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ABSTRACT

Canonical distributed quantization schemes do not scale to large
sensor networks due to the exponential decoder storage complexity
that they entail. Prior efforts to tackle this issue have largely been
limited to the suboptimal schemes of source grouping and decoding,
thus failing to use all available information at the decoder. We pro-
pose a new decoding paradigm where all received bits are used in
decoding. Essentially, to decode each source, we partition the space
of received bit-tuples using a nearest neighbor quantizer at a decod-
ing rate consistent with the allowed complexity and each partition is
then mapped to a reconstruction value for that source. To avoid local
minima in design, we resort to deterministic annealing to determine
the nearest neighbor partition function (the partitioning prototypes)
from the training set. Results on several data-sets show substantial
gains over naive and other competing approaches.

Index Terms— Distributed coding, large scale sensor networks,
data compression, quantization, codebook complexity

1. INTRODUCTION

The field of distributed source coding (DSC) started with the semi-
nal work by Slepian-Wolf [1] and Wyner-Ziv [2] in the seventies and
has since been studied extensively both in the information theory and
signal processing communities. Today’s research related to DSC can
be roughly categorized into two ‘camps’: one adopting ideas from
channel coding (see, e.g., [3]), and another (see, e.g., [4, 5]) building
directly on source coding methodologies. In this paper, the source
coding based methods will be relevant to us and we will briefly de-
scribe the conventional DSC setup and its design in the next section.

Despite these numerous contributions, very little has been done
related to scaling DSC for large number of sources. The conven-
tional methods fail due to the exponential growth of decoder com-
plexity with the number of sources. This issue was first addressed
in [6], where the authors proposed a pdf-optimized source clustering
scheme aimed at grouping Gaussian sources based on their correla-
tions. By restricting the number of sources in each group, affordable
decoder storage complexities were met. But this method ignores
inter-cluster correlations and hence is inefficient if the number of
clusters is high.

In our prior work on large scale distributed coding [7], we pro-
posed a structured approach to operate at moderate complexities by
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Fig. 1. Conventional DSC setup

introducing a new module at the decoder, called the ‘bit-subset selec-
tor’ which judiciously selects a subset of the received bits to decode
each source. We showed that, even a naive module, such as the bit-
subset selector which neglects a subset of the received bits to decode
each source outperforms source grouping techniques. In this work,
we propose a new setup for the decoder, which instead of discarding
bits, optimally compresses the received bits to the allowable decod-
ing rate.

2. MOTIVATION

We begin with a brief description of the conventional DSC 1. Con-
sider N correlated sources, {Xi, i = 1 . . . N} communicating with
the central receiver over noiseless channels at rates Ri respectively.
The decoder uses all the received bits to reliably reconstruct each

source, {X̂i, i = 1 . . . N}. The objective is to design the encoders
and decoders to minimize the distortion between the observations
and the reconstructions. A typical setup is illustrated as a block dia-
gram in Fig. 1.

The encoding at each source consists of two stages. The first
stage is a simple high rate quantizer, Hi, which discretized the
source-space into a finite number of regions Ni,

2 i.e.

Hi : Xi ∈ R → Li = {1 . . . Ni} (1)

The second module, which we call a ‘Wyner-Ziv map’ (WZ-map)
relabels the Ni quantization regions with a smaller number, 2Ri , of
indices. Though the WZ-maps perform lossy compression, if prop-
erly designed, they exploit the inter-source correlation efficiently,

1For details refer to [5, 4]
2These quantizers are made high rate so as to exclude them from the joint

encoder-decoder design. This is a practical engineering necessity and we
refer to [5] for more details.
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thereby providing better rate-distortion performance. Mathemati-
cally, the WZ-map for each source, Wi, is the following function
:

Wi : Li → Ii = {1 . . . 2Ri} (2)

and the encoding operation can be expressed as a composite func-
tion:

Ii = Ei(xi) = Wi (Hi(xi)) ∀i (3)

We denote the received bit-tuple by I = (I1, I2 . . . IN ) and
the set of all possible received indices by I = (I1 × I2 . . . IN ).
The total number of bits received at the decoder is given by Rr =∑N

i=1 Ri. The decoder reconstructs each source based on the re-
ceived index I ∈ I. Formally, for each source i the decoder is given
by the mapping:

Di : I → X̂i ∈ R ∀i (4)

The WZ-maps and the decoders are typically iteratively de-
signed using an available training set of source samples. Usually the
decoder is assumed to be a lookup table, which has the reconstruc-
tions stored for each possible received index. For optimal decoding,
the decoder has to store a unique reconstruction for each received
index, thereby making the size of the lookup table grow exponen-

tial in N , given by O
(
N2Rr

)
= O

(
N2

∑N
i=1 Ri

)
. We call the

total decoder storage as its complexity. This exponential growth
in complexity of the optimal decoder makes it infeasible to use the
conventional setup in practical settings even with moderately large
number of sources.

