in the examples.

2.5.1 Scalar Mappings (m = 1, k = 1), Gaussian Mixture Source and

Gaussian Channel

We consider a Gaussian mixture source with distribution

fx(x) =
1

2
√

2π

{
e
−(x−3)2

2 + e
−(x+3)2

2

}
(2.33)
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Figure 2.4. Encoder mapping for bi-modal GMM source, Gaussian channel, modes at 3 and -3

as in (2.33)

and unit variance Gaussian noise. The encoder and decoder mappings for this source-channel

setting are given in Figure 2.4. As intuitively expected, since the two modes of the Gaussian

mixture are well separated, each mode locally behaves as Gaussian. Hence the curve is roughly

piece-wise linear, deviating significantly from a truly linear mapping. This illustrates the im-

portance of nonlinear mappings for general distributions that diverge from the pure Gaussian.

2.5.2 (m = 2, k = 1) Gaussian source-channel mapping

In this section, we present a bandwidth compression example with 2:1 mappings for Gaus-

sian source and channel. We compare the proposed mapping to the asymptotic bound (OPTA)

and prior work [34]. We also compare the optimal encoder-decoder pair to the setting where

only the decoder is optimized and the encoder is fixed. In prior work [11, 59, 34], the Archi-

median spiral is found to perform well for Gaussian 2:1 mappings, and used for encoding and

decoding with maximum likelihood criteria. We hence initialize our algorithm with an Archi-

median spiral (for the encoder mapping). For details of the Archimedian spiral and its settings,

see eg.[34] and references therein.

The obtained encoder mapping is shown in Figure 2.6. While the mapping produced by our

algorithm resembles the Archimedian spiral, there is still a significant difference which will also

be evident in the performance results. Note further that the encoding scheme differs from prior

work in that we continuously map the source to the channel signal, where the two dimensional

source is mapped to the closet point on the space filling spiral. The resulting mapping is

also “spiral shaped” but the distance between consecutive spiral arms is not constant, unlike
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example.
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Figure 2.7. Comparative results for Gaussian source- channel, 1:2 mapping

the pure Archimedian spiral. The comparative performance results are shown in Figure 2.6.

The proposed mapping outperforms the Archimedian spiral [34] over the entire range of CSNR

values. It is notable that the “intermediate” option of only optimizing the decoder improves

the performance significantly, compared to using the inverse spiral with maximum likelihood

decoding.

2.5.3 (m = 1, k = 2) Gaussian source-channel mapping

In this section we compare the proposed mappings for bandwidth expansion where a Gaus-

sian scalar source is transmitted over a two dimensional Gaussian channel. We compare the

obtained mapping to prior work and OPTA. Here, we use the inverse spiral of prior work as the

initial condition. The results are presented in Figure 2.7. The proposed mapping outperforms

the inverse of Archimedian spiral [34] over the entire range of CSNR values. Note that the

gap between OPTA and and the achieved performance by our mappings is significantly greater

than in the 2:1 bandwidth compression case. We consider two possible explanations: i) The

gap between the best achievable zero-delay performance and OPTA (which is the achievable

limit when delay is asymptotically large) is large compared to bandwidth compression. Obvi-

ously, this gap monotonically decreases with the dimensions of the mappings, i..e, 2:4 mappings

would outperform 1:2 mappings. ii) Our mappings may have converged to a local minimum

that is significantly worse than the global minimum. We suspect the latter and that global

optimization tools, such as deterministic annealing [63], will offer substantial gains.
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Figure 2.8. Encoder mappings for Gaussian scalar source, channel and side information at

different CSNR and correlation levels

2.5.4 Source-Channel Coding with Decoder Side Information

In this section, we demonstrate the use of the proposed algorithm by focusing on the

specific scenario of Figure 2.2. It must be emphasized that, while the algorithm is general

and directly applicable to any choice of source and channel dimensions and distributions, for

conciseness of the results section we will assume that sources are jointly Gaussian scalars with

correlation coefficient ρ, and are identically distributed. We also assume that the noise is scalar

and Gaussian.

Figure 2.8 presents a sample of encoding mappings obtained by varying the correlation

coefficient and CSNR. Interestingly, the analog mapping captures the central characteristic

observed in digital Wyner-Ziv mappings, in the sense of many-to-one mappings, where multiple

source intervals are mapped to the same channel interval, which will potentially be resolved by

the decoder given the side information. Within each bin, there is a mapping function which

is approximately linear in this case (scalar Gaussian sources and channel). To see the effect
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of correlation on the encoding mappings, we note how the mapping changes as we lower the

correlation from ρ = 0.97 to ρ = 0.9. As intuitively expected, the side information is less

reliable and source points that are mapped to the same channel representation grow further

apart from each other. Also note that inclinations of the mappings are different for each CSNR,

due to the fact that depending on the initial conditions, algorithm can converge to different local

minima. Note that if g(x) satisfies necessary conditions of Theorem 2.1 (i.e., locally optimal),

so does −g(x), due to the symmetry (around zero) of the involved distributions. Comparative

performance results are shown in Figure 2.9. The proposed mapping significantly outperforms

linear mapping over the entire range of CSNR values.

2.5.5 Distributed Source-Channel Coding

Here we consider jointly Gaussian sources that are transmitted separately over independent

channels, as shown in Figure 2.3. Note that our algorithm and derived necessary conditions

allow the channels to be correlated, but for simplicity we restrict to independent, additive Gaus-

sian channels. To demonstrate the power of the design approach and the type of gains achiev-

able, we consider an asymmetric power allocation to separate encoders. We chose λ1 = 0.1λ2 in

the optimization framework. Since both source and noise are distributed symmetrically around

zero, the encoding and decoding mappings must also be symmetric. We use this fact to halve

the number of samples needed in the algorithm and correspondingly reduce the complexity.

Figure 2.10 presents an example of encoding mappings for correlation coefficient ρ = 0.95.

The comparative performance results are shown in Figure 2.11. The proposed mapping outper-
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Figure 2.10. Obtained encoder mappings for correlation coefficient ρ = 0.95, Gaussian scalar

sources and channels, CSNR = 15

forms the linear mapping over the entire range of CSNR values. Note that encoders are highly

asymmetric in the sense that one is “Wyner-Ziv like” and maps several source intervals to the

same channel interval, whereas the other encoder is an almost monotone increasing function.

While we can offer tentative explanation for the form of this solution, we above all observe

that it does substantially outperform the symmetric, linear solution. This demonstrates that

by breaking from the linear solution and re-optimizing we do obtain an improved solution.

Moreover, it strongly suggests that some symmetric but highly non-linear solution may exist,

whose discovery would need more powerful optimization tools – a direction we are currently

pursuing.
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Chapter 3

Linearity of Optimal Estimation

3.1 Introduction

Consider a basic problem in estimation theory, namely, source estimation from a signal

received through a channel with additive noise, given the statistics of both source and channel.

The optimal estimator that minimizes the mean square error (MSE) is usually a nonlinear

function of the observation. A frequently exploited result in estimation theory concerns the

special case of Gaussian source and Gaussian noise, a case in which the MSE optimal estima-

tor is guaranteed to be linear. An open follow-up question considers the existence of other

cases exhibiting such a “coincidence”, and more generally the characterization of conditions for

linearity of optimal estimators for general distortion measures.

This problem also has practical importance beyond theoretical interest, mainly due to sig-

nificant complexity issues in both design and operation of estimators. Specifically, the optimal

estimator generally involves entire probability distributions, whereas linear estimators require

only up to second-order statistics for their design. Moreover, unlike the optimal estimator

which can be an arbitrarily complex function that is difficult to implement, the linear estima-

tor consists of a simple matrix-vector operation. Hence, linear estimators are more prevalent

in practice, despite their suboptimal performance in general. They also represent a significant

temptation to “assume” that processes are Gaussian, sometimes despite overwhelming evidence

to the contrary. Results in this part of the thesis identify the cases where a linear estimator

is optimal, and when the use of linear estimators is justified in practice without recourse to

complexity arguments.
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The estimation problem in general has been studied intensively in the literature [6, 64, 62,

21, 10, 60]. Our preliminary results appeared in [4]. It is known that, for stable distributions1

(which includes the Gaussian distribution as the only finite variance member), the optimal

estimator is linear at all signal to noise ratios (SNR). Stable distributions are a subset of a family

called infinitely divisible distributions which, as we show in this part of the thesis, satisfy the

derived necessary conditions for the existence of a matching source/noise distribution such that

the optimal estimator is linear at any SNR level. Our main contribution relative to prior work,

which studied linearity as it applies simultaneously at all SNR levels, focuses on the linearity

of optimal estimation for the Lp norm and its dependence on the SNR level. Specifically,

we present the optimality conditions for linearity of optimal estimators at a specified SNR,

where optimality is in the sense of the Lp norm. As an important special case, we investigate

the p = 2 case (mean square error) in detail. Note that a similar problem has been studied

in [47, 9] for the special case of the mean square error, albeit without further study of the

question of existence and uniqueness of “matching” distributions. We show that the necessary

conditions presented in [47, 9] are subsumed in our general necessary and sufficient conditions;

and specify conditions for which such matching distributions exist and are unique. The analysis

is then extended to the case of vector spaces. Interestingly, this extension is non-trivial and new

constraints, beyond those inherited from the scalar case, must be satisfied to ensure linearity

of optimal estimation.

Five results are provided on the linearity of optimal estimation. First, we show that if

a given noise (alternatively, a given source) distribution satisfies certain conditions, there al-

ways exists a matching source (alternatively, noise) distribution of a given power, for which

the optimal estimator is linear. We further identify conditions under which such a matching

distribution does not exist. Secondly, we show that if the source and the noise have the same

variance, they must be identically distributed to ensure the linearity of the optimal estimator.

Having established more general conditions for linearity of optimal estimation, one wonders in

what precise sense the Gaussian case may be special. This question is answered by the third

result. We consider the optimality of linear estimation at multiple SNR values. Let random

variables X and N be source and noise, respectively, and allow for scaling of either to produce

varying levels of SNR. We show that if the optimal estimator is linear at more than one SNR

value, then both the source X and the noise N must be Gaussian. In other words, the Gaussian

source-noise pair is unique in the sense that it offers linearity of optimal estimators at multiple

SNR values (in fact the optimal estimator is linear at all SNR as is well known). As a fourth

result, we show that the MSE optimal estimator converges to a linear estimator for any source

and Gaussian noise at asymptotically low SNR, and vice versa, for any noise and Gaussian

source at asymptotically high SNR.
1A distribution is called stable if for independent and identically distributed X1, X2, X; for any constants a,
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Figure 3.1. The general setup of the problem

Finally, we analyze the vector case, where conditions for linearity of optimal estimation

are more stringent. We show that for a vector source-channel pair with identical dimensions,

the conditions derived for the scalar case become necessary conditions in a transform domain,

where the transform jointly diagonalizes the source and channel covariance matrices. We further

derive the additional, complementary conditions that must be satisfied to achieve sufficiency.

3.2 Review of Optimal and Linear Estimation

3.2.1 Preliminaries and Notation

We consider the problem of estimating source X given the observation Y = X +N , where

X and N are independent, as shown in Figure 3.1. Let X and N be scalar zero mean random

variables with respective densities fX(·) and fN (·) and characteristic functions FX(ω) and

b; the random variable aX1 + bX2 has the same distribution as cX + d for some constants c and d [10].
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FN (ω). A density f(x) is said to be symmetric if it is an even characteristic function2: f(x) =

f(−x) ∀x ∈ R. The SNR is γ = σ2
x

σ2
n

. All random variables, in a statement regarding Lp norm

optimal estimation, are constrained to have finite pth moment, eg. in a result associated with

MSE we assume finite variances, i.e., σ2
x < ∞, σ2

n < ∞. All the logarithms in this part are

natural logarithms and may in general be complex.

An estimator h(·) is a function of the observation and is said to be optimal if it minimizes

the cost functional

J(h) = E {Φ(X,h(Y ))} (3.1)

for a given distortion measure Φ. Specializing (3.1) to a difference distortion measure, we

explicitly get:

J(h) =
∫ ∫

Φ(x− h(y))fX(x)fY |X(y|x)dxdy (3.2)

To obtain the necessary conditions for optimality, we apply the standard method in varia-

tional calculus [51]:
∂

∂ε
J [h(y) + εη(y)]

∣∣∣∣
ε=0

= 0 (3.3)

for all admissible variation functions η(y). If Φ is differentiable, (3.3) yields∫ ∫
Φ′(x− h(y))η(y)fX(x)fY |X(y|x)dxdy = 0 (3.4)

or,

E {[Φ′(X − h(Y )]η(Y )} = 0 (3.5)

where Φ′ is the derivative of Φ.
2Note that this definition will need generalization to symmetry about any point when one drops the assump-

tion of zero-mean distributions
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3.2.2 Optimality condition for Lp norm

Hereafter, we will specialize to the case of the Lp metric3 with p ∈ R+, i.e., Φ(x) = ||x||pp.
Using the fact that d

dx ||x||pp = p
||x||pp
x ,∀x ∈ R − {0}, we derive the necessary condition for

optimality of an estimator as :

E
{ ||X − h(Y )||pp

X − h(Y )
η(Y )

}
= 0 (3.6)

When we specialize to even integer p, we obtain the following

E
{

[X − h(Y )]p−1η(Y )
}

= 0 (3.7)

Note that for p = 2, or Φ(x) = x2, this condition reduces to the well known orthogonality

condition of MSE, i.e., the following holds

E {[(X − h(Y )]η(Y )} = 0 (3.8)

for any η(·) function. The MSE optimal estimator h(Y ) = E {X|Y } can be directly obtained

from (3.8).

