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Abstract—This paper considers the problem of characterizing
the optimal tradeoff between the total transmit versus receive rate
in the Gray-Wyner network. This tradeoff plays a crucial role
in many important practical applications including establishing
fundamental limits in databases for correlated sources and in
minimum cost routing for networks. We develop the insight
into this tradeoff by defining two quantities C(X,Y ;R

′
) and

K(X,Y ;R
′′
), which quantify the shared rate as a function of

the total transmit and receive rates respectively. Closely tied up
with this tradeoff is the notion of common information of two
dependent random variables. The two most influential definitions
are due to Wyner [2] and Gács-Körner [1]. Though it is well
know that these definitions can be characterized as two extreme
points in the Gray-Wyner region, no contour with operational
significance is known which connects them. We will show that the
tradeoff between transmit and receive rates leads to a contour
of points on the boundary of Gray-Wyner region which passes
through the operating points of Wyner and Gács-Körner. We
use these properties to derive alternate characterizations for the
two definitions of common information under a broader unified
framework.

Index Terms—Gray-Wyner network, Common information,
Multi-terminal source coding

I. MOTIVATION AND PRIOR WORK

Consider two correlated sources, X and Y , to be com-
pressed and stored in a database for selective retrieval as
shown in Figure 1a. Assume that the users query for the
two sources individually. A very interesting tradeoff arises
in this setup between the total storage rate and the total
retrieval rate. At one extreme, we can compress the sources
at the minimum storage rate of H(X,Y ). However, then
the retrieval rate for the individual queries would be more
than H(X) and H(Y ) respectively. On the other hand, if we
compress the sources at their individual entropies, the storage
rate entails suboptimality. This paper addresses this tradeoff
and its connection with the notions of common information.

This tradeoff not only plays a crucial role in characterizing
the performance limits for a database, but also has implications
in other important network settings. We recently introduced a
new routing paradigm for minimum cost communication of
correlated sources over a network called ‘dispersive informa-
tion routing’ (DIR) [9] wherein the intermediate nodes are
allowed to ‘split’ a packet and forward different subsets of
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the received bits on each of the forward paths. For example
consider one of the simplest network setups shown in Figure
1b, with a single intermediate node, which is allowed to
forward different subsets of the received bits on each of the
forward parts. DIR can be equivalently realized by the encoder
transmitting 3 smaller packets; first packet at rate R0 destined
to both the sinks. Two other packets at rates R1 and R2 are
meant to the individual sinks as shown in the figure. Here the
cost of transmission by the source and the collector depend
on R0 + R1 + R2 and 2R0 + R1 + R2 respectively. Here
again, the transmit-receive rate tradeoff plays a crucial role in
determining the transmission rates. This setup is effectively
modeled using the Gray-Wyner network shown in Figure 1c.

The Gray-Wyner setup [3] has one encoder and two
decoders. The encoder observes both Xn and Y n and
generates three descriptions (S0, S1, S2) at respective rates
(R0, R1, R2). The first decoder receives (S0, S1) and the
second receives (S0, S2). The two decoders respectively re-
construct Xn and Y n losslessly. In analogy to a database,
S0 are the set of stored bits which are retrieved for both
the queries. S1 and S2 are the bits which are individually
retrieved for queries X and Y respectively. The complete rate
region for the tuple (R0, R1, R2) for loss-less reconstruction
of the respective sources at the two decoders is due to Gray
and Wyner [3] and is denoted by RGW . For any U jointly
distributed with (X,Y ), let RGW (U) be given by:

R0 ≥ I(X,Y ;U), R1 ≥ H(X|U), R2 ≥ H(Y |U)(1)

then, RGW =
⋃

U RGW (U). We refer to the branch that goes
to both the decoders as the ‘shared branch’ and the other two
as ‘private branches’.