In most of the prior research, this issue is addressed by group-
ing the sources together based on the source distributions [6, 8]. In
our previous work [7], we introduced a new module at the decoder
called the bit-subset selector, which uses a subset of the received bits
to decode each source. In this work, we generalize this setup by in-
troducing a ‘Bit-mapper’ at the decoder which facilitates the reuse
of the stored codewords for different received indices.

It is worth mentioning an interesting decoding approach, alter-
native to the lookup table, that has been proposed in the literature,
wherein, the decoder performs computations to generate the code-
words when it receives an index. Here, the decoder storage com-
plexity is translated to the decoder computational complexity, which
grows exponentially for optimal decoding. Prior works [8] have
tackled this issue by approximating the sources to form a low com-
plexity Bayesian network. As the main objective in the two ap-
proaches are seemingly different, further comparison and applica-
bility of the two approaches will be addressed as part of future work.

3. PROPOSED APPROACH

As mentioned before, the decoder receives information at the rate
of Rr bits per instant. Clearly, source reconstructions at this rate
are unfeasible for large networks as the required codebooks become
exponentially bigger. We also note that the individual source de-
coding rates are much smaller. Hence, in our proposed approach,
instead of discarding bits to match the individual decoding rates (as
was done in prior works), we aim to find the optimal transformation
that can compress the received bits down to the allowable decod-
ing rate. To this end, we decompose the monolithic decoder into a
compressor/bit-mapper followed by a look-up table of reconstruc-
tions/codebook. In its most general form, this bit-mapper is a classi-
fier or a vector quantizer and is defined as the mapping Bi : I → Ki.
Note that the domain of this mapping is the space of received in-
dices and the most general form of the bit-mapper is a look-up table
that maps each element of the domain to a value in the range. This

Fig. 2. Proposed Setup: Decoder operates in two stages, (1) Bit
mapper (2) Labeling functions

is unfeasible for large networks as the domain grows exponentially
larger with network size. Hence we impose a structural limitation on
the bit-mapper by requiring it to be a nearest neighbor classifier [9],
which is defined as a mapping Bi : I → Ji, |I| ≥ |Ji| = 2Rdi ∀i,
where the set Ji is called the prototype index set. This structure for
the bit-mapper enforces each received index to cluster to the nearest
prototype based on a minimum distance criterion. Mathematically:

Bi(I) : arg min
S∈Ji

di(I, S) ∀i (5)

where Ji = {Si1 . . . Si|Ji|} is the set of prototypes associated with
decoding source i and d() is any well defined distance measure. Note
that this distance measure is not related to the end to end distor-
tion measure between the source samples and their reconstructions.
Since I is a Rr dimensional bit vector, we also choose the proto-
types to be bit-vectors in the Rr dimensional space. A natural dis-
tance measure for this space is the Hamming distance3. To decode
source i, the labeling function, Qi, assigns to every prototype a dis-
tinct codeword which is used as the reconstruction for source i. The
reconstructions can now be expressed as X̂i = Qi (Bi(I)) ∀i.

Enforcing this structure requires us to store the
∑

i |Ji| =∑N
i=1 2

Rdi prototypes and N lookup tables with |Ji| entries for the
codewords. By controlling the number of prototypes, we can op-
erate at affordable decoder storage complexities. The total decoder
storage required for the different approaches will be given in Section
3.4. This setup in shown schematically using a block diagram in
Fig. 2.