Note that for p = 1, this expression results in h(Y ) being the median operator, which

is known as the centroid condition for the L1 norm (see e.g. [20]). As the following lemma

formally states, the above Lp necessary condition is also sufficient.

Lemma 3.1. The necessary condition stated in (3.6) is sufficient. Moreover, the estimator in

(3.7) is unique.

Proof. First we show the sufficiency of the necessary conditions for Lp norm. Note that, Φ(x) =

||x||pp is convex, i.e., d2||x||pp
dx2 > 0, ∀x − {0}. We need to show ∂2

∂2εJ [h(y) + εη(y)]
∣∣∣∣
ε=0

> 0, for

any η(y) variation function.

∂2

∂2ε
J [h(y) + εη(y)]

∣∣∣∣
ε=0

=
∫ ∫

η2(y)Φ
′′
(x− h(y))fX(x)fY |X(y|x)dxdy (3.9)

All factors in the integral is non negative and hence, ∂2

∂2εJ [h(y) + εη(y)]
∣∣∣∣
ε=0

> 0, for any η(y).

Next we show the uniqueness of the optimal estimator for even p. Assume h1(Y ) and h2(Y )

both satisfy (3.7) while h1(Y ) 6= h2(Y ), ∃Y ∈ R. Then, the following holds

E
{
{[X − h2(Y )]p−1 − [X − h1(Y )]p−1}η(Y )

}
= 0 (3.10)

3||x||pp = |x|p for a scalar x, where | · | is the absolute value operator.
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Noting

[X − h2(Y )]p−1 − [X − h1(Y )]p−1 = (h1(Y )− h2(Y ))β(X,Y ) (3.11)

where

β(X,Y ) =
p−1∑
m=0

[X − h1(Y )]m[X − h2(Y )]p−1−m (3.12)

Clearly, β(X,Y ) > 0. Plugging η(Y ) = h1(Y )− h2(Y ) in (3.10), we obtain,

E
{

[h1(Y )− h2(Y )]2β(X,Y )
}

= 0 (3.13)

Since β(X,Y ) > 0 ∀X,Y ∈ R,

E
{

[h1(Y )− h2(Y )]2
}

= 0 (3.14)

Hence h1(Y ) = h2(Y ) almost everywhere, contradicting the initial assumption h1(Y ) 6= h2(Y ),∃Y ∈

R.

Note: While (3.6) is valid for general Lp, (p ∈ R+), the remainder of the chapter is

restricted to even integer p.

3.2.3 Lp Optimal Linear Estimation

While perturbing the optimal linear estimator, the variation function η(y) must be linear

to ensure that h(y) + εη(y) is linear. Plugging h(y) = kY and η(y) = aY (for some a ∈ R) in

(3.7) and omitting straightforward steps, we obtain the condition for optimal linear estimation:

E
{

(X − kY )p−1Y
}

= 0 (3.15)

The optimal scaling coefficient k can be found by plugging Y = X + N into (3.15). Observe

that for p = 2, we get the well known result k = γ
γ+1 .

3.2.4 Gaussian Source and Channel

We next consider the special case in which both X and N are Gaussian, X ∼ N (0, σ2
x) and

N ∼ N (0, σ2
n). The linear estimator

h(Y ) =
γ

γ + 1
Y (3.16)
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is well known to be the optimal MSE estimation. Relatively less known is the fact that this linear

estimator is optimal more generally for the Lp norm [68]. It is straightforward to show that

this linear estimator satisfies (3.7) by rendering the reconstruction error X−h(Y ) independent

of Y .

3.3 Conditions for Linearity of Optimal Estimation

In this section, we find the necessary and sufficient conditions in terms of characteristic

functions FX(ω) and FN (ω) that ensure that h(Y ) = kY is the optimal estimator for some

k ∈ R. We first provide the result for the Lp norm, which takes the form of a differential

equation that must be satisfied to ensure linearity of optimal estimation, and then specialize it

to the MSE case.

3.3.1 Lp Norm Condition

Theorem 3.2. For a given Lp distortion measure, a source X with characteristic function

FX(ω) and a noise N with characteristic function FN (ω), the optimal estimator h(Y ) is linear,

h(Y ) = kY , if and only if the following differential equation is satisfied:

p−1∑
m=0

F
(m)
X (ω)F (p−1−m)

N (ω)
(
p− 1
m

)(
k − 1
k

)m
= 0 (3.17)

Proof. Plugging in fY |X(y|x) = fN (y − x) in (3.7), we obtain∫
[x− ky]p−1fX(x)fN (y − x)dx = 0,∀y (3.18)

Expressing [x− ky]p−1 in binomial expansion,

[x− ky]p−1 =
p−1∑
m=0

(
p− 1
m

)
(−ky)mxp−m−1 (3.19)

Arranging the terms, we get

p−1∑
m=0

(
p− 1
m

)
(−ky)m

∫
xp−1−mfX(x)fN (y − x)dx = 0 (3.20)
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Let ⊗ denote the convolution operator and rewrite (3.20) as

p−1∑
m=0

(
p− 1
m

)
(−ky)m

[
yp−1−mfX(y)⊗ fN (y)

]
= 0 (3.21)

Taking the Fourier transform (assuming the Fourier transform exists),

p−1∑
m=0

(
p− 1
m

)
(−k)m

dm

dωm

[
dp−1−m(FX(ω))

dωp−1−m FN (ω)
]

= 0 (3.22)

Opening up the above expression,

p−1∑
m=0

(
p− 1
m

)
(−k)m

m∑
l=0

(
m

l

)
dp−1−lFX(ω)
dωp−1−l

dlFN (ω)
dωl

= 0 (3.23)

Interchanging the summations,

p−1∑
l=0

dp−1−lFX(ω)
dωp−1−l

dlFN (ω)
dωl

p−1∑
m=l

(
p− 1
m

)
(−k)m

(
m

l

)
= 0 (3.24)

Opening the binomials,

p−1∑
l=0

(
p− 1
l

)
dp−1−lFX(ω)
dωp−1−l

dlFN (ω)
dωl

p−1∑
m=l

(p− 1− l)!
(m− l)!(p− 1−m)!

(−k)m = 0 (3.25)

Replacing t = m− l, we get

p−1∑
l=0

(
p− 1
l

)
dp−1−lFX(ω)
dωp−1−l

dlFN (ω)
dωl

p−1−l∑
t=0

(
p− 1− l

t

)
(−k)(t+l) = 0 (3.26)

Noting that,

(1− k)p−1−l =
p−1−l∑
t=0

(
p− 1− l

t

)
(−k)t (3.27)

we obtain (3.17).

The converse part of the theorem follows from the fact that the necessary condition given

in (3.7) is also sufficient. Recall that the sufficiency is shown in Lemma 3.1 using the convexity

property of Lp norm.

3.3.2 Specializing to MSE: The Matching Condition

In this section, we explore the impact of Theorem 3.2 for the special case of the mean square

error distortion metric, i.e., p = 2. More precisely, we wish to find the entire set of source and

channel distributions such that h(Y ) = γ
γ+1Y is the optimal estimator for a given SNR, γ.
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Note that this condition was derived, in another context [47, 9], albeit without consideration of

important implications which we focus on, including the conditions for existence and uniqueness

of matching distributions. Specifically, we identify the conditions for existence and uniqueness

of a source distribution that matches the noise (and vice versa) in a way that guarantees the

linearity of the optimal estimator. We state the main result for MSE in the following theorem.

Theorem 3.3. Given SNR level γ, and noise N with characteristic function FN (ω), there

exists a source X for which the optimal estimator is linear if and only if the characteristic

function

F (ω) = F γN (ω)

is a legitimate characteristic function. Moreover, if F (ω) is legitimate, then it is the charac-

teristic function of the matching source, i.e. FX(ω) = F (ω). (An equivalent theorem holds

where we replace “noise” for “source” everywhere, i.e., given source and SNR level, we have a

condition for existence of a matching noise.)

Proof. Plugging p = 2 in (3.17) yields

1
FX(ω)

dFX(ω)
dω

= γ
1

FN (ω)
dFN (ω)
dω

(3.28)

or more compactly,
d

dω
logFX(ω) = γ

d

dω
logFN (ω) (3.29)

The solution to this differential equation is given by:

logFX(ω) = γ logFN (ω) + C (3.30)

where C is a constant. Imposing FN (0) = FX(0) = 1, we obtain C = 0, which implies:

FX(ω) = F γN (ω) (3.31)

Hence, given a noise distribution, the necessary and sufficient condition for the existence

of a matching source distribution boils down to the requirement that F γN (ω) be a valid charac-

teristic function. Moreover, if such a matching source exists, we have a recipe for deriving its

distribution.
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3.3.3 Existence of a Matching Source for a Given Noise

Bochner’s theorem [62] states that a continuous function F : R → C with F (0) = 1 is a

valid characteristic function if and only if it is positive semi-definite.4 Hence, the existence of

a matching source depends on the positive semi-definiteness of F γN (ω).

We note that characterizing the entire set of FN (ω) where F γN (ω) is positive semi-definite

is a long-standing open problem. Instead we illustrate the result with various cases of interest

where F γN (ω) is, or is not, positive semi-definite. Let us start with a simple but useful case.

Corollary 3.4. If SNR γ ∈ Z, a matching source distribution exists, regardless of the noise

distribution.

Proof. From (3.31), integer γ implies:

X =
γ∑
i=1

Ni (3.32)

where Ni are independent and distributed identically to N . Hence, F γN (ω) is a valid character-

istic function and a matching X exists.

Next, we recall the concept of infinite divisibility, which is closely related to the problem at

hand.

Definition [52]: A distribution with characteristic function F (ω) is called infinitely divisible, if

for each integer k ≥ 1, there exists a characteristic function Fk(ω) such that

F (ω) = F kk (ω) (3.33)

Alternatively, fX(x) is infinitely divisible if and only if the random variable X can be written as

X =
∑k
i=1Xi for any k where {Xi, i = 1, ..., k}’s are independent and identically distributed.

Infinitely divisible distributions have been studied extensively in probability theory [52, 73].

It is known that Poisson, exponential, and geometric distributions as well as the set of stable

distributions (which includes the Gaussian distribution) are infinitely divisible. On the other

hand, it is easy to see that distributions of discrete random variables with finite alphabets are

not infinitely divisible.
4Let f : R → C be a complex-valued function, and t1, ..., ts be a set of points in R. Then f is said to be

positive semi-definite (non-negative definite) if for any ti ∈ R and ai ∈ C, i = 1, ..., s we have

s∑
i=1

s∑
j=1

aiaj
∗f(ti − tj) ≥ 0
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Corollary 3.5. A matching source distribution exists for all γ ∈ R+ if and only if fN (n) is

infinitely divisible.

Proof. It is easy to show from the definition of infinite divisibility and Corollary 3.4 that if

fN (n) is infinitely divisible, F rN (ω) is a valid characteristic function for all rational r > 0.

Using the fact that every γ ∈ R is a limit of a sequence of rational numbers rn, and by the

continuity theorem [10], we conclude that FX(ω) = F γN (ω) is a valid characteristic function,

and hence a matching source exists.

If FX(ω) = F γN (ω) is a valid characteristic function for all γ, then fN (n) is infinitely

divisible, because we can choose γ = 1
k for k ∈ Z+ with Fk(ω) = FX(ω) in (3.33).

At a given SNR, there may exist a matching source, even though fN (n) is not infinitely

divisible. For example, a finite alphabet discrete random variable V is not infinitely divisible

but still can be k-divisible, where k < |V | − 1 and |V | is the cardinality of V . Hence, when

γ = 1
k , there may exist a matching source, even when the noise is not infinitely divisible. Many

examples follow directly from Corollary 3.4.

We next cite a theorem, regarding analytic characteristic functions, which will be useful in

the proofs that follow.

Theorem [52]: A characteristic function F (ω) is analytic if and only if F has finite moments

of all orders and there exists a finite β such that E{|Xk|} ≤ k!βk,∀k ∈ Z+. This requirement

is equivalent to the existence of a moment generating function. A characteristic function F (ω)

is analytic if and only if the moments E{|Xk|} uniquely characterize the distribution, which in

general is not the case, see eg. [69].

A useful property regarding the analyticity of the characteristic function of the matching

source (or noise) is captured by the following corollary.

Corollary 3.6. If FN (ω) (or FX(ω) ) is analytic, then the matching FX(ω) (or FN (ω) ), if it

exists, is analytic.

