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Abstract—It is well-known for transform coding of multivariate
Gaussian sources, that the Karhunen Loeve transform (KLT)
minimizes the mean square error distortion. However, finding
the optimal transform for general non-Gaussian sources has
been an open problem for decades, despite several important
advances that provide some partial answers regarding KLT
optimality. In this paper, we present a necessary and sufficient
condition for optimality of a transform when high resolution,
variable rate quantizers are employed. We present not only a
complete characterization of when KLT is optimal, but also a
determining condition for optimality of a general (non-KLT)
transform. This necessary and sufficient condition is shown to
have direct connections to the well studied source separation
problem. This observation can impact source separation itself,
as illustrated with a new optimality result. Finally, we combine
the transform optimality condition with algorithmic tools from
source separation, to derive a practical numerical method to
search for the optimal transform in source coding.

Index Terms—Transform coding, source coding, source sepa-
ration, quantization

I. INTRODUCTION

Transform coding is a computationally attractive approach
to source coding, and is widely used in audio, image and video
compression. In the basic transform coding setting, an input
vector is linearly transformed into a vector in the transform
domain whose components (also called transform coefficients)
are scalar-quantized. The decoder reconstructs the quantized
coefficients and performs linear (inverse) transformation to
obtain an estimate of the source vector. The design goal is
to find the optimal transform pair and bit allocation to scalar
quantizers, which minimize distortion. In general, transform
coding underperforms optimal vector quantization due to space
filling loss in scalar quantizers, even if the transform generates
independent coefficients. Nevertheless, due to its low com-
plexity, transform coding is commonly employed in practical
multimedia compression systems [1], [2].

Transform coding has been studied extensively. In their
seminal paper, Huang and Schulthesis have shown [3] that if
the vector source is Gaussian and the bit budget is asymptoti-
cally large, then the Karhunen Loeve transform (KLT) and its
inverse are an optimal pair of transforms for fixed-rate coding.
In a more recent paper Goyal, Zhuang and Vetterli improve
that result by showing that KLT is optimal for Gaussian
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sources without making any high resolution assumptions [4].
Their results require a mild scale invariance assumption and
apply to both the fixed and the variable rate quantizers.

The optimality of KLT in transform coding of Gaussian
sources is often explained intuitively by the assertion that
scalar quantization is better suited to the coding of independent
random variables than to the coding of dependent random
variables. Thus, the optimality of KLT for transform coding
of Gaussian sources is understood to be a consequence of
the fact that it yields independent transform coefficients. The
application of KLT in transform coding of non-Gaussian
sources is then justified using the intuitive argument that
KLT’s coefficient decorrelation represents, for general sources,
a rough approximation to the desired coefficient independence.

In [5], the “popular trust” in the optimality of KLT is
challenged and it is demonstrated by examples that KLT can
be suboptimal for both fixed and variable rate quantization,
at asymptotically high rate (with high resolution approxima-
tions). A theoretical result is also obtained, namely, a sufficient
condition for optimality of KLT: when KLT generates indepen-
dent coefficients then it is the optimal transform for variable
rate coding.

In [6], a significant positive result is obtained regarding the
optimality of KLT: KLT is optimal in conjunction with variable
rate high resolution coding, not only for Gaussians but for the
broader family of Gaussian vector mixtures, which includes
Gaussian mixture models.

The problem is approached from a more practical per-
spective of numerical design in [7]. The authors proposed a
gradient descent iterative algorithm to optimize the optimal
orthogonal transform in conjunction with optimization of
the quantization scheme. In simulations, they were able to
demonstrate performance gains of the optimized transform-
quantizer pair over KLT for practical sources.

In this paper, we return to the fundamental theoretical
problem of optimal transform coding. The main result is a
necessary and sufficient condition for optimality of a transform
in conjunction with variable rate coding at high resolution.
Specifically, we show that the optimal transform is the one that
minimizes the divergence between the joint distribution of the
coefficients and the product of their marginals. In other words,
it minimizes a quantitative measure of the dependence between
the transform coefficients. Note furthermore that this result not
only resolves the question of when KLT is optimal (at high
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resolution), but it also determines the optimal transform when
it is not KLT.

We note minimizing a measure of dependence is closely
related, at the high level, to the objective of the well studied
problem of source separation. This observation is beneficial in
two ways. First, we can leverage a rich reservoir of numerical
algorithms, most importantly relating to independent compo-
nent analysis [8], [9], in order to approximate the optimal
transform. Moreover, our necessary and sufficient condition
leads to contributions in source separation.