What remains is to design the encoders, bit-mapper and code-
books efficiently to minimize the end to end distortion. The average
distortion is measured as:

D = E

[
N∑
i=1

γiDi(Xi, X̂i)

]
(6)

where 0 ≤ γi ≤ 1,
∑N

i=1 γi = 1 weigh the relative importances
of each source and Di are any appropriately defined distortion mea-
sures. Hereafter, we will specialize the end to end distortion to be
the mean squared error and assume equal weights for each source,
i.e. γi =

1
N

. We replace expectation with an empirical average over
an available training set as:

D =
1

N |T |

|T |∑
k=1

N∑
i=1

(xi(k)− x̂i(Bi(I(k))))
2

(7)

3Real-valued prototypes are also possible as are other distance measures
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where T denotes the training set, xi(k) is the kth training sample
for source i and I(k) = (E1(x1(k)), . . . EN (xN (k))).

3.1. Decoder design by deterministic annealing

In (7) the prototypes are present inside a non-differentiable function
and the final end-to-end distortion does not depend on the prototypes
in an analytic fashion. Hence it is not easy to find the optimal pro-
totypes for this cost function. Iterative design of prototypes is not
practical as it tends to get trapped in local minima. Therefore, we
adopt a global optimization technique (DA) to design the prototypes
[9].

Here the deterministic bit-mapper is replaced by a random map-
per during the design stage. Each training set element is mapped
in probability to all prototypes and this probability is denoted as,
Pi(j|k) ∀k ∈ |T |,i ∈ {1, . . . , N},j ∈ Ji. Distortion is now mea-
sured as:

D =
1

N |T |

|T |∑
k=1

N∑
i=1

∑
j∈Ji

Pi(j|k) (xi(k)− x̂i(j))
2

(8)

Note that this includes the initial ‘hard’ cost function as a special
case when Pi(j|k) = 0 or 1. We restrict Pi(j|k) to the class of Gibbs
distributions of the form:

Pi(j|k) = e−βi(di(I(k),Sij))∑
j e

−βi(di(I(k),Sij))
(9)

where βi are called the inverse pseudo-temperatures which govern
the peakiness of the distribution. This form has the advantage of
converging to a nearest-neighbor classifier as βi → ∞, since cor-
respondingly Pi(j|k) = 1 for the nearest neighbor and zero every
where else.

The soft mappings introduce randomness into the system which
is captured by the system entropy measured as:

H =
1

N |T |
∑
k∈T

N∑
i=1

∑
j∈Ji

Pi(j|k) logPi(j|k) (10)

During each iteration of design, the distortion is minimized subject
to a constraint on the system randomness, where the level of ran-
domness is controlled by a Lagrange parameter termed ‘temperature’
(given the analogy to thermodynamics). The Lagrangian is denoted
as:

J = D − TH (11)

At each temperature, we minimize J (11) with respect to Ji, βi

and Qi ∀i. This minimization can be achieved using any standard
local minimization techniques. As βi are real valued, the gradients
with respect to βi are given by:

δJ

δβi
= 1

N|T |
∑

k

∑
j

{
(xi(k)− x̂i(k))

2 + T (1 + log(Pi(j|k)))

Pi(j|k)
(∑

j′ Pi(j
′|k) ‖I(k)− Sij′‖ − ‖I(k)− Sij‖

)}
(12)

As Ji are Rr bit numbers, we employ a discrete optimization
approach, where in each step, we find an incrementally better proto-
type among the neighboring prototypes. Mathematically, prototype
update is given by :

S∗
ij = arg min

S∈N(Sij)
J (13)

where N(Sij) is the set of prototypes which includes Sij and its
neighbors.

Finally, differentiating (11) w.r.t Qi, we get the optimal code-
book update rule to be a generalization of the centroid rule and is
given by:

x̂i(j) = Qi(j) =

∑
k Pi(j|k)xi(k)∑

k Pi(j|k)
(14)

We now describe the algorithm for decoder design for fixed en-
coders. The initial temperature is set to ∞ (high value) and the βi

are initialized to 0 (any low value). Ji are set to the median of the
training indices in the Rr dimensional bit plane and the Qi are set to
the mean of the training set. T is gradually lowered, and at each T
Ji, βi and Qi are optimized using (12),(13) and (14). As the temper-
ature is lowered, the entropy of the system reduces. As T → 0, we
get a hard decoder with every received index mapping to the nearest
prototype.