Proof. Recall the orthogonality property of the MSE optimal estimator (3.8). Let η(Y ) = Y m

for m = 1, 2, 3...M . Plugging the best linear estimator h(Y ) = γ
γ+1Y and replacing Y with

where aj
∗ is the complex conjugate of aj . Equivalently, we require that the s × s matrix constructed with

f(ti − tj) be positive semi-definite. If function f is positive semi-definite, its Fourier transform, is non-negative
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X +N , we obtain the condition

E
{[
X − γ

γ + 1
(X +N)

]
(X +N)m

}
= 0 for m = 1, ..,M (3.34)

Applying binomial expansion

(X +N)m =
m∑
i=0

(
m

i

)
XiNm−i (3.35)

and rearranging the terms, we obtain M + 1 linear equations that recursively relate the M + 1

moments of X, i.e., for m = 1, ...,M we have

E(Xm+1) = γE(Nm+1) +
m−1∑
i=0

A(γ,m, i)E(N i+1)E(Xm−i) (3.36)

where, A(γ,m, i) = γ
(
m
i

)
−
(
m
i+1

)
.

Note that if FN (ω) is analytic, N has finite moments of all orders and E{|Nk|} ≤ k!βk,

∀k. From (3.36), by induction, we can show that all moments of X exist and are bounded by

E{|Xk|} ≤ k!(max{γ, 1}β)k. This condition is sufficient to show that X also has an analytic

characteristic function.

The following corollary identifies a case in which a matching source does not exist.

Corollary 3.7. For γ /∈Z, if FN (ω) is real and analytic and it is negative somewhere, i.e., ∃ω

such that FN (ω) < 0, then a matching source distribution does not exist.

Proof. We prove this corollary by contradiction. Let FN (ω) be a valid characteristic function.

Recall the set of moment equations (3.36). It follows by induction over the set of moment

equations starting from m = 1 that, if all odd moments of N are zero, then so are all odd

moments of X. Note that X, if exists, has an analytic characteristic function due to Corollary

3.6. Hence, when the noise is symmetric, the matching source must also be symmetric since

moments of X fully characterize its distribution due to the analyticity of the characteristic

function FX(ω).

everywhere F (ω) ≥ 0, ∀ω ∈ R. Hence, in the case of our candidate characteristic function, this requirement
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However, if γ /∈ Z, by (3.31), it follows that FX(ω) is not real, and hence fX(x) is not

symmetric. This contradiction shows that no matching source exists when γ /∈ Z and noise

distribution is symmetric but not positive semi-definite.

(a) Uniform density (b) Characteristic function

Figure 3.2. Example of a non-existence case

Let us provide a commonly used example distribution to which the above corollary applies:

uniform distribution over [−a, a] as shown in Figure 3.2. In this case, fN (n) is symmetric

with an analytic characteristic function, but it is not positive semi-definite. The corollary

states that, except for integer values of SNR, the optimal estimator is strictly nonlinear for an

additive uniform channel.

Remark: As an important application, consider high resolution quantization theory. Stan-

dard high resolution approximations assume quantization noise independent of (or uncorrelated

with) the source [20]. In practice such approximations can be made explicit by using a dithered

quantizer [29] that generates quantization error independent of the source. Then the quantizer

is equivalent to an additive uniform noise channel. The corollary states that, other than for in-

teger values of SNR, a linear decoder (e.g., a Wiener filter at the decoder) is strictly suboptimal

for sources encoded with high resolution or dithered quantization.

3.3.4 Uniqueness of a Matching Source for a Given Noise

Note that (3.31) may have multiple solutions due to multiplicity of complex roots. The

following corollary establishes that for a large set of source (or noise) distributions, the matching

noise (or source) is unique.

ensures that the corresponding density is indeed non-negative everywhere.
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Corollary 3.8. If FN (ω) (or FX(ω) ) is analytic, then the matching FX(ω) (or FN (ω) ) is

unique.

Proof. We prove this corollary from the set of moment equations (3.36). Note that every

equation introduces a new variable E(Xm+1), for m = 1, ..,M , so each new equation is linearly

independent of its predecessors. Let us consider solving these equations recursively, starting

from m = 1. At each m, we have one unknown (E(Xm+1)) in a “linear” equation. Since the

number of equations is equal to the number of unknowns for each m, and the equations are

linear in terms of the unknown, there must exist a unique moment sequence that solves (3.36).

From Corollary 3.6, it also follows that X has an analytic characteristic function. Hence, the

moment sequence fully characterizes X and the matching source X (if exists) is unique.

3.4 Implications of the Linearity Conditions

In this section, we explore some special cases obtained by varying γ and utilizing the

matching conditions for MSE and Lp. We start with a simple but perhaps surprising result.

Theorem 3.9. Given a source and noise of equal variance, the Lp optimal estimator is linear

if and only if the noise and source distributions are identical, i.e., fX(x) = fN (x), ∀x ∈ R and

in which case, the optimal estimator is h(Y ) = 1
2Y .

Proof. For MSE, it is straightforward to see from (3.31) that, at γ = 1, the characteristic func-

tions must be identical. Since the characteristic function uniquely determines the distribution

[10], fX(x) = fN (x), ∀x ∈ R. In fact, this results applies more generally. This can be observed

directly from Theorem 3.2 that FN (ω) = FX(ω) satisfies the necessary and sufficient optimality

condition, and hence this result also applies to the Lp norm distortion measure.

It is well known that linearity of regression E{X|Y } for all SNR levels characterizes the

stable family of distributions, which includes Gaussian as a famous (and the only finite variance)

member [60, 6, 64, 61, 32]. All prior results on characterizing Gaussian density with the linearity

of regression consider linearity for optimal estimation for all SNR levels, γ ∈ R+.
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Let us consider a setup with given source and noise variables which may be scaled to vary

the SNR, γ. Can the optimal estimator be linear at multiple values of γ? This question is

motivated by the practical setting where γ is not known in advance or may vary (e.g., in the

design stage of a communication system). It is well-known that the Gaussian source-Gaussian

noise pair makes the optimal estimator linear at all γ levels. Below, we show that this is the

only source-channel pair whose optimal estimators are linear at more than one SNR value.

Theorem 3.10. Let the source or channel variables be scaled to vary the SNR, γ. The MSE

optimal estimator is linear at two different SNR values γ1 and γ2, if and only if source and

noise are both Gaussian. Moreover, this claim also holds for Lp norm if the source (or noise)

has an analytic characteristic function.

Note: Theorem 3.10 provides a new characterization of a Gaussian process since all prior

related results characterize Gaussian density as the one that ensures linearity for optimal es-

timation for all SNR γ ∈ R+, whereas our theorem requires linearity of optimal estimation at

only two levels of SNR.

Proof. Note that σ2
n2

= α2σ2
n and FN2(ω) = FN (ωα). Let,

γ1 =
σ2
x

σ2
n

, γ2 =
σ2
x

α2σ2
n

(3.37)

Using (3.31),

FX(ω) = F γ1N (ω), FX(ω) = F γ2N (ωα) (3.38)

Hence,

F γ1N (ω) = F γ2N (ωα) (3.39)

Taking the logarithm on both sides of (3.39), applying (3.37) and rearranging terms, we obtain

α2 =
logFN (αω)
logFN (ω)

(3.40)

Note that (3.40) should be satisfied for both α and −α since they yield the same γ. Plugging

α = −1 in (3.40), we obtain FN (ω) = FN (−ω), ∀ω. Using the fact that the characteristic

function is conjugate symmetric (i.e., FN (−ω) = F ∗N (ω)), we get FN (ω) ∈ R, ∀ω. As logFN (ω)

is R→ C, the Weierstrass theorem [14] guarantees that there is a sequence of polynomials that
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uniformly converges to it: logFN (ω) =
∑∞
i=0 kiω

i, where ki ∈ C. Hence, by (3.40) we obtain:

α2 =

∞∑
i=0

ki(ωα)i

∞∑
i=0

kiωi
, ∀ω ∈ R, (3.41)

which is satisfied for all ω only if all coefficients ki vanish, except for k2, i.e. logFN (ω) = k2ω
2, or

logFN (ω) = 0 ∀ω ∈ R (the solution α = 1 is of no interest). The latter is not a characteristic

function, and the former is the Gaussian characteristic function, FN (ω) = ek2ω
2
, where we use

the established fact that FN (ω) ∈ R. Since a characteristic function determines the distribution

uniquely, the Gaussian source and noise must be the only such pair.

Next, we extend the result to the Lp norm, albeit we require analyticity of the characteristic

function of X (or N). Then, due to Corollary 3.6, N also has an analytic characteristic function.

We note that the moments of X and N are finite (they have moments of all orders) and

moments fully characterize the distribution due to the analyticity of characteristic function.

The extension to Lp requires a different approach. For simplicity, we first derive the result for

MSE (now with analyticity imposed) and then extend the arguments to the Lp case. Let us

say the noise is scaled by α ∈ R, i.e N2 = αN . The following relation between the moments of

the original and scaled noise should be satisfied:

E(Nm
2 ) = αmE(Nm) for m = 1, ..,M + 1 (3.42)

Also, a set of moment equations should hold for two SNR values, γ1 and γ2. Let us consider

the set of moment equations with moments up to M :

E(Xm+1) = γjE(Nm+1) +
m−1∑
i=0

A(γj ,m, i)E(N i+1)E(Xm−i) (3.43)

where m = 1, ..,M, j = 1, 2 and A(γ,m, i) = γ
(
m
i

)
−
(
m
i+1

)
. Similar to the proof of Corollary

3.8, we note that every equation introduces a new variable E(Xm+1), for m = 1, ..,M , so each

new equation is independent of its predecessors. Next we solve these equations recursively,

starting from m = 1. At each m, we have three unknowns (E(Xm+1),E(Nm+1),E(Nm+1
2 ))

that are related “linearly”. Since the number of linearly independent equations is equal to the

number of unknowns for each m, there must exist a unique solution. We know that the moment
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sequences of the Gaussian source-channel pair satisfy (3.43) since it ensures linearity of optimal

estimation. The moment sequence of a Gaussian satisfies Carlemans general criterion [69] and

therefore it uniquely determines the corresponding distribution, so the Gaussian source and

noise pair is the only solution to (3.43).

The proof for Lp norm follows the same lines. Note that as mentioned in Sec II.D, the

same linear estimator is Lp optimal for a Gaussian source-channel pair. Plugging Y = X +N

in the optimality condition with Lp norm, (3.7), we reach a similar set of moment equations.

Following similar arguments, we can show that this result holds for the Lp norm.

Next, we investigate the asymptotic behavior of optimal estimation at low and high SNR.

The results of our asymptotic analysis are of practical importance since they justify the use of

linear estimators without recourse to complexity arguments at high and low asymptotic SNR

regimes, under certain conditions.

Theorem 3.11 (for MSE only). In the limit γ → 0, the MSE optimal estimator is asymptoti-

cally linear if the channel is Gaussian, regardless of the source. Similarly, as γ →∞, the MSE

optimal estimator is asymptotically linear if the source is Gaussian, regardless of the channel.

Proof. The proof follows from applying the central limit theorem [10] to the matching condition

(3.31). The central limit theorem states that as γ → ∞, for any finite variance noise N , the

characteristic function of the matching source F γN (ω) uniformly converges to the Gaussian

characteristic function. The continuity theorem guarantees that as F γN (ω) uniformly converges

to the Gaussian characteristic function, the corresponding density converges (in distribution)

to the Gaussian density. Hence, at asymptotically high SNR, any noise distribution is matched

by the Gaussian source.

Similarly, as γ → 0 and for any FX(ω), F
1
γ

X (ω) converges to the Gaussian characteris-

tic function and hence the MSE optimal estimator is asymptotically linear if the channel is

Gaussian.
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3.5 Extension to Vector Spaces

Extension of the conditions to the vector case is nontrivial due to the dependencies across

components of the source and noise. In this section, for simplicity, we restrict ourselves to the

MSE distortion measure. We first give the formal definition of the problem:

We consider the problem of estimating the vector source X ∈ Rm given the observation

Y = X + N, where X and N ∈ Rm are independent, as shown in Figure 3.1. Without loss of

generality, we assume that X and N are zero mean random variables with m-fold distributions

fX(·) and fN (·). Their respective characteristic functions are denoted FX(ω) and FN (ω).

RX = E{XXT}, RN = E{NNT} denote the covariance matrices of X and N, respectively.