The main objective of source separation is exactly that of
finding an orthogonal matrix that will generate coefficients
“as independent as possible”. Such matrices can be found
by maximizing an ad hoc cost function ([10], [11], [12],
[13]), called contrast function, that purports to quantify how
close to statistically independent the resulting components are.
One can choose one of many ways to define the contrast
function, and this choice governs the form of the algorithms.
The two broadest definitions of independence are based on
minimization of mutual information or maximization of “non-
Gaussianity”. The latter is motivated by the central limit
theorem, uses kurtosis and negentropy. The former family of
algorithms is obviously closely related measures involving the
Kullback-Leibler (KL) divergence.

Our main result yields the precise connection between the
problem of finding the optimal transform in high resolution
variable rate coding and the source separation problem, when
the objective (contrast) function is effectively the divergence.
The optimal transform for the former (source coding) problem
is shown to minimize the objective of the latter problem.
This suggests that advances in transform coding may have
an impact directly in source separation. An example of such
a result is presented in Section IV, where our necessary and
sufficient condition for optimality maps the result of [6] to
ensure the optimality of KLT for source separation of Gaussian
vector mixtures.

The paper is organized as follows: we present the problem
formulation and the review of prior work in Section II. The
main result is presented in Section III and further results
related to source separation are presented in Section IV. A
numerical algorithm to optimize the transform in transform
coding is presented with preliminary results in Section V, and
conclusions are presented in Section VI.

II. REVIEW OF PRIOR RESULTS

A. Preliminaries and Notation

The entropy of a discrete random variable X taking values
in X is

H(X) = −
∑
x∈X

P (X = x) logP (X = x) (1)

where logarithm is base 2. The differential entropy of a con-
tinuous random variable X with probability density function
fX(x) is

h(X) = −
∫
fX(x) log fx(x)dx (2)

The divergence between two continuous distributions fX and
gX , is given by

D(fX ||gX) =
∫
fX(x) log

fX(x)
gX(x)

dx (3)

The divergence between two continuous distributions fX

and gX , is given by

D(fX ||gX) =
∫
fX(x) log

fX(x)
gX(x)

dx (4)

Let source X be an N dimensional random vector, with
real components, X1, X2..., XN . Without loss of generality,
we assume E(X) = 0, and hence RX = E(XXT). Let the
transform U be a real N×N orthogonal matrix (U−1 = UT )
and let

Y = UX (5)

be the transformed random vector with coefficients
Y1, Y2, ..YN . A scalar quantizer Q is a mapping Q : R→ R.
We restrict this paper to variable rate analysis, and the rate
needed to describe source X after quantization by quantizer
Q is

R(Q) = H[Q(X)] (6)

A transform coding scheme is a structured vector quantizer
where the random vector X is transformed into Y by Y =
UX and then each component Yi is quantized with scalar
quantizers Qi. The total rate of the transform coder is

RT =
∑

i

H(Qi(Yi)) (7)

At the decoder, inverse transformation by the matrix U−1 =
UT is used to obtain an estimate of the source vector. The
corresponding distortion is measured as mean square error,

DT = E{||X−UT Q(UX))||22} (8)

where Q(X) = [Q1(X1), .., QN (XN )]T .

B. High rate approximations

The quantization operation is nonlinear and difficult to
analyze mathematically. However, for both fixed and variable
rate quantization, high resolution approximations can be made.
Specifically, if the density of a scalar random variable is
reasonably smooth, then at sufficiently high rate the distri-
bution within a quantization interval is uniform. It is well
known that uniform quantizers are asymptotically (at high
resolution) optimal for variable rate coding, irrespective of the
density of the source to be quantized [14]. Therefore, we use
uniform quantizers throughout the paper. Let ∆i be step size
for ithtransform coefficient. This assumption results in quan-
tization noise that is uniformly distributed over (−∆i,∆i).
Thus, at high resolution the distortion Di is approximated as:

Di =
∆2

i

12
(9)

The following straightforward auxiliary lemma relates the
differential entropy of a continuous random variable with the
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entropy of its reproduction after uniform quantization at high
resolution:

Lemma 1 (e.g., [15]). If density fX(x) of random variable
X is Riemann integrable, and Q(X) is its reproduction after
uniform quantization with step size ∆, then the following holds
asymptotically, as ∆→ 0:

H(Q(X))) + log ∆→ h(X) (10)

This lemma will be used in the proof of Theorem 1.

C. On Optimality of KLT

Definition (KLT): An orthogonal N×N matrix K is a KLT
of N dimensional source vector X with covariance matrix RX

if KRXKT = ΛX , where ΛX is diagonal.
In other words, KLT generates uncorrelated coefficients. It

is well known that KLT is optimal for “zonal sampling” or
“truncated expansion”: if the source estimate is approximated
by expansion from a pre-determined subset of the transform
coefficients, then KLT minimizes the approximation error. An-
other optimality aspect of KLT is shown in [16] for Gaussian
sources: KLT minimizes the expected number of expansion
terms (or transform coefficients) if the reconstruction error
is required to be below a prescribed threshold. It has more
recently been shown that KLT is optimal for Gaussian sources
for both variable and fixed rate and at any operating rate
regime, i.e., without any high resolution approximations [4].
Note that KLT is not necessarily unique. As example, when
RX = I, any orthogonal transform U “diagonalizes” RX

as UIUT = I. Then a natural question arises: do all these
KLTs perform equally? A sufficient condition for optimality
of a KLT (that resolves this question if satisfied by one of the
contenders) was given in [5] and is reproduced here.