Note that the total transmit rate is R0 + R1 + R2 and the
total receive rate is 2R0 + R1 + R2. Our primary objective
in this paper is to characterize this tradeoff between transmit
rate and receive rate and study its properties. To gain insight
into this tradeoff, we characterize two curves which are
rotated/transformed versions of each other in Section II. The
first curve, denoted by C(X,Y ;R

′
), plots the minimum shared

rate, R0, at a transmit rate of H(X,Y ) + R
′

and the second,
denoted by K(X,Y ;R

′′
), is the maximum R0 (minimum

−R0) at a receive rate of H(X) + H(Y ) + R
′′

. It is easy
to see that the transmit-receive rate tradeoff can be derived
directly from these quantities. The quantities C(X,Y ;R

′
) and

K(X,Y ;R
′
), while evidently are “transformed” versions of
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(a) Database (b) DIR (c) Gray-Wyner Network

Figure 1: (a) Database illustrating the tradeoff between the storage rate Rs and total retrieval rate Rr (b) A simple example
to demonstrate dispersive information routing. (c) The Gray-Wyner network

each other, play important roles in different practical scenarios.
For example, C(X,Y ;R

′
) characterizes the minimum receive

rate at a fixed transmit rate making it more suitable for
network applications where the transmit power is constrained.
On the other hand, K(X,Y ;R

′′
) minimizes transmit rate at a

fixed receive rate (retrieval rate), which finds applicability in
database applications.

Closely related to the understanding of these tradeoffs is
the notion of common information of two dependent random
variables, which has been actively studied and pursued by
researchers over three decades. The two most influential of
these definitions are due to Wyner [2] and Gács and Körner [1].
It is well known that the two definitions can be characterized
using RGW and the corresponding operating points are two
points on the boundary of the region. Several approaches have
been proposed to provide further insight into the underlying
connections between them [4], [5], [6], [8]. However, to the
best of our knowledge, there has been no work which attempts
to find a contour with operational significance, which connects
the two operating points on the Gray-Wyner region. In Section
III we will show that the contour of points on the boundary
obtained by trading-off transmit rate and receive rate passes
through both the operating points of Wyner and Gács-Körner.
Hence, this tradeoff provides a generic framework to under-
stand the underlying principles of shared information. We note
that the quantities C(X,Y ;R

′
) and K(X,Y ;R

′′
) are in fact

generalizations of Wyner’s and Gács-Körner’s definitions to
excess sum rate and excess receive rate regimes respectively.
Using their properties, we will also derive alternate character-
izations for the two notions of common information under a
unified framework in Section IV. We note in passing that there
have been certain other definitions of common information in
the literature [4], [8]. Their relations to our tradeoff curves are
less direct and are beyond the scope of this paper.

II. CHARACTERIZING C(X,Y ;R
′
) AND K(X,Y ;R

′′
)

Let (X,Y ) be any two dependent random variables taking
values in some finite alphabets X and Y respectively. We
define the quantity C(X,Y ;R

′
) ∀R′ ∈ [0, I(X,Y )] as:

C(X,Y ;R
′
) = inf R0 : (R0, R1, R2) ∈ RGW (2)

satisfying,

R0 + R1 + R2 = H(X,Y ) + R
′

(3)

Similarly, we define the quantity K(X,Y ;R
′′
) ∀R′′ ∈

[0, H(X,Y )− I(X,Y )] as:

K(X,Y ;R
′′
) = sup R0 : (R0, R1, R2) ∈ RGW (4)

satisfying,

2R0 + R1 + R2 = H(X) + H(Y ) + R
′′

(5)

Note that we restrict the ranges for R
′

and R
′′

for practical
considerations as operating at R

′
> I(X;Y ) or R

′′
>

H(X,Y )− I(X,Y ) would clearly lead to suboptimality. The
following Theorem provides information theoretic characteri-
zations for C(X,Y ;R

′
) and K(X,Y ;R

′′
).

Theorem 1. (i) For any excess sum rate R
′ ∈ [0, I(X,Y )],

C(X,Y ;R
′
) satisfies:

C(X,Y ;R
′
) = min I(X,Y ;U) (6)

where the minimization is over all U jointly distributed with
(X,Y ) such that:

I(X;Y |U) = R
′

(7)

We denote the operating point in RGW corresponding to the
minimum by PC(X,Y )(R

′
).

(ii) For any excess reception rate R
′′ ∈ [0, H(X,Y ) −

I(X,Y )], K(X,Y ;R
′′
) satisfies:

K(X,Y ;R
′′
) = max I(X,Y ;W ) (8)

where the maximization is over all W jointly distributed with
(X,Y ) such that:

I(X;W |Y ) + I(Y ;W |X) = R
′′

(9)

We denote the operating point in RGW corresponding to the
maximum by PK(X,Y )(R

′′
).

Proof: We prove the theorem only for C(X,Y ;R
′
). The

proof for K(X,Y ;R
′′
) follows in similar lines.