Let U be the eigenmatrix of RXR−1
N , and let eigenvalues λ1, ..., λm be the elements of the

diagonal matrix Λ, i.e., the following holds:

RXR−1
N = UΛU−1 (3.44)

We are looking for the conditions on FX(ω) and FN (ω) such that h(Y) = KY with

K = RX(RX + RN)−1 minimizes the estimation error E{||X− h(Y)||22}. Let us re-write the

MSE optimal estimator for the vector case:

h(y) =
∫

xfX(x)fN (y − x) dx∫
fX(x)fN (y − x) dx

(3.45)

Plugging, h(y) = Ky, we obtain,

Ky
∫
fX(x)fN (y − x) dx =

∫
xfX(x)fN (y − x) dx (3.46)

Expressing the integrals as m-fold convolutions, we get

Ky [fX(y)⊗ fN (y)] = [yfX(y)]⊗ fN (y) (3.47)

Taking Fourier transform of both sides,

jK∇ [FX(ω)FN (ω)] = jFN (ω)∇FX(ω) (3.48)

Arranging the terms, we get

(I−K)
1

FX(ω)
∇FX(ω) = K

1
FN (ω)

∇FN (ω) (3.49)

Using ∇ logFX(ω) = 1
FX(ω)∇FX(ω),

∇ logFX(ω) = (I−K)−1K∇ log FN(ω) (3.50)
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Plugging the value of K = RX(RX + RN)−1 in (I−K)−1K we obtain,

∇ logFX(ω) = RXRN
−1∇ logFN (ω) (3.51)

Using the eigen decomposition of RXRN
−1 = UΛU−1 where Λ is diagonal with eigen values

λ1, ..., λn, we obtain

U−1∇ logFX(ω) = ΛU−1∇ logFN (ω) (3.52)

We will make use of the following auxiliary lemma in matrix analysis.

Lemma 3.12. Given a function f : Rn → R, matrix A ∈ Rn×m and vector x ∈ Rm

∇xf(Ax) = AT∇f(Ax) (3.53)

Proof. By the chain rule we have,

∂f(Ax)
∂xi

=
n∑
k=1

∂f(Ax)
∂(Ax)k

∂(Ax)k
∂xi

(3.54)

=
n∑
k=1

∂f(Ax)
∂(Ax)k

∂(aTk x)
∂xi

(3.55)

=
n∑
k=1

∂f(Ax)
∂(Ax)k

aki (3.56)

=
n∑
k=1

∂kf(Ax)aki (3.57)

= aTi ∇f(Ax) (3.58)

It follows that ∇xf(Ax) = AT∇f(Ax).

Next, we state the main theorem.

Theorem 3.13. Let the characteristic functions of the transformed source and noise (UX and

UN) be FUX(ω) and FUN (ω). The necessary and sufficient condition for linearity of optimal

estimation is:
∂ logFUX(ω)

∂ωi
= λi

∂ logFUN (ω)
∂ωi

, 1 ≤ i ≤ m (3.59)

Proof. Using Lemma 3.12, we can rewrite (3.52) as

∇ω logFX(U−1ω) = Λ∇ω logFN (U−1ω) (3.60)
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Note that the characteristic functions of the source and noise after transformation can be

written in terms of the known characteristic functions FX(ω) and FN (ω), specifically FUX(ω) =

det(U)FX(U−1ω) and FUN (ω) = det(U)FN (U−1ω), where det(·) denotes the determinant.

The necessary and sufficient condition of (3.60) can thus be converted to the set of m scalar

differential equations of (3.59).

Further insight into the above necessary and sufficient condition is provided via the following

corollaries.

Corollary 3.14. Let FUXi(ω) and FUNi(ω) be the marginal characteristic functions of the

transform coefficients [UX]i, [UN]i. A necessary condition for linearity of optimal estimation

is:

FUXi(ω) = FλiUNi(ω), 1 ≤ i ≤ m (3.61)

Proof. Integrating both sides of (3.59) over all ωj , j 6= i, yields the following set of differential

equations

∂ logFUXi(ω)
∂ω

= λi
∂ logFUNi(ω)

∂ω
, 1 ≤ i ≤ m (3.62)

which, given the boundary conditions FUXi(0) = FUNi(0) = 1, leads to the solution specified

in (3.61) as an explicit matching condition.

Corollary 3.15. A necessary condition for linearity of optimal estimation is that one of the

following holds for every pair i, j, 1 ≤ i, j ≤ m:

• i) λi = λj

• ii) [UX]i is independent of [UX]j and [UN]i is independent of [UN]j.

Proof. Let us rewrite (3.59) explicitly for the ith and jth coefficients.

∂ logFUX(ω)
∂ωi

= λi
∂ logFUN (ω)

∂ωi
(3.63)
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∂ logFUX(ω)
∂ωj

= λj
∂ logFUN (ω)

∂ωj
(3.64)

The partial derivative of both sides of (3.63) with respect to ωj and both sides of (3.64) with

respect to ωi, to obtain the following:

∂2 logFUX(ω)
∂ωi∂ωj

= λi
∂2 logFUN (ω)

∂ωi∂ωj
(3.65)

∂2 logFUX(ω)
∂ωi∂ωj

= λj
∂2 logFUN (ω)

∂ωi∂ωj
(3.66)

There are only two ways to simultaneously satisfy (3.65) and (3.66): i) λi = λj ii) the second

order derivatives vanish, i.e., ∂
2 logFUX(ω)
∂ωi∂ωj

= ∂2 logFUN (ω)
∂ωi∂ωj

= 0 which means independence of the

ith and jth transform coefficients of source X and similarly of noise N .

Corollary 3.16. If the necessary condition of Corollary 3.14 is satisfied, then a sufficient

condition for linearity of optimal estimation is that U generates independent coefficients for

both X and N .

Proof. Independence of the transform coefficients implies that the joint characteristic function

is the product of the marginals:

FUX(ω) =
m∏
i=1

FUXi(wi), FUN (ω) =
m∏
i=1

FUNi(wi) (3.67)

Plugging (3.67) into the necessary and sufficient condition (3.59) of Theorem 3.13, it is straight-

forward to show that (3.61), the necessary condition of Corollary 3.14, is now both necessary

and sufficient.

While the condition in Corollary 3.16 involves independence of transform coefficients, the

weaker property of uncorrelatedness is already guaranteed by transform U. The matrix U

diagonalizes both RX and RN . We formalize this in the following lemma:

Lemma 3.17. Transform U decorrelates both source and noise: both URXUT and URNUT

are diagonal matrices.

Proof. Since both RX and RN are, by definition, positive definite matrices, there exists a matrix

S that simultaneously diagonalizes RX and whitens RN , i.e., SRXST = ΛX and SRNST = I
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where ΛX is diagonal and I is the identity matrix [36]. Hence, RX and RN can be expressed

as the following:

RX = S−1ΛXS−T , RN = S−1S−T (3.68)

Plugging the above into (3.44) we obtain U = ΛUS, where ΛU is diagonal. Substituting U in

URXUT and URNUT , we obtain:

URXUT = ΛUΛXΛT
U , URNUT = ΛUΛT

U (3.69)

The product of diagonal matrices is also diagonal.

As an example where the optimal estimator is known to be linear, consider the Gaussian

multivariate case. Note that the Gaussian source-channel pair satisfies the scalar matching

condition for any SNR, it satisfies (3.61). As a linear transform preserves joint Gaussianity

in the transform domain, U generates jointly Gaussian and uncorrelated coefficients which are

therefore independent, satisfying the conditions of Corollary 3.16.

An important observation is that the necessary and sufficient condition for scalars (3.31)

is also a necessary condition for vectors (3.61), in the transform domain. Due to this fact,

it is straightforward to extend the existence and uniqueness results and implications of the

scalar matching conditions to the vector spaces. These trivial extensions are omitted here for

conciseness.
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Chapter 4

Randomized Quantization

4.1 Introduction

A central objective of dithered quantization is to render the quantization error white and

independent from the source, which can be achieved if certain conditions, determined by Schuch-

man, are met [65]. Traditionally, dithered quantization has been studied in the framework where

the quantizer is uniform (with step size ∆) and the dither signal is uniformly distributed over

(−∆
2 ,

∆
2 ), matched to the quantizer interval as shown in Figure 4.1. A uniformly distributed

dither signal is added before quantization and the same dither signal is subtracted from the

quantized value at the decoder side. Note that only subtractive dithering is considered in this

part. The quantized values are entropy coded, conditioned on the dither signal in the variable

rate case. Randomized (dithered) quantizers have been studied in the past due to important

properties that differentiate them from deterministic quantizers, which were consequently ex-

plored to find rate-distortion bounds for universal compression [84, 30]. Later, Zamir and Feder

extensively studied the properties of dithered quantizers [80, 82, 81].

Randomized quantization is also of practical interest, beyond its theoretical significance.

Many filter/system optimization problems in practical compression systems such as the rate-

distortion optimal filterbank design problem [54], or low rate filter optimization for DPCM

compression of Gaussian auto-regressive processes [31], assume quantization noise that is in-

dependent of (or uncorrrelated with) the source and white. Although these assumptions are

satisfied at asymptotically high rates [20], such systems are mostly useful for very low rate

applications. For example, in [31], it is stated that the assumptions made in the paper are
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⊕Source
X ∼ fX(x)

Dither
Z ∼ U(−∆/2, ∆/2)

Uniform Quantizer
Q(·) ⊕

−Z

Reconstruction
X̂ = X + N

Figure 4.1. The basic structure of dithered quantization

not satisfied by deterministic quantizers and also it is shown that dithered quantizers satisfy

the assumptions exactly. However, conventional dithered quantization suffers from suboptimal

compression performance. Hence a quantizer that mostly satisfies the assumptions at relatively

low performance degradation will be of use in many such applications.

In this part, we consider a generalization to enable effective dithering of nonuniform quan-

tizers. To the best of our knowledge, this part of the thesis is the first attempt (other than our

preliminary work in [1]) to consider dithered quantization in nonuniform quantization frame-

work. One immediate problem with nonuniform dithered quantization is how to apply dither-

ing to unequal quantization intervals. In traditional dithered quantization, the dither signal is

matched to the uniform quantization interval, but it is not clear how to match generic dither

to varying quantization intervals. As a remedy to this problem, we propose dithering in the

companded domain. The conventional (uniform) quantizer is obviously a special case of the

nonuniform quantizer. The proposed dithered nonuniform quantizer is expected to outperform

the conventional dithered quantizer most significantly at low rates where the optimal variable

rate (entropy coded) quantizer is not uniform.

We also present an alternative deterministic quantizer that provides quantization noise

uncorrelated with the source. A deterministic quantizer cannot render the quantization noise

independent of the source or white but it can make it uncorrelated with the source. We

present the optimality conditions of this deterministic quantizer, for both fixed and variable

rate quantization, and compare its rate-distortion performance to the randomized quantizers.

Dithered quantization offers an interesting theoretical twist. Randomized quantization is

an instance of the random encoding used to prove the achievability of the coding bounds in

rate distortion theory [13]. However, to achieve those bounds, a random encoding scheme

is not necessary, as one can achieve the bounds using a deterministic quantizer with asymp-

totically high dimension. In the second part of this section, we investigate the settings under

which randomized quantization is asymptotically necessary. A trivial example involves requiring

source-independent quantization error. It is well known that the reconstruction (hence quanti-

zation error) is a deterministic function of the source when the quantizer is deterministic [20],
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Compressor
g(x) ⊕ Expander

h(y)
Source

X ∼ fX(x)

Dither
Z ∼ U(−∆,∆)

⊕ Reconstruction
X̂

Uniform Quantizer
Q(·)

Y

−Z

Figure 4.2. The proposed nonuniform dithered quantizer

while conventional dithered quantization produces quantization error that is independent of the

source. Although a deterministic quantizer can never render the quantization error indepen-

dent of the source, as we show in this part, a deterministic quantizer can produce quantization

error uncorrelated with the source. A natural question is whether the rate distortion bound,

subject to uncorrelated error constraint, can be achieved (asymptotically) with a deterministic

quantizer.

4.2 Preliminaries

The entropy, in bits, of a discrete random variable X taking values in X is

H(X) = −
∑
x∈X

P (X = x) logP (X = x) (4.1)

where logarithm is base 2. The differential entropy of a continuous random variable X with

probability density function fX(x) is

h(X) = −
∫
fX(x) log fx(x)dx (4.2)

The divergence between two continuous distributions fX and gX , is given by

D(fX ||gX) =
∫
fX(x) log

fX(x)
gX(x)

dx (4.3)

The uniform quantizer with dithering is defined as follows. The uniform quantizer, with

reconstructions {0,±∆,±2∆, ...,±K∆}, is a mapping Q : R→ R such that

Q(x) = i∆ for i∆ + ∆/2 > x ≥ i∆−∆/2 (4.4)

In fixed rate quantization, K is determined by the rate as

Rf = log(2K + 1) (4.5)
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For variable rate quantization K →∞. In this case, uniform quantizer is followed by a lossless

source encoder (entropy coder). Assuming an optimal entropy coder, the rate is estimated as

the entropy of the quantized source. Let dither Z be a random variable, distributed uniformly

on the interval (−∆/2,∆/2). Then conventional dithered quantizer approximates the source

value x by

x̂ = Q(x+ Z)− Z (4.6)

It can be shown that that the mean square error of this quantizer is independent of the source

value of x:

Ez{(Q(x+ Z)− Z − x)2} = ∆2/12,∀x (4.7)

Note that with any deterministic quantizer, the error is completely determined by the source

value [20].