3.2. Design of Encoders

Once the decoder has been designed using DA, we choose the WZ-
map at each encoder to be the optimal choice given the decoder as
(also refer [7]):

Wn(m) = argmin
l∈Ii

∑
x(k)∈Tn,m

N∑
i=1

(xi(k)−Qi (Bi (In,l(k))))
2

(15)
∀n,m where Tn,m = {x ∈ T : Hn(xn) = m} and

In,l = (E1(x1), . . . En−1(xn−1), l, En+1(xn+1), . . . EN (xN ))

3.3. Algorithm for system design

The high rate quantizers are designed independent of the rest of the
modules using a standard Lloyd-Max approach. Given some initial
WZ-maps, prototypes and codebooks, the encoders and decoders are
designed iteratively till convergence. To mitigate the effect of local
minima due to the WZ-maps, the design is repeated over multiple
random initializations. It can be shown that the design complexity
grows as O(|T |N2), which is same as that with the source grouping
methods, but we omit the derivation here due to space constraints.

3.4. Storage complexity comparison

To compare the storage requirements we assume Rdi = R and Ri =
Rs ∀i, hence, Rr = NRs. Without getting into further details, we
enumerate the storage requirements for the different approaches in
Table 1 where F denotes the number of bits required to store a real
number.

Codebook storage Module storage

Source grouping N2RF N log(NRs
R

)

Bit-subset selector N2RF NR log(NRs)

Bit mapper N2RF N2Rs2
R

Table 1. Comparing storage complexities

4. RESULTS

We conducted preliminary simulations for two sensor networks con-
sisting of 8 and 50 sources respectively. The sources were randomly
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deployed on a square grid of dimensions 100 × 100. We consid-
ered synthetic Gaussian sources, N (0, 1), with the correlation drop-
ping exponentially with the distance. Specifically, the correlation

between two sources at a distance d was assumed to be ρ
d
do . For

both the simulations, the system was trained using a training set and
tested on a test set, each of length 20, 000 samples.

We assumed the decoding rate to be the same for all sources,
i.e., Rdi = R ∀i. By varying R, different points on the complexity-
distortion curve were obtained, where the complexities are cal-
culated based on Table 1. We compare the performance of our
technique with the source grouping method, where the sources are
grouped heuristically based on their correlations, making sure that
the sources with higher correlations are grouped together.

We assumed each source transmits 1 bit, i.e., Ri = 1∀i and
the high rate quantizers partition the source space into 16 regions.
For all methods, we report the best performance over several ran-
dom initializations (limited to 25). To avoid any potential fairness
issues, we used the same high-rate quantizers for all the methods.
We also initialized each system using the modules which gave the
best performance for the other setups.

4.1. 8 Sources

Fig. 3. Complexity vs Distortion for 8 Synthetic Gaussian sources
placed randomly on a square grid

We chose ρ = 0.95 and do = 100 for this case. In Fig. 3
we plot the total decoder storage vs the distortion for the different
approaches. We see that the bit-subset selector itself gains over the
source-grouping method up to 0.7 dB. The proposed approach fur-
ther improves the gains to about 1.7 dB at a decoder storage of 213.
It can also be observed that the bit-subset selector outperforms the
proposed bit-mapper at some storage complexities due to the addi-
tional storage required to store the prototypes. To demonstrate the
issue of local-minima with the decoder design, we also plot the best
results obtained by using a Lloyd-Max type iterative scheme to de-
sign the decoder optimized over multiple random initializations. We
can see DA performing considerably better.

4.2. 50 Sources

For this case, we chose ρ = 0.9 and do = 100. We compare the per-
formances of source-grouping method with the proposed technique
in Fig. 4. The proposed approach outperforms the grouping method
by about 1.5 dB at a complexity of 216. Equivalently, the proposed
approach requires about 3X reduction in storage at an average dis-
tortion of about -8 dB. We will investigate the results for real sensor
network datasets and various other synthetic source models as part
of future work.

Fig. 4. Complexity vs Distortion for 50 Synthetic Gaussian sources
placed randomly on a square grid

5. CONCLUSIONS

In this paper, we proposed a new methodology for distributed cod-
ing of large number of sources. The proposed scheme is a nearest
neighbor classifier based approach and uses same set of codewords
for different received combination of bits at the decoder. This re-
sults in low complexity decoders that operate at practical storage
requirements. Simulation results show considerable improvement
over other traditional naive source grouping methods. As part of fu-
ture work, we seek to investigate other potential advantages of the
proposed approach in error and erasure resilience.
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