Effros-Feng-Zeger Theorem (EFZ) [5]: If a KLT produces
independent transform coefficients, then it is optimal for
variable-rate transform coding at high resolution.

Note that this sufficient condition for optimality is not
necessary. Specifically, there is a family of distributions where
KLT has been shown to be optimal for transform coding
although it does not generate independent coefficients [6].

Definition (Gaussian Vector Scale Mixtures): A random
vector X taking values in RN is called Gaussian Vector Scale
Mixture (GVSM) if X = CT (Z�V) where C is a constant
orthogonal matrix, random vector Z ∼ N(0, I), scale vector
V is a random vector independent of Z and taking values in
R+, and � denotes the element-wise product.

Note that conditioned on V = v, the GVSM vector X is
Gaussian. Note further that this definition characterizes a a
fairly broad set of distributions, including Gaussian mixtures.

Jana-Moulin (JM) Theorem [6]: KLT is optimal for a
GVSM source for variable rate coding at high resolution.

This theorem clearly identifies a set of source distributions
for which KLT is optimal, but leaves open the question of
whether KLT is strictly suboptimal outside this set.

In summary, several natural follow-up questions remain
open: when is KLT optimal for transform coding of general

non-Gaussian sources? What is a conclusive condition for
optimality of a general (not necessarily KLT) transform? If
KLT is suboptimal, how can we numerically find the optimal
transform? In this paper, we present a necessary and sufficient
condition for optimality of any transform, naturally including
KLT. Also, when KLT is suboptimal, we propose an algorithm
to find the optimal transform.

III. MAIN RESULT

The main result is stated in the following theorem.

Theorem 1. Orthogonal transform U∗ is optimal if and only
if the following is satisfied:

U∗ = argmin
U

D(fY (y)||
N∏

i=1

fyi
(yi)) (11)

where D is divergence.

Note: Theorem 1 subsumes Effros-Feng-Zeger theorem [5]
as an extreme special case where KLT yields independent
coefficients.

The proof will make use of a trivial auxiliary lemma, which
we state without proof:

Lemma 2. The joint entropy is invariant to orthogonal trans-
formation: Let X be a random vector and U be an orthogonal
matrix, then

h(UX) = h(X) (12)

Proof of Theorem 1: Using high resolution approxima-
tion for variable rate quantization, we get the following for
total distortion,

DT =
∑

i

∆2
i

12
, (13)

and for total rate,

RT =
∑

i

H(Q(yi)) (14)

Since the distortion is independent of the distribution of the
transform coefficients, the aim of the transform coder is to
minimize the total rate RT . Using Lemma 1, we can rewrite
(13) as,

RT = −
∑

i

∫
fyi(yi) log fyi(yi)dyi + log ∆i (15)

where fyi
is the marginal density of the ith transform coef-

ficient. Since the quantization intervals are fixed, the optimal
transform must minimize the first term, hence the cost func-
tion:

J =−
∑

i

∫
fyi

(yi) log(fyi
(yi))dyi

=−
∫
fY (y)

[∑
i

log(fyi(yi))

]
dy (16)
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Using Lemma 2, we write the differential entropy h(y) as

−
∫
fY (y) log fY (y)dy = −

∫
fX(x) log fX(x)dx = C

(17)
where C is used to emphasize that the joint entropy is
determined by the source distribution and is hence constant
with respect to the transform. Subtracting the constant C from
both sides of (16), and noting that minimizing J is equivalent
to minimizing J − C =

−
∫
fY (y)

[∑
i

log(fyi
(yi))

]
dy +

∫
fY (y) log fY (y)dy

= D(fY (y)||
N∏

i=1

fyi(yi)) (18)

which completes the proof.
Note that Theorem 1 essentially states that the optimal

transform is the one that minimizes the statistical dependence
of the transform coefficients. KLT considers second order
statistics and decorrelates the transform coefficients, but this
is neither necessary nor sufficient to minimize the overall
statistical dependence as measured by the above divergence.
The theorem also suggests that the optimal transform deviates
from KLT whenever second order statistics are not a good
representative of the overall dependence. This result also
subsumes as a direct corollary the EFZ Theorem [5], and the
well known optimality of KLT for jointly Guassian sources at
high resolution variable rate coding [2].