The realization of the dither random variable Z is available to both the encoder and the

decoder. Thus, the rate of this quantizer is the conditional entropy of the reconstruction given

the dither, i.e.,

Rv = H(Q(X + Z)− Z|Z) = H(Q(X + Z)|Z) (4.8)

In [80], it is shown that the following holds:

H(Q(X + Z)|Z) = h(Y )− log ∆ (4.9)

where Y = X +N and N is independent of X and uniformly distributed over (−∆/2,∆/2).

4.3 Nonuniform Dithered Quantizer

The main idea is to perform uniform dithered quantization in the companded domain (see

Figure 4.2). The source X is transformed through compressor g(·) before dithered uniform

quantization. At the decoder side, dither is subtracted to obtain Y = g(X) + N , where N

is uniformly distributed over (−∆,∆) and independent of the source. The reconstruction is

obtained by applying the expander X̂ = h(Y ). The objective is finding the optimal compres-

sor and expander mappings g(x), h(y) that minimize the expected distortion under the rate

constraint. The MSE distortion can be written as:

D =
∫ ∫

[x− h(g(x) + n)]2fX(x)fN (n)dxdn (4.10)

where fN (n) is uniform over (−∆,∆). Note that this problem is related to the joint source

channel mapping problem where the optimal analog encoding and decoding mappings are stud-

ied [2]. In our setting, the reconstruction error is analogous to the channel noise and the
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rate constraint plays a role similar to that of the power constraint. Similar to [2], we develop

an iterative procedure that enforces the necessary conditions for optimality of the mappings.

Note that the conventional dithered quantizer is a special case employing the trivial identity

mappings, i.e., g(x)=h(x)=x, ∀x.

4.3.1 Optimal Expander

The conditional expectation h(y) = E{X|y} minimizes MSE between the source and the

estimate. E{X|y} has slightly different expressions for fixed and variable rates. Using Bayes

rule, the optimal expander h can be written as

h(y) =

γ+∫
γ−

xfX(x)fN (y − g(x))dx

γ+∫
γ−

fX(x)fN (y − g(x))dx
(4.11)

where for fixed rate γ+ = g−1(∆K) and γ− = g−1(−∆K) while for variable rate γ+ →∞ and

γ− → −∞.

4.3.2 Optimal Compressor

Unlike the expander, the optimal compressor cannot be written in closed form. However, a

necessary optimality condition can be obtained by setting the functional derivative of the cost

functional to zero. Thus, for the optimal g and h, the functional derivative of the total cost, J ,

along the direction of any variation function η(x) vanishes [51], i.e.,

∇J =
∂

∂ε

∣∣∣∣
ε=0

J [g(x) + εη(x)] = 0, ∀x ∈ R (4.12)

Fixed rate

Distortion expression can be written as in (4.13) where γ+ = g−1(∆K) and γ− = g−1(−∆K).

The first term in distortion expression is the granular distortion and remaining terms are over-

load distortion. Note that we need the overload term distortion terms here, because without

the exact expression, the g(x) will grow unboundedly. The second and third terms in (4.13)

prevent this. Since the rate is fixed, total cost is identical to the distortion for fixed rate case,

i.e., J = D.
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Jf =
1
∆
{

∆/2∫
−∆/2

(

γ+∫
γ−

[x− h(g(x) + n)]2fX(x)dx+

γ−∫
−∞

[x− h(−K∆ + n)]2fX(x)dx

+

∞∫
γ+

[x− h(K∆ + n)]2fX(x)dx)dn} (4.13)

Variable rate

To use (4.9) to find the rate, we need the distribution of Y = g(X) + N , which can be

written as

fY (y) =
1
∆
[
FX(g−1(y + ∆/2))− FX(g−1(y −∆/2))

]
(4.14)

where FX(x) is the cumulative distribution function of X, i.e., FX(x) =
x∫
−∞

fX(x)dx. The rate

can be evaluated as

Rv = h(Y )− log ∆ (4.15)

Total cost for variable rate quantization is

Jv = D + λR (4.16)

where λ is the Lagrangian parameter that is chosen for each rate.

4.3.3 Constrained Randomized Quantizer

Due to companding, the nonuniform randomized quantizer described above does not gen-

erate quantization error uncorrelated with the source although it is based on (conventional)

dithered quantizer which guarantees quantization error independent of the source. We there-

fore explicitly constrain the randomized quantizer to generate uncorrelated quantization error,

by adding a penalty term to the total cost function. The Lagrangian parameter λc ≤ 0 is set

to ensure E(xh(g(x) + n)) = E(x2).

Jc = J + λcE{x(h(g(x) + n))} (4.17)

where J = Jv in the case of variable rate and J = Jf for fixed rate. We find the necessary

conditions for optimality for fixed and variable rate randomized quantization by setting the

functional derivative to zero for both compressor and expander. Surprisingly, the optimal

compressor mapping remains unchanged and the optimal expander mapping is only scaled. We

state this result in the following theorem.
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Theorem 4.1. Let g and h be the optimal compressor and expander mappings of the un-

constrained optimal randomized quantizer. Let gc and hc denote the mappings of the optimal

constrained randomized quantizer. Then,

gc(x) = g(x), hc(y) = (1 + λc)h(y) (4.18)

Proof. Let us focus on fixed rate, the variable rate case is shown very similarly. The optimal

expander is no longer the standard conditional expectation, since it is impacted by the con-

straint. By setting ∂
∂ε

∣∣∣∣
ε=0

Jc [h(x) + εη(x)] = 0, we obtain the optimal expander in closed form

as hc(y) = (1 + λc)h(y). The update rule for gc(x) can be derived in a similar manner to the

unconstrained g(x), i.e., setting ∂
∂ε

∣∣∣∣
ε=0

Jc [g(x) + εη(x)] = 0 and plugging hc(y) = (1 + λc)h(y)

yields after straightforward algebra gc(x) = g(x).

4.3.4 Algorithm Design

The basic idea is to iteratively alternate between enforcing the necessary conditions for

optimality, thereby successively decreasing the total cost. Iterations are performed until the

algorithm reaches a stationary point. Solving for the optimal expander is straightforward since

the expander is expressed as closed form functional of known quantities, g(x), fX(x). Since

the compressor condition is not in closed form, we perform steepest descent, i.e., move in the

direction of the functional derivative of the total cost with respect to the compressor mapping

g. By design, the total cost decreases monotonically as the algorithm proceeds iteratively. The

compressor mapping is updated according to (4.19), where i is the iteration index, ∇J [g] is the

directional derivative and µ is the step size.

gi+1(x) = gi(x)− µ∇J [g] (4.19)

Note that there is no guarantee that an iterative descent algorithms of this type will con-

verge to the globally optimal solution. The algorithm will converge to a local minimum and

hence, initial conditions have paramount importance in such greedy optimizations. A prelimi-

nary low complexity approach to mitigate the poor local minima problem, is to embed in the

solution the noisy relaxation method of [18, 45]. We initialize the compressor mapping with

random initial conditions and run the algorithm for a very noisy channel (high Lagrangian

parameter λ). Then, we gradually increase rate (decrease λ) while tracking the minimum.
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4.4 Deterministic Uncorrelated Quantizer

A deterministic quantizer cannot yield quantization noise independent of the source [20].

However, it is possible to render the quantization noise uncorrelated with the source. A prior

work along this line exists in [35], where a uniform quantizer is converted to a quantizer whose

quantization noise is uncorrelated with the source. In this section, we derive the optimal

deterministic quantizer which is constrained to give quantization error uncorrelated with the

source.

Theorem 4.2. Let ri be the reconstruction point and xi−1 and xi be the decision boundaries

of the ith quantization interval, for the M point optimal quantizer whose quantization error is

uncorrelated with the source. Similarly, let r̂i be the reconstruction point and x̂i−1 and x̂i be the

decision boundaries of the ith quantization interval, for of optimal (unconstrained) quantizer.

Then, for i = 1, 2, ..M :

xi = x̂i and ri = σ2
x

r̂i
M∑
i=1

pir̂2
i

= sr̂i

where pi =
xi∫

xi−1

f(x)dx. This result holds for both variable and fixed rate quantization.

Proof. We start with fixed rate quantization, where distortion is:

D =
M∑
i=1

xi∫
xi−1

(x− ri)2f(x) dx (4.20)

The “uncorrelatedness” constraint can be written as :

E[x(x− ri)|x ∈ Ri] = 0 (4.21)

where Ri is the region where the reconstruction is ri. This is equivalent to:

E[x2] =
M∑
i=1

ri

xi∫
xi−1

xf(x) dx (4.22)

We consider the Lagrangian cost

J =
M∑
i=1

xi∫
xi−1

(x− ri)2f(x) dx+ γ

σ2
x − ri

xi∫
xi−1

xf(x) dx

 (4.23)
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By setting ∂J
∂ri

= 0, we obtain:

ri = σ2
x

r̂i
M∑
i=1

pir̂2
i

= sr̂i (4.24)

where r̂i =

xi∫
xi−1

xf(x)dx

xi∫
xi−1

f(x)dx

and s is a scaling constant. Setting ∂J
∂xi

= 0 we obtain the update rule

for xi as

xi =
ri + ri−1

2s
=
r̂i + r̂i−1

2
= x̂i (4.25)

For variable rate, the total cost function is:

J =
M∑
i=1

∫ xi

xi−1

(x− ri)2f(x) dx+ γ(σ2
x − ri

∫ xi

xi−1

xf(x)dx) + λ(
∫ xi

xi−1

f(x)dx) log(
∫ xi

xi−1

f(x)dx)

(4.26)

Setting ∂J
∂ri

= 0, we obtain the optimality condition for ri:

ri = σ2
x

r̂i∑M
i=1 pir̂

2
i

= sr̂i (4.27)

Setting ∂J
∂xi

= 0, we get,

xi =
ri + ri−1 + λ log pi

pi−1

2s
=
r̂i + r̂i−1 + λ̂ log pi

pi−1

2
= x̂i (4.28)

Hence, we conclude that for both fixed and variable rate quantization, it is sufficient to scale the

reconstructions of the unconstrained quantizer to render the reconstruction error uncorrelated

with the source.

4.5 Asymptotic Analysis

To quantify theoretically how much a source can be compressed under the independent/uncorrelated

reconstruction error constraint, we define two rate-distortion functions in which we constrain

the reconstructions error to be i) uncorrelated with the source RU (D), and ii) independent of

the source RI(D).

Let X denote the memoryless source, Y denote the reconstruction, S denote the recon-

struction error (S = Y − X) with fXS(x, s) as the joint distribution of X and S. Also,
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d(xn, yn) denotes the additive distortion measure between sequences xn and yn, is defined as

d(xn, yn) = 1
n

n∑
i=1

d(xi, yi).

We start with an auxiliary lemma regarding the constraints.

Lemma 4.3. Let xn and yn be n i.i.d. realizations of the random variables X and Y ,

lim
n→∞

1
n

n∑
i=1

|xi(yi − xi)| = E[|X(Y −X)|] (4.29)

lim
n→∞

1
n

n∑
i=1

log
fXS(xi, yi−xi)
fX(xi)fS(yi− xi)

= D(fXS(X,Y −X)||fX(X)fS(Y −X)) (4.30)

in probability.

Proof. By applying the weak law of large numbers to the left side of 4.29) and (4.30), we obtain

the right sides.

Lemma 4.4. Minimizing d(x, y) under uncorrelatedness (or independence) constraint is equiv-

alent to minimizing the modified distortion measure dU (x, y) (or dI(x, y)) where

dU (x, y) = lim
λ→∞

d(x, y) + λ|x(y − x)| (4.31)

dI(x, y) = lim
λ→∞

d(x, y) + λ log(
fXS(x, y − x)
fX(x)fS(y − x)

) (4.32)

Proof. Using Lagrangian multiplier λ, we can cast one of the constraints into the other. Both

independence and uncorrelatedness constraints can be written as expectation due to Lemma

4.3 and hence, can be cast into the expectation operator in the distortion constraint. The

parameter corresponding to both constraints is λ→∞.

We present the single letter characterization of the constrained rate distortion regions in

the following theorem. Let RU (D) be the infimum of all achievable rates R with expected

distortion E[d(X,Y )] ≤ D subject to the constraint E[X(Y − X)] = 0. Similarly, RI(D) is

the infimum of all achievable rates R with expected distortion E[d(X,Y )] ≤ D subject to the

constraint Y −X is independent of X.

Theorem 4.5.

RU (D) = inf
Y :E[d(X,Y )]≤D
E[X(Y−X)]=0

I(X;Y ) (4.33)
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RI(D) = inf
Y :E[d(X,Y )]≤D

D(fXS(X,Y−X)||fX(X)fS(Y−X))=0

I(X;Y ) (4.34)

Proof. The proof is a straightforward extension of the standard achievability and the converse

proofs for regular rate distortion function, replacing d with dU (dI). Note that RU (D) (RI(D))

is a special case of the conventional (unconstrained) R(D) function with modified distortion

measures dU (dI), i.e., RU (D) (RI(D)) with distortion measure d is identical to R(D) with

distortion measure dU (dI). Lemma 4.4 ensures random coding arguments can be made with

these measures.