Achievability : Say we are given a U jointly distributed
with (X,Y ) such that I(X;Y |U) = R

′
. It leads to

a point in the Gray-Wyner region with (R0, R1, R2) =
(I(X,Y ;U), H(X|U), H(Y |U)). On substituting in (3) we
have:

R0 + R1 + R2 = I(X,Y ;U) + H(X|U) + H(Y |U)

= H(X,Y ) + I(X;Y |U) (10)

= H(X,Y ) + R
′

(11)
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Note that the existence of a U which achieves the minimum
in (6) follows from Theorem 4.4 (A) in [2].

Converse : We know from the converse to the Gray-
Wyner region that every point in RGW is achieved by some
random variable U jointly distributed with (X,Y ). We need to
determine the condition on U for (3) to satisfy. On substituting
(R0, R1, R2) = (I(X,Y ;U), H(X|U), H(Y |U)) in (3), we
get the condition to be (7), proving the converse.

Note that the cardinality of U (denoted by |U|) can be
restricted to |U| ≤ |X | . |Y| + 1 using Theorem 4.4 in
[2]. Also note that when the transmit rate is H(X,Y ) + R

′
,

the minimum receive rate is H(X,Y ) + R
′

+ C(X,Y ;R
′
).

Similarly, when the receive rate is H(X) + H(Y ) + R
′′

, the
minimum transmit rate is H(X)+H(Y )+R

′′−K(X,Y ;R
′′
).

Hence the quantities C(X,Y ;R
′
) and K(X,Y ;R

′′
) are just

rotated/transformed versions of the transmit versus receive rate
tradeoff curve.

We refer to plots of C(X,Y ;R
′
) and K(X,Y ;R

′′
) versus

R
′

and R
′′

as the ‘transmit tradeoff curve’ and the ‘receive
tradeoff curve’ respectively. Observe that in both the cases,
as we increase R

′
(or R

′′
) we obtain parallel cross-sections

of the Gray-Wyner region and the set of operating points
PC(X,Y )(R

′
) and PK(X,Y )(R

′′
), trace contours on the bound-

ary of the region. We refer to them as the ‘transmit contour’
and the ‘receive contour’ respectively. Note the difference
between the contours and their respective tradeoff curves. The
contours are defined in a 3-D space and lie on the boundary
of RGW . In general each of the contours may not even lie on
a single plane. However, the tradeoff curves are a projection
of the respective contours on to a 2-D plane.

III. RELATION TO COMMON INFORMATION

Let us start with Wyner’s common information, even though
it is not the earliest, simply because it directly builds on the
Gray-Wyner network. It is defined as the minimum rate on the
shared branch, while the total sum rate is constrained to be
the joint entropy. Formally,

CW (X,Y ) = minR0 : (R0, R1, R2) ∈ RGW (12)

subject to,
R0 + R1 + R2 = H(X,Y ) (13)

He showed that CW (X,Y ) = inf I(X,Y ;U), where the infi-
mum is over all random variables U such that X ↔ U ↔ Y
form a Markov chain in that order. We denote the operating
point in RGW corresponding to the infimum by PW . It is clear
from the definition that the quantity C(X,Y ;R) directly gen-
eralizes Wyner’s idea of common information to the ‘excess
sum rate’ regime. Observe that CW (X,Y ) = C(X,Y ; 0) and
PC(X,Y )(0) = PW .

On the other hand, Gács and Körner [1] defined common
information (denoted here by CGK(X,Y )) as the maximum
amount of information relevant to both random variables,
which one can extract from the knowledge of either one of
them. Formally, they defined common information of X and
Y as:

CGK(X,Y ) = sup
1

n
H(f1(Xn)) (14)

Figure 2: PW and PGK in the Gray-Wyner region. Observe
that the transmit contour and the receive contour coincide in
between PW and PGW .

where sup is taken over all f1 and f2 such that P (f1(Xn) 6=
f2(Y n)) → 0 and where Xn and Y n denote n independent
copies of X and Y respectively. Let X × Y =

⋃M
j=1 Xj ×

Yj be the ergodic decomposition of the stochastic matrix
P (X = x, Y = y). Define the random variable J as
J = j iff x ∈ Xj ⇔ y ∈ Yj . Gács and Körner showed that
CGK(X,Y ) = H(J). Wyner also summarized the inequality
relations between the quantities:

0 ≤ CGK(X,Y ) ≤ I(X;Y ) ≤ CW (X,Y ) ≤ H(X,Y )
(15)

Gács and Körner’s original definition of common information
was naturally unrelated to the Gray-Wyner network, which
appeared later. However, an alternate and insightful character-
ization of CGK(X,Y ) was given by Ahlswede and Körner [4]
in terms of RGW as follow:

CGK(X,Y ) = maxR0 : (R0, R1, R2) ∈ RGW (16)

subject to,

R0 + R1 = H(X), R0 + R2 = H(Y ) (17)

We denote the operating point in RGW corresponding
to CGK(X,Y ), i.e. (R0, R1, R2) = (H(J), H(X) −
H(J), H(Y ) − H(J)) by PGK . It is again easy to observe
that the quantity K(X,Y ;R) is a direct generalization of the
Gács and Körner definition of common information to the
‘excess receive rate’ regime. Clearly, we have CGK(X,Y ) =
K(X,Y ; 0) as setting R

′′
= 0 in (5) forces both the constraint

in (17).
It is well known that PW and PGK are two special points in

RGW as shown in Figure 2. However, no contour with prac-
tical significance is known which connects these points. The
following claim sheds further light towards this understanding.

Claim 1. The transmit contour and the receive contour coin-
cide with each other in between PW and PGK .

Proof: RGW is a convex region. Hence the set of achiev-
able rate pairs for (Rt, Rr) = (R0+R1+R2, 2R0+R1+R2)
is convex. We have Rt ≥ H(X,Y ) and Rr ≥ H(X)+H(Y ).
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Figure 3: (a) Typical transmit tradeoff curve - C(X,Y ;R
′
)

(b) Typical receive tradeoff curve - K(X,Y ;R
′′
)

Note that when Rt = H(X,Y ), minRr = H(X,Y ) +
CW (X,Y ) and is achieved at PW . Similarly when Rr =
H(X) + H(Y ), minRt = H(X) + H(Y ) − CGK(X,Y ),
which is achieved at PGK . Recall that the transmit contour
is obtained by minimizing Rr for a fixed Rt and the receive
contour is obtained by minimizing Rt at a fixed Rr. Hence, it
follows from the convexity of (Rt, Rr) region that for every
excess transmit rate R

′
: 0 ≤ R

′ ≤ I(X;Y ) − CGK(X,Y ),
there exists an excess receive rate R

′′
: 0 ≤ R

′′ ≤
CW (X,Y )− I(X;Y ) such that:

C(X,Y ;R
′
) = K(X,Y ;R

′′
)

PC(X,Y )(R
′
) = PK(X,Y )(R

′′
) (18)

It follows that the transmit and the receive contours coincide
in between PW and PGK .

This new relation between the two notions of common infor-
mation brings both the definitions under a common framework.
Similar to Wyner’s definition, Gács-Körner’s operating point
can now be stated as the minimum shared rate at a sufficiently
large sum rate. Likewise, Wyner’s operating point can be
defined as the maximum shared rate at a sufficiently large
receive rate. We will make these arguments more precise in
Section IV-A when we derive alternate characterizations for
each notion in terms of the objective function of the other.

IV. PROPERTIES OF THE TRADEOFF CURVE

In this section, we shift our attention to the quantities
C(X,Y ;R

′
) and K(X,Y ;R

′′
) instead of their contours and

analyze some important properties. As most of the properties
and their proofs for K(X,Y ;R

′′
) are very similar to that for

C(X,Y ;R
′
), we only prove the properties for C(X,Y ;R

′
).

We plot typical transmit and receive tradeoff curves in Figure
3 to illustrate the discussion.

Consider the transmit tradeoff curve. At R
′

= 0 we
get the Wyner’s operating point where the minimum shared
information is given by CW (X,Y ). This point is denoted
by PW in Figure 3. Next observe that at R0 = 0, for
lossless reconstruction of X and Y , we need, R1 ≥ H(X)
and R2 ≥ H(Y ). Therefore at an excess sum rate R

′
=

H(X) + H(Y ) − H(X,Y ) = I(X;Y ), the shared rate
vanishes, or, C(X,Y ; I(X;Y )) = 0. We call this point -

‘separate encoding’ and denote it by PSE in the figure. It
is also obvious that any U independent of (X,Y ) achieves
this minimum R0 for R

′
= I(X;Y ).