IV. SOURCE SEPARATION PROBLEM

Hyvarinen and Oja [8] give the following definition for
the noise free linear source separation problem, which is of
interest here.

Definition (Source Separation Problem): Let random
vector X of size N be obtained by

X = BS (19)

where B is a constant N ×N “mixing” matrix, elements Si

in the vector S = (S1, ..., SN )T are assumed to be mutually
independent. X is observed while both B and S are unknown.
The aim of the problem is to find S (or alternatively the matrix
B), by maximizing some form of independence among the
transform coefficients.

We choose the objective function of divergence between the
product of the marginals of the transform coefficients and joint
density of the transformed vector, i.e. the cost function

J(U) = D(fY (y)||
N∏

i=1

fyi
(yi)) (20)

where Y = UX.
Our main result provides two prospective directions to

pursue: i) It allows us to develop an algorithm for the long
standing problem of optimal transform coding by leveraging a
large bank of algorithms from the source separation literature,
and ii) to apply the theoretical optimality (or suboptimality)

results of transform coding to source separation problems. An
algorithm for finding the optimal transform is presented in the
next section. In the remainder of this section we use the JM
Theorem to obtain a new optimality result in source separation.

Theorem 2. The optimal orthogonal transform for source
separation of a Gaussian vector scale mixture is KLT, when
the contrast function is the divergence-based cost of (20).

Proof: The proof follows from Theorem 1 and the JM
theorem.

The theorem establishes the optimality of KLT and hence
renders source separation algorithms for this family of sources
unnecessary.

V. ALGORITHM

In this section, we propose a modified version of the algo-
rithm by Pham [17], [18] which seeks to find the orthogonal
transform that minimizes the contrast function expressed in
(20). The minimization of the cost can be done through a
gradient descent algorithm, where the update for transform
matrix U involves a matrix ε yielding U + εU. We expand
U + εU with respect to ε up to second order terms and then
minimize the resulting cost with respect to ε to obtain the
optimal ε and hence a new estimate. The Taylor expansion of
J(U + εU) can be expressed as follows:

J(U + εU) = J(U) +
∑
i,j

εij [E(YjΦi(Yi))− E(YiΦj(Yj))]

+
1
2

∑
i,j

ε2ij [E(Φ2
i (Yi))E(Y 2

j )− E(Φ2
j (Yj))E(Y 2

i )− 2]

+O(ε3) (21)

where Φ is the gradient of the entropy function, also known
as score function and O(ε3) accounts for higher order terms
which we will neglect. Setting the partial derivative with
respect to ε to zero, we find ε as follows:

εij =
E(YjΦi(Yi))− E(YiΦj(Yj))

E(Φ2
i (Yi))E(Y 2

j )− E(Φ2
j (Yj))E(Y 2

i )− 2
(22)

In this expression, the probability density functions being
unknown, the score function Φ(Y ) is replaced by an estimate
(see [18]) and the expectations are estimated from training
samples assuming ergodicity. There is no guarantee that
U+ εU will be orthogonal. To solve this problem, we replace
the resulting matrix U with its closest (in terms of Frobenius
norm) orthogonal approximation which can be obtained by
polar decomposition1.

We obtained some preliminary results using the proposed
algorithm. We first generate the samples of X by X = BS
where S consists of four independent and identically dis-
tributed random variables, and B is a random orthogonal
mixing matrix. The proposed algorithm finds the correct matrix
U = B−1 precisely. We note that an obvious KLT choice

1We employed a fast method as to repeatedly average U with its transpose
inverse until convergence [19].
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is the identity I since the source is already uncorrelated. It
follows from the examples in [5], that the gain of the optimal
transform over standard KLT (in this case the identity matrix,
I) can be unbounded.

VI. CONCLUSION

In this paper, we presented a necessary and sufficient con-
dition for transform optimality at high resolution, variable rate
coding. Note that this result not only resolves the question of
when KLT is optimal (at high resolution), but also determines
the optimal transform when it is not KLT. This condition
also points to direct connections between the transform coding
problem and an important subset of the well studied source
separation problems. We used this observation to obtain new
results in two directions: developing a numerical algorithm
for transform optimization in transform coding by leveraging
tools from source separation; and mapping known theoretical
optimality results in transform coding to the source separation
problem. Preliminary results for transform optimization show
the algorithm converging to the optimal transform, although
global optimality is not guaranteed in general. In source
separation the analogy enables the identification of a fairly
broad family of distributions for which the optimality of KLT
is guaranteed and numerical optimization algorithms are not
needed. The basic ideas in this paper can be (nontrivially)
extended to fixed rate coding, to non-orthoognal transforms,
to distributed [20] and to multiple descriptions coding [21]
scenarios, all of which are the subjects of ongoing investiga-
tion.
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