Alternatively, similar to the unconstrained case, random coding arguments can be made

with two distortion measures, noting that the independence and uncorrelatedness constraints

can be considered as distortion measures, due to Lemma 4.4. With two distortion constraints,

one can define a more limited distortion typical set and apply the same asymptotic equipartition

property arguments used in proving the coding theorems in rate distortion theory.

4.5.1 Gaussian Source with MSE Distortion

Next, we examine a special case when source is Gaussian and distortion measure is MSE.

We show that if source distribution is Gaussian, for both uncorrelatedness and independence

constraints, reconstruction error is Gaussian. We start with an auxiliary lemma without proof

(see eg. [13] for the proof).

Lemma 4.6 ([13]). Let S and SG be random vectors in RNwith the same covariance matrix

KS. If SG ∼ N (0,KS) and S follows any other distribution, then

ESG [log(fSG(S))] = ES [log(fSG(S))] (4.35)

where fSG denotes the probability density function of SG, and ESG and ES denote the expecta-

tions with respect to SG and S, respectively.

Let us present a key lemma regarding the mutual information of two correlated random

vectors constrained to have a fixed cross covariance matrix.

Lemma 4.7. Let XG ∼ N (0,KX) and let S and SG be random vectors in RN , with the same

covariance matrix, KS and cross covariance matrix with XG, KSX . If SG ∼ N (0,KS) and
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jointly Gaussian with X and S follows another distribution, then

I(XG,XG + S) ≥ I(XG,XG + SG) (4.36)

with equality if and only if S ∼ N (0,KS).

Proof.

I(XG,XG + S)− I(XG,XG + SG)

=− h(XG|XG + S) + h(XG|XG + SG) (4.37)

=− h(S|Y) + h(SG|YG) (4.38)

=
∫ ∫

[−fSG,YG(sG,yG) log(fSG|YG(sG|yG)) + fS,Y (s,y) log(fS|Y (s|y))]dsdy (4.39)

=
∫∫
−fS,Y (s,y) log(fSG|YG(sG|yG)) + fS,Y (s,y) log(fS|Y (s|y))]dsdy (4.40)

=
∫∫

fS,Y (s,y)[log(fS|Y (s|y))− log(fSG|YG(sG|yG))]dsdy

=
∫
fY (y)

∫
fS|Y (s|y)(log

(fS|Y (s|y))
(fSG|YG(sG|yG))

)dsdy (4.41)

=
∫
fY (y)D(S|Y,SG|YG)dy (4.42)

D is always non-negative and hence, this difference is always non-negative, completing the

proof. Note that we used Lemma 4.6 and the fact that the joint distribution fSG,YG is Gaussian

to obtain (4.40) from (4.39).

Next, we present our main result on this topic:

Theorem 4.8. For a Gaussian source and MSE distortion measure

RI(D) = RU (D) (4.43)

Proof. In general, RI(D) ≥ RU (D), since independent reconstruction error is also uncorrelated.

Note the uncorrelated error constraint dictates KSX = 0, distortion constraint is Tr(KS) = D.

Lemma 4.7 states that under these constraints, for a Gaussian source, Gaussian reconstruction

error minimizes mutual information between the source and the reconstruction, i.e., I(XG,XG+
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S) achieves its minimum when S ∼ N (0,KS). Then, XG and SG are uncorrelated and jointly

Gaussian and are, thereby, also independent. Hence, (4.43) holds.

In the following corollary, we answer this question: is the best possible vector quantizer

at asymptotically high dimension that renders the reconstruction error uncorrelated with the

source necessarily a randomized one?

Corollary 4.9. For a Gaussian source, at asymptotically high quantizer dimension, the quan-

tizer that achieves minimum distortion subject to the uncorrelated error constraint is necessarily

a randomized one.

Proof. Due to Theorem 4.8, the reconstruction error for the Gaussian source subject to uncorre-

latedness constraint is actually independent of the source. Any deterministic quantizer cannot

render the quantization noise independent from the source by definition; hence, it should be a

randomized one.

Note that our result holds only asymptotically, it is still open if this result holds at finite

dimensions or not. We numerically answer this question for a scalar Gaussian source.

4.6 Experimental Results

We compare the proposed non-uniform dithered quantizer to conventional (uniform) dithered

quantizer and constrained deterministic quantizer for a unit variance scalar Gaussian source.

We implemented the above algorithm by numerically calculating the derived integrals. For that

purpose, we sampled the distribution on a uniform grid. We also imposed bounded support

(−3σ to 3σ) i.e., neglected tails of the Gaussian in the examples.

Figure 4.3 shows the comparative performances for fixed rate quantization. The proposed

method outperforms both deterministic constrained quantizer and conventional dithered quan-

tizer.

Figure 4.4 demonstrate the use of the proposed method for variable rate quantization. Note that

for fixed rate, the conventional (uniform) dithered quantization suffers from the suboptimality

of having equal quantization intervals significantly where as for the variable rate, the difference

between the proposed and conventional dithered quantizers diminish especially at high rates.
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This is theoretically expected due to high rate optimality of uniform quantizers for variable

rate quantization.
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Chapter 5

Transform Coding

Transform coding is a computationally attractive approach to source coding, and is widely

used in audio, image and video compression. In the basic transform coding setting, an input

vector is linearly transformed into a vector in the transform domain whose components (also

called transform coefficients) are scalar-quantized. The decoder reconstructs the quantized

coefficients and performs linear (inverse) transformation to obtain an estimate of the source

vector. The design goal is to find the optimal transform pair and bit allocation to scalar

quantizers, which minimize distortion. In general, transform coding underperforms optimal

vector quantization due to space filling loss in scalar quantizers, even if the transform generates

independent coefficients. Nevertheless, due to its low complexity, transform coding is commonly

employed in practical multimedia compression systems [27, 20].

Transform coding has been studied extensively. In their seminal paper, Huang and Schulthe-

sis have shown [38] that if the vector source is Gaussian and the bit budget is asymptotically

large, then the Karhunen Loeve transform (KLT) and its inverse are an optimal pair of trans-

forms for fixed-rate coding. In a more recent paper Goyal, Zhuang and Vetterli improve that

result by showing that KLT is optimal for Gaussian sources without making any high resolution

assumptions [26]. Their results require a mild scale invariance assumption and apply to both

the fixed and the variable rate quantizers.

The optimality of KLT in transform coding of Gaussian sources is often explained intu-

itively by the assertion that scalar quantization is better suited to the coding of independent

random variables than to the coding of dependent random variables. Thus, the optimality of

KLT for transform coding of Gaussian sources is understood to be a consequence of the fact

that it yields independent transform coefficients. The application of KLT in transform coding
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of non-Gaussian sources is then justified using the intuitive argument that KLT’s coefficient

decorrelation represents, for general sources, a rough approximation to the desired coefficient

independence.

In [15], the “popular trust” in the optimality of KLT is challenged and it is demonstrated

by examples that KLT can be suboptimal for both fixed and variable rate quantization, at

asymptotically high rate (with high resolution approximations). A theoretical result is also

obtained, namely, a sufficient condition for optimality of KLT: when KLT generates independent

coefficients then it is the optimal transform for variable rate coding.

In [42], a significant positive result is obtained regarding the optimality of KLT: KLT is

optimal in conjunction with variable rate high resolution coding, not only for Gaussians but

for the broader family of Gaussian vector mixtures, which includes Gaussian mixture models.

The problem is approached from a more practical perspective of numerical design in [7].

The authors proposed a gradient descent iterative algorithm to optimize the optimal orthogonal

transform in conjunction with optimization of the quantization scheme. In simulations, they

were able to demonstrate performance gains of the optimized transform-quantizer pair over

KLT for practical sources.

In this chapter, we return to the fundamental theoretical problem of optimal transform

coding. The main result is a necessary and sufficient condition for optimality of a transform

in conjunction with variable rate coding at high resolution. Specifically, we show that the

optimal transform is the one that minimizes the divergence between the joint distribution of

the coefficients and the product of their marginals. In other words, it minimizes a quantitative

measure of the dependence between the transform coefficients. Note furthermore that this

result not only resolves the question of when KLT is optimal (at high resolution), but it also

determines the optimal transform when it is not KLT.

We note minimizing a measure of dependence is closely related, at the high level, to the

objective of the well studied problem of source separation. This observation is beneficial in two

ways. First, we can leverage a rich reservoir of numerical algorithms, most importantly relating

to independent component analysis [40, 12], in order to approximate the optimal transform.

Moreover, our necessary and sufficient condition leads to contributions in source separation.

The main objective of source separation is exactly that of finding an orthogonal matrix

that will generate coefficients “as independent as possible”. Such matrices can be found by

maximizing an ad hoc cost function ([39, 8, 48, 50]), called contrast function, that purports to

quantify how close to statistically independent the resulting components are. One can choose

one of many ways to define the contrast function, and this choice governs the form of the

algorithms. The two broadest definitions of independence are based on minimization of mutual
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information or maximization of “non-Gaussianity”. The latter is motivated by the central limit

theorem, uses kurtosis and negentropy. The former family of algorithms is obviously closely

related measures involving the Kullback-Leibler (KL) divergence.

Our main result yields the precise connection between the problem of finding the optimal

transform in high resolution variable rate coding and the source separation problem, when

the objective (contrast) function is effectively the divergence. The optimal transform for the

former (source coding) problem is shown to minimize the objective of the latter problem. This

suggests that advances in transform coding may have an impact directly in source separation.

An example of such a result is presented in Section IV, where our necessary and sufficient

condition for optimality maps the result of [42] to ensure the optimality of KLT for source

separation of Gaussian vector mixtures.

5.1 Review of Prior Results

5.1.1 Preliminaries and Notation

Let source X be an N dimensional random vector, with real components, X1, X2..., XN .

Without loss of generality, we assume E(X) = 0, and hence RX = E(XXT). Let the transform

U be a real N ×N orthogonal matrix (U−1 = UT ) and let

Y = UX (5.1)

be the transformed random vector with coefficients Y1, Y2, ..YN . A scalar quantizer Q is a

mapping Q : R → R. We restrict this part to variable rate analysis, and the rate needed to

describe source X after quantization by quantizer Q is

R(Q) = H[Q(X)] (5.2)

A transform coding scheme is a structured vector quantizer where the random vector X is

transformed into Y by Y = UX and then each component Yi is quantized with scalar quantizers

Qi. The total rate of the transform coder is

RT =
∑
i

H(Qi(Yi)) (5.3)

At the decoder, inverse transformation by the matrix U−1 = UT is used to obtain an estimate

of the source vector. The corresponding distortion is measured as mean square error,

DT = E{||X−UTQ(UX))||22} (5.4)

where Q(X) = [Q1(X1), .., QN (XN )]T .
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5.1.2 High rate approximations

The quantization operation is nonlinear and difficult to analyze mathematically. However,

for both fixed and variable rate quantization, high resolution approximations can be made.

Specifically, if the density of a scalar random variable is reasonably smooth, then at sufficiently

high rate the distribution within a quantization interval is uniform. It is well known that

uniform quantizers are asymptotically (at high resolution) optimal for variable rate coding, ir-

respective of the density of the source to be quantized [23]. Therefore, we use uniform quantizers

throughout the part. Let ∆i be step size for ithtransform coefficient. This assumption results

in quantization noise that is uniformly distributed over (−∆i,∆i). Thus, at high resolution the

distortion Di is approximated as:

Di =
∆2
i

12
(5.5)

The following straightforward auxiliary lemma relates the differential entropy of a contin-

uous random variable with the entropy of its reproduction after uniform quantization at high

resolution:

Lemma 5.1 (e.g., [13]). If density fX(x) of random variable X is Riemann integrable, and

Q(X) is its reproduction after uniform quantization with step size ∆, then the following holds

asymptotically, as ∆→ 0:

H(Q(X))) + log ∆→ h(X) (5.6)

This lemma will be used in the proof of Theorem 5.2.

5.1.3 On Optimality of KLT

Definition (KLT): An orthogonal N × N matrix K is a KLT of N dimensional source

vector X with covariance matrix RX if KRXKT = ΛX , where ΛX is diagonal.

In other words, KLT generates uncorrelated coefficients. It is well known that KLT is opti-

mal for “zonal sampling” or “truncated expansion”: if the source estimate is approximated by

expansion from a pre-determined subset of the transform coefficients, then KLT minimizes the

approximation error. Another optimality aspect of KLT is shown in [5] for Gaussian sources:

KLT minimizes the expected number of expansion terms (or transform coefficients) if the re-

construction error is required to be below a prescribed threshold. It has more recently been

shown that KLT is optimal for Gaussian sources for both variable and fixed rate and at any

operating rate regime, i.e., without any high resolution approximations [26]. Note that KLT is
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not necessarily unique. As example, when RX = I, any orthogonal transform U “diagonalizes”

RX as UIUT = I. Then a natural question arises: do all these KLTs perform equally? A

sufficient condition for optimality of a KLT (that resolves this question if satisfied by one of

the contenders) was given in [15] and is reproduced here.

Effros-Feng-Zeger Theorem (EFZ) [15]: If a KLT produces independent transform

coefficients, then it is optimal for variable-rate transform coding at high resolution.

Note that this sufficient condition for optimality is not necessary. Specifically, there is a

family of distributions where KLT has been shown to be optimal for transform coding although

it does not generate independent coefficients [42].

Definition (Gaussian Vector Scale Mixtures): A random vector X taking values in

RN is called Gaussian Vector Scale Mixture (GVSM) if X = CT (Z�V) where C is a constant

orthogonal matrix, random vector Z ∼ N(0, I), scale vector V is a random vector independent

of Z and taking values in R+, and � denotes the element-wise product.

Note that conditioned on V = v, the GVSM vector X is Gaussian. Note further that this

definition characterizes a a fairly broad set of distributions, including Gaussian mixtures.

Jana-Moulin (JM) Theorem [42]: KLT is optimal for a GVSM source for variable rate

coding at high resolution.

This theorem clearly identifies a set of source distributions for which KLT is optimal, but

leaves open the question of whether KLT is strictly suboptimal outside this set.

In summary, several natural follow-up questions remain open: when is KLT optimal for

transform coding of general non-Gaussian sources? What is a conclusive condition for optimality

of a general (not necessarily KLT) transform? If KLT is suboptimal, how can we numerically

find the optimal transform? Here, we present a necessary and sufficient condition for optimality

of any transform, naturally including KLT. Also, when KLT is suboptimal, we propose an

algorithm to find the optimal transform.

5.2 Main Result

The main result is stated in the following theorem.

Theorem 5.2. Orthogonal transform U∗ is optimal if and only if the following is satisfied:

U∗ = argmin
U

D(fY (y)||
N∏
i=1

fyi(yi)) (5.7)

where D is divergence.
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Note: Theorem 5.2 subsumes Effros-Feng-Zeger theorem [15] as an extreme special case where

KLT yields independent coefficients.

The proof will make use of a trivial auxiliary lemma, which we state without proof:

Lemma 5.3. The joint entropy is invariant to orthogonal transformation: Let X be a random

vector and U be an orthogonal matrix, then

h(UX) = h(X) (5.8)

Proof of Theorem 5.2 . Using high resolution approximation for variable rate quantization, we

get the following for total distortion,

DT =
∑
i

∆2
i

12
, (5.9)

and for total rate,

RT =
∑
i

H(Q(yi)) (5.10)

Since the distortion is independent of the distribution of the transform coefficients, the aim

of the transform coder is to minimize the total rate RT . Using Lemma 1, we can rewrite (13)

as,

RT = −
∑
i

∫
fyi(yi) log fyi(yi)dyi + log ∆i (5.11)

where fyi is the marginal density of the ith transform coefficient. Since the quantization intervals

are fixed, the optimal transform must minimize the first term, hence the cost function:

J = −
∑
i

∫
fyi(yi) log(fyi(yi))dyi = −

∫
fY (y)

[∑
i

log(fyi(yi))

]
dy (5.12)

Using Lemma 5.3, we write the differential entropy h(y) as

−
∫
fY (y) log fY (y)dy = −

∫
fX(x) log fX(x)dx = C (5.13)

where C is used to emphasize that the joint entropy is determined by the source distribution

and is hence constant with respect to the transform. Subtracting the constant C from both

sides of (5.12), and noting that minimizing J is equivalent to minimizing J − C =

−
∫
fY (y)

[∑
i

log(fyi(yi))

]
dy +

∫
fY (y) log fY (y)dy = D(fY (y)||

N∏
i=1

fyi(yi)) (5.14)

which completes the proof.
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Note that Theorem 5.2 essentially states that the optimal transform is the one that min-

imizes the statistical dependence of the transform coefficients. KLT considers second order

statistics and decorrelates the transform coefficients, but this is neither necessary nor suffi-

cient to minimize the overall statistical dependence as measured by the above divergence. The

theorem also suggests that the optimal transform deviates from KLT whenever second order

statistics are not a good representative of the overall dependence. This result also subsumes

as a direct corollary the EFZ Theorem [15], and the well known optimality of KLT for jointly

Guassian sources at high resolution variable rate coding [20].

5.3 Source Separation Problem

Hyvarinen and Oja [40] give the following definition for the noise free linear source separa-

tion problem, which is of interest here.

Definition (Source Separation Problem): Let random vector X of size N be obtained

by

X = BS (5.15)

where B is a constant N ×N “mixing” matrix, elements Si in the vector S = (S1, ..., SN )T are

assumed to be mutually independent. X is observed while both B and S are unknown. The

aim of the problem is to find S (or alternatively the matrix B), by maximizing some form of

independence among the transform coefficients.

We choose the objective function of divergence between the product of the marginals of the

transform coefficients and joint density of the transformed vector, i.e. the cost function

J(U) = D(fY (y)||
N∏
i=1

fyi(yi)) (5.16)

where Y = UX.

Our main result provides two prospective directions to pursue: i) It allows us to develop an

algorithm for the long standing problem of optimal transform coding by leveraging a large bank

of algorithms from the source separation literature, and ii) to apply the theoretical optimality

(or suboptimality) results of transform coding to source separation problems. An algorithm for

finding the optimal transform is presented in the next section. In the remainder of this section

we use the JM Theorem to obtain a new optimality result in source separation.

Theorem 5.4. The optimal orthogonal transform for source separation of a Gaussian vector

scale mixture is KLT, when the contrast function is the divergence-based cost of (5.16).
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Proof. The proof follows from Theorem 5.2 and the JM theorem.

The theorem establishes the optimality of KLT and hence renders source separation algo-

rithms for this family of sources unnecessary.

5.4 Algorithm

In this section, we propose a modified version of the algorithm by Pham [56, 57] which seeks

to find the orthogonal transform that minimizes the contrast function expressed in (5.16). The

minimization of the cost can be done through a gradient descent algorithm, where the update

for transform matrix U involves a matrix ε yielding U + εU. We expand U + εU with respect

to ε up to second order terms and then minimize the resulting cost with respect to ε to obtain

the optimal ε and hence a new estimate. The Taylor expansion of J(U + εU) can be expressed

as follows:

J(U + εU) = J(U) +
∑
i,j

εij [E(YjΦi(Yi))− E(YiΦj(Yj))]

+
1
2

∑
i,j

ε2ij [E(Φ2
i (Yi))E(Y 2

j )− E(Φ2
j (Yj))E(Y 2

i )− 2] +O(ε3) (5.17)

where Φ is the gradient of the entropy function, also known as score function and O(ε3) accounts

for higher order terms which we will neglect. Setting the partial derivative with respect to ε to

zero, we find ε as follows:

εij =
E(YjΦi(Yi))− E(YiΦj(Yj))

E(Φ2
i (Yi))E(Y 2

j )− E(Φ2
j (Yj))E(Y 2

i )− 2
(5.18)

In this expression, the probability density functions being unknown, the score function

Φ(Y ) is replaced by an estimate (see [57]) and the expectations are estimated from training

samples assuming ergodicity. There is no guarantee that U + εU will be orthogonal. To solve

this problem, we replace the resulting matrix U with its closest (in terms of Frobenius norm)

orthogonal approximation which can be obtained by polar decomposition1.

We obtained some preliminary results using the proposed algorithm. We first generate the

samples of X by X = BS where S consists of four independent and identically distributed

random variables, and B is a random orthogonal mixing matrix. The proposed algorithm finds

the correct matrix U = B−1 precisely. We note that an obvious KLT choice is the identity I

since the source is already uncorrelated. It follows from the examples in [15], that the gain of the

optimal transform over standard KLT (in this case the identity matrix, I) can be unbounded.
1We employed a fast method as to repeatedly average U with its transpose inverse until convergence [25].
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5.5 Transform Coding with Dithered Quantization

We note again that in the case of deterministic optimal quantization, the optimal tranform

is unknown for most distributions other than Gaussians [15]. A main premise of this section

is that for fixed rate coding, dithered quantization enables universal transform coding, i.e., the

optimal transform is generally derived for all sources while this is not the case for variable

rate coding due to the dependence of the coding rate on the source distribution. Also, the

quantization error is statistically orthogonal to the source and hence may be viewed as an

additive independent noise term which in turn enables solving for the optimal transform by

linear analysis (by solving a matrix equation.) This is not the case for optimal deterministic

quantization, where difficulties include: i) the quantization error term can only be approximated

as an additive uncorrelated noise at asymptotically high resolution; ii) the expected distortion

depends on the type of distribution of each transform coefficient which, except in the simple

Gaussian source case, depends non-trivially on the transform and makes it extremely challenging

to minimize the distortion with respect to the transform. Because of these difficulties, it is

not straightforward to derive the optimal transform for non-Gaussians. The motivation for

this work stems from the realization that dithered quantization holds considerable promise for

circumventing the above difficulties and deriving the optimal transform for all sources.

5.5.1 Simple Scalar Case

Some intuition is gained already from a simple scalar quantization setting. The dithered

scalar quantizer is equivalent to the case where scalar source x is corrupted by i.i.d (quantiza-

tion) noise n, which is uncorrelated with x. At the receiver, y = x + n is available and best

linear estimate for x is

x̂ = (
σ2
x

σ2
x + σ2

n

)y (5.19)

Note that an optimal deterministic (Lloyd-Max) quantizer would reconstruct x̂ = y [20]. This

simple observation of the scalar case already intuitively suggests that a unitary transform and

specifically KLT will not be optimal for dithered quantization. Next, let us assume the source

x is Gaussian, and allow for scaling coefficients α before quantization and β after quantization.

Let also f(b) be the distortion function of the dithered quantizer applied to unit variance, zero

mean Gaussian at b bits. Then, σ2
n = α2σ2

xf(b) and x̂ = β(αx + n). The optimal α, β will
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minimize J where
J = E[(x− β(αx+ n))2]

= (1− βα)2σ2
x + β2σ2

n

= (1− βα)2σ2
x + β2α2σ2

xf(b)

= (1− 2βα+ (1 + f(b))(βα)2)σ2
x

(5.20)

Not surprisingly, J depends on the scaling coefficients only through the product βα. By the

optimality condition ∂J/∂(βα) = 0, we obtain the optimal scaling

βα = 1/(1 + f(b)) (5.21)

Generalizing to transform coding of signal blocks we intuitively expect that KLT followed

by an appropriate diagonal scaling matrix would be optimal. The following section concretizes

this intuition in a precise statement and formally proves it.

5.5.2 Optimal Transform for a Given Bit Allocation

A jointly Gaussian vector x with covariance matrix Rx is first linearly transformed to

obtain y = Ex, then quantized, ŷ = Q(y) consists of scalar quantized samples. n = y − ŷ

denotes the quantization error vector. At the receiver side, a linear estimator is used to get an

estimate of x as x̂ = Dŷ to minimize the mean square error,

J = E[(x− x̂)T(x− x̂)] = E[Tr((x− x̂)(x− x̂)T)] (5.22)

Note that we include the “trace” formulation of the criterion as it will be convenient for matrix

manipulations in the sequel. As is common, we assume for simplicity that the source is zero

mean and that MSE is the distortion criterion. We denote the KLT of the source, denoted as

S that satisfies

SRXST = Ψ (5.23)

where Ψ = diag(λ1, λ2, ..., λN) and λi’s are eigenvalues of Rx. For convenience we will assume

the ordering λ1 ≥ λ2 ≥, ..., λN with corresponding number of bits spent on coefficients b1 ≥ b2 ≥
... ≥ bN . Consider the problem: given bit allocation vector b = [b1, b2, ..., bN ] , find optimal

E and D transform matrices to minimize the MSE. Without loss of generality we assume that

the bit allocation vector is ordered, i.e., b1 ≥ b2 ≥ ... ≥ bN . The MSE cost can be written in

trace form as

J = E[Tr(x−DEx−Dn)(x−DEx−Dn)T] (5.24)

Since we use a dithered quantizer, quantization error is uncorrelated with y and with x, i.e.,

E(xnT) = 0. So we can write:

J = Tr(DERxETDT + Rx + DRnDT − 2DERx) (5.25)
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As Rx does not depend on the transform, we may equivalently minimize

J1 = Tr(DERxETDT + DRnDT − 2DERx) (5.26)

Suppose there is a single function f(.) to describe the rate distortion performance of the scalar

dithered quantization of each transform coefficent through

E[(yi − ŷi)2] = σ2
i f(bi) (5.27)

where bi and σ2
i denote the number of bits allocated to coefficient yi and the variance of

coefficient yi respectively, for i = 1, 2, ..., N . It follows from the basic properties of dithered

quantization that

Rn = diag(σ2
1f(b1), σ2

2f(b2), ..., σ2
Nf(bN )) (5.28)

Now, we define a convenient linear matrix operator, d(.) which sets to zero all off-diagonal

entries of the argument matrix. Specifically, d(A) = diag(a11, a22, ...aNN ) where A is some

N ×N matrix. Note that,

Rn = d(ERxETΛ) (5.29)

where Λ = diag(f(b1), f(b2), ..., f(bN )). Also, it is straightforward to show (using matrix

basic operations or the linear operator properties) that

d(AΓ) = Γd(A) (5.30)

for any diagonal Γ matrix. The following is a useful auxilary lemma.

Lemma 5.5. For any arbitrary function matrix A, variable matrix B and constant diagonal

matrix Γ,

∂(d(AΓ))/∂B = Γd(∂A/∂B) (5.31)

Proof. Since both d(.) and differentiation are linear operators, they may be interchanged. Using

(5.30) it is straightforward to obtain the lemma claim (5.31).

Let S denote any unitary matrix that diagonalize Rx as defined in (5.23). We write

E = Φ1ST and D = SΦ2 for any arbitrary Φ1, Φ2 matrices.

Lemma 5.6. The optimal Φ1 and Φ2 matrices are diagonal.
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Proof. DE = SΦ2Φ1ST and ERxET = Φ1ΨΦT
1 . Substituting these expressions into (5.26)

we obtain

J1 = Tr(Φ2Φ1ΨΦT
1 ΦT

2 ) + Tr(Φ2d(ΛΦ1ΨΦT
1 )ΦT

2 )− 2Tr(Φ2Φ1Ψ) (5.32)

Rearranging the terms using the trace equality Tr(AB) = Tr(BA),

J1 = Tr(ΦT
2 Φ2(Φ1ΨΦT

1 + d(ΛΦ1ΨΦT
1 )))− 2Tr(Φ2Φ1Ψ) (5.33)

Setting ∂J1/∂Φ2 = 0, yields

2Φ2(Φ1ΨΦT
1 + d(ΛΦ1ΨΦT

1 ))− 2ΨΦT
1 = 0 (5.34)

Rearranging terms:

Φ2 = ΨΦT
1 (Φ1ΨΦT

1 + Λd(Φ1ΨΦT
1 ))−1 (5.35)

Setting ∂J1/∂Φ1 = 0 and applying Lemma 5.5, we obtain

(2ΨΦT
1 + (2ΛΨd(Φ1))Φ2ΦT

2 − 2ΨΦT
2 = 0 (5.36)

and hence

Φ2 = (Φ1 + Λd(Φ1))−1 (5.37)

Note that, we used the dithered quantization property that quantization noise is inde-

pendent of the source (with Gaussian source assumption for the variable rate case) in this

derivation, which implies ∂Λ/∂Φ1 = 0 and ∂Λ/∂Φ2 = 0. In conventional quantization, Λ

depends on the distribution of the transform coefficient which is hard to track analytically.

This point makes the solution difficult for non-Gaussians (note for Gaussian source yi’s are

all Gaussian irrespective of the linear transform, so ∂Λ/∂Φ1 = 0 and ∂Λ/∂Φ2 = 0 hold.)

Substituting (5.35) into (5.33) yields

J1 = Tr(ΦT
2 ΨΦT

1 )− 2Tr(Φ2Φ1Ψ) (5.38)

Noting that, Ψ is diagonal and using the trace equalities Tr(A) = Tr(AT) and Tr(ABC) =

Tr(CAB), we get Tr(ΦT
2 ΨΦT

1 ) = Tr(Φ1ΨΦ2) = Tr(Φ2Φ1Ψ) and hence
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J1 = −Tr((Φ2Φ1Ψ) (5.39)

Plugging (5.37) into (5.39) we get

J1 = −Tr((Φ1 + Λd(Φ1))−1Φ1Ψ) (5.40)

Now, J1 is a function of only Φ1. Hence, setting the partial derivative with respect to Φ1

to zero, ∂J1/∂Φ1 = 0 and using matrix inversion lemma

(I + Λ)−1 = Φ1(Φ1 + Λd(Φ1))−1

= I−Λd(Φ1)(Φ1 + Λd(Φ1))−1

(5.41)

(Λ + I)−1 is a diagonal matrix, since Λ and I are both diagonal. Λd(Φ1) is also diagonal

since it is the product of two diagonal matrices. The remaining factor (Φ1 + Λd(Φ1))−1 must

therefore be diagonal, which requires Φ1 to be diagonal, i.e., Φ1 = d(Φ1). Similar reasoning

applied to (5.37) yields the conclusion that Φ2 is also diagonal.

Now, we can state the main theorem on this topic:

Theorem 5.7. For given ordered bit allocations b1 ≥ b2 ≥, ..., bN , the E, D transform matrices

that minimize MSE for dithered scalar quantization are given by

E = Φ1ST,D = SΦ2 (5.42)

for any Φ1, Φ2 diagonal matrices that satisfy

Φ1Φ2 = (I + Λ)−1 (5.43)

and S is the KLT matrix. Moreover, the distortion is

J =
N∑
i=1

λi
f(bi)

1 + f(bi)
(5.44)

Proof. Using Lemma 5.6 and Tr(ΓΘΩ) = Tr(ΘΓΩ) for any diagonal matrices Θ, Γ, Ω, (5.33)

can be written as:

J = Tr((I−Φ2Φ1)Ψ) (5.45)
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MSE is only a function of Φ1Φ2, not depending on individual values of Φ1 or Φ2. By (5.37)

and Lemma 5.6 the optimality condition on Φ1Φ2 follows directly: Φ1Φ2 = (I + Λ)−1

While there are possibly N ! distinct S matrices that satisfy (5.23) corresponding to N !

permutations of distinct eigenvalues of Rx. To select the optimal S matrix, we need the

optimal ordering of eigenvalues with respect to the ordering of bit allocations, as is standard

practice with KLT: higher rate should be allocated to the component that corresponds to larger

eigenvalue. We are trying to minimize J , i.e., maximize J2 where,

J2 = Tr(Φ1Φ2Ψ)

= Tr(Ψ(I + Λ)−1)

=
N∑
i=1

λi
1+f(bi)

(5.46)

Both λi and 1 + f(bi) terms are positive, the maximum is achived when λi are in reverse order

relative to 1 + f(bi) [53]. Since f(bi) is a decreasing function of bi, λi should be ordered as

is bi, namely in decreasing order. Hence, the optimal permutation of the rows of S is the

one that provides (λ1 ≥ λ2 ≥, ..., λN ) when the bit allocation vector is ordered such that

(b1 ≥ b2 ≥, ..., bN )

For the given E, D matrices, the bit allocation should minimize MSE. If we write MSE in

terms of quantization function and ordered eigenvalues using the main theorem,

J =
N∑
i=1

λi
f(bi)

1 + f(bi)
(5.47)

Note that if standard KLT is used the distortion is

JKLT =
N∑
i=1

λif(bi) (5.48)

which is strictly larger than that of the proposed transform.
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Chapter 6

Conclusion and Future Directions

This dissertation has primarily focused on optimizing mappings, linear and nonlinear, for lim-

ited delay and energy communications.

In Chapter 2 we derived the necessary conditions of optimality for a given source-channel

system. Based on the necessary conditions, we derived an iterative algorithm which generates

locally optimal analog mappings. Comparative results and example mappings are provided and

it is shown that the proposed method improves upon prior work.

In Chapter 3, we derived conditions under which the Lp optimal estimator is linear. We

identified the conditions for the existence and uniqueness of a source distribution that matches

the noise in a way that ensures linearity of the optimal estimator for the special case of p = 2.

One trivial example of this type of matching occurs for Gaussian source and Gaussian noise at

all SNR levels. Another instance of matching happens when the source and noise are identically

distributed. We also show that Gaussian source-channel pair is unique in that it is the only

source-channel pair for which the optimal estimator is linear at more than one SNR value.

Moreover, we show the asymptotical linearity of MSE optimal estimators for low SNR if the

channel is Gaussian regardless of the source and vice versa, for high SNR if the source is

Gaussian regardless of the channel. We also study the extension to higher dimensions where

additional constraints are introduced to the set of necessary and sufficient conditions, beyond

the ones inherited from the scalar case

In Chapter 4, we proposed a nonuniform randomized quantizer where the dithering is per-

formed in companded domain to solve the problem of matching dither variance to varying

quantization intervals. The optimal compressor and expander mappings that minimize mean
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square error are found by an iterative method. The extension of the method to vector quan-

tization with finite dimensions is left as future work. Moreover, we analyzed the randomized

quantizer at asymptotically high dimension. The main result of our analysis is: for a Gaussian

source, with asymptotically high dimensions, the optimal vector quantizer that renders quan-

tization error uncorrelated with the source must be a randomized one. As a future work, we

will investigate whether there are other cases in which random encoding is not merely a tool

to deduce the rate-distortion bounds, but a necessary element in achieving such bounds.

In the last part, we presented a necessary and sufficient condition for transform optimality

at high resolution, variable rate coding. Note that this result not only resolves the question

of when KLT is optimal (at high resolution), but also determines the optimal transform when

it is not KLT. This condition also points to direct connections between the transform coding

problem and an important subset of the well studied source separation problems. We used

this observation to obtain new results in two directions: developing a numerical algorithm for

transform optimization in transform coding by leveraging tools from source separation; and

mapping known theoretical optimality results in transform coding to the source separation

problem. Preliminary results for transform optimization show the algorithm converging to

the optimal transform, although global optimality is not guaranteed in general. In source

separation the analogy enables the identification of a fairly broad family of distributions for

which the optimality of KLT is guaranteed and numerical optimization algorithms are not

needed. Moreover, we derived the optimal transform for subsequent dithered quantization.

The optimal transform consists of KLT followed by a diagonal scaling matrix. For fixed rate

coding, this transform is universally optimal (for all sources). In the case of variable rate coding,

it is shown to be optimal for Gaussian sources.

6.1 Future Directions

• Deterministic Annealing: The proposed algorithm for finding optimal mappings does

not guarantee a globally optimal solution, as a natural result of being a gradient descent

approach. This problem can be largely mitigated by using more powerful optimization,

in particular a deterministic annealing approach [63], which is left as future work.

• Fundamental Limits of Zero-delay Communications: In point-to-point source-

channel communication with a fidelity criterion and a transmission cost constraint, the

region of achievable cost and fidelity pairs is completely characterized by Shannons sepa-

ration theorem, which in general only holds if arbitrarily high complexity and long delay

are allowed. If the delay and/or complexity is constrained, the separation theorem only
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provides an outer bound to the achievable cost/distortion region, and the exact shape

of this region is in general not known. Recent research in this direction has appeared in

[58, 41]. Calculation of tighter inner and/outer bounds for delay limited source channel

coding would be one of the objectives of the future work.

• Linearity of Optimal Prediction: The analysis for the estimation problem can be

extended to many important problems, including predictive coding. In predictive coding,

linear prediction is usually employed due to complexity issues. Our approach can be

(nontrivially) extended to this problem.

• Transform Coding Extensions: The basic ideas in optimal transform coding can be

(nontrivially) extended to fixed rate coding, to distributed [19] and to multiple descrip-

tions coding [28] scenarios, all of which are the subjects of ongoing investigation.
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Transactions on Information Theory,, 15(2):319–321, 1969.

[6] HV Allen. A theorem concerning the linearity of regression. Statistical Research Memoirs,
2:60–68, 1938.

[7] C. Archer and TK Leen. A generalized Lloyd-type algorithm for adaptive transform coder
design. Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal
Processing, IEEE Transactions on], 52(1):255–264, 2004.

[8] F.R. Bach and M.I. Jordan. Kernel independent component analysis. The Journal of
Machine Learning Research, 3:1–48, 2003.

[9] A. Balakrishnan. On a characterization of processes for which optimal mean-square systems
are of specified form. IEEE Transactions on Information Theory, 6(4):490–500, 1960.

[10] P. Billingsley. Probability and Measure. John Wiley & Sons Inc, 2008.

[11] S.Y. Chung. On the construction of some capacity approaching coding schemes. PhD
thesis, Massachusetts Institute of Technology, 2000.

[12] P. Comon. Independent component analysis, a new concept? Signal processing, 36(3):287–
314, 1994.

[13] T.M. Cover and J.A. Thomas. Elements of information theory. J.Wiley New York, 1991.

[14] R.M. Dudley. Real Analysis and Probability. Cambridge Univ Pr, 2002.

[15] M. Effros, H. Feng, and K. Zeger. Suboptimality of the Karhunen-Loeve transform for
transform coding. IEEE Transactions on Information Theory, 50(8):1605–1619, 2004.

78



[16] T. Fine. Properties of an optimum digital system and applications. IEEE Transactions
on Information Theory, 10(4):287–296, 1964.

[17] A. Fuldseth and TA Ramstad. Bandwidth compression for continuous amplitude channels
based on vector approximation to a continuous subset of the source signal space. In IEEE
International Conference on Acoustics, Speech, and Signal Processing,, volume 4, 1997.

[18] S. Gadkari and K. Rose. Robust vector quantizer design by noisy channel relaxation. IEEE
Transactions on Communications, 47(8):1113–1116, 1999.

[19] M. Gastpar, P.L. Dragotti, and M. Vetterli. The distributed Karhunen-Loève transform.
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