Lemma 1. Convexity: C(X,Y ;R
′
) is convex

∀R′ ∈ [0, I(X;Y )] and K(X,Y ;R
′′
) is concave

∀R′′ ∈ [0, H(X,Y )− I(X;Y )].

Proof: The proof follows directly from the convexity of
the Gray-Wyner region.

Lemma 2. Monotonicity :C(X,Y ;R
′
) is strictly monotone

decreasing ∀R′ ∈ [0, I(X;Y )] and K(X,Y ;R
′′
) is strictly

monotone increasing ∀R′′ ∈ [0, H(X,Y )− I(X;Y )]

Proof: It is clear from the achievability results of Gray-
Wyner that if a point (r0, r1, r2) ∈ RGW , then all points
{(R0, R1, R2) : R0 ≥ r0, R1 ≥ r1, R2 ≥ r2} ∈ RGW . Let us
say, for some excess transmission rate R, C(X,Y ;R

′
) = r0.

Let the corresponding operating point in RGW be (r0, r1, r2).
Hence for any ∆ > 0, the point (r0, r1 + ∆, r2) ∈ RGW and
satisfies R0 + R1 + R2 = R + ∆. Therefore,

C(X,Y ;R
′
+ ∆) = minR0 : {R0 + R1 + R2 = R + ∆}

≤ r0 (19)

Hence, C(X,Y ;R
′
) is non-increasing. Then it follows from

convexity that C(X,Y ;R
′
) is either a constant or is strictly

monotone decreasing. Lemma 3 below eliminates the possi-
bility of a constant, proving this lemma.

At all R
′

where C(X,Y ;R
′
) is differentiable, we denote

the slope by S(R
′
). At non-differentiable points, we denote by

S−(R
′
) and S+(R

′
) the left and right derivatives respectively.

Similarly the slope, left derivative and right derivatives of
K(X,Y ;R

′′
) are denoted by T (R

′′
), T−(R

′′
) and T+(R

′′
)

respectively.

Lemma 3. The slope of C(X,Y ;R
′
), S(R

′
) ≤ −1

∀R ∈ [0, I(X;Y )] where the curve is differentiable. At non-
differentiable points, we have S−(R

′
) < S+(R

′
) ≤ −1.

Similarly we have, T (R
′′
) ≥ 1 ∀R′′ ∈ [0, H(X,Y )−I(X;Y )]

and T−(R
′′
) > T+(R

′′
) ≥ 1

Proof: Note that it is sufficient for us to show that
S−(I(X;Y )) ≤ −1. Then it directly follows from con-
vexity that S(R

′
) ≤ −1 at all differentiable points and

S−(R
′
) < S+(R

′
) ≤ −1 at all non-differentiable points.

Consider 4 > 0, and fix the shared information rate to be
R0 = 4. From the converse of the source coding theorem for
lossless reconstruction, we have:

R0 + R1 = 4+ R1 ≥ H(X)

R0 + R2 = 4+ R2 ≥ H(Y ) (20)

The above inequalities imply R0 + R1 + R2 ≥ H(X,Y ) +
I(X;Y ) − 4. Therefore the point on the transmit tradeoff
curve with C(X,Y ;R

′
) = 4 has R

′ ≥ I(X;Y )−4. Hence
S−(I(X;Y )) ≤ −1 proving the Lemma.

A. Alternate characterizations for CGK(X,Y ) and
CW (X,Y )

In this section, we provide alternate characterizations for
CGK(X,Y ) and CW (X,Y ) in terms of C(X,Y ;R

′
) and
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C(X,Y ;R
′′
) respectively.

Theorem 2. An alternate characterization for Gács-Körner’s
common information is:

CGK(X,Y ) = max
R′ :S+(R′ )=−1

C(X,Y ;R
′
) (21)

If there exists no R
′

for which S+(R
′
) = −1, then,

CGK(X,Y ) = 0. Similarly, an alternate characterization for
Wyner’s common information is :

CW (X,Y ) = min
R′′ :T+(R′′ )=1

K(X,Y ;R
′′
) (22)

If there exists no R
′′

for which T+(R) = 1, then,
CW (X,Y ) = H(X,Y ).

Note that CGK(X,Y ) corresponds to that excess sum
rate which demarcates the region of C(X,Y ;R

′
) with slope

< −1 to the region with slope equal to −1 and CW (X,Y )
corresponds to that excess receive rate which demarcates the
region of K(X,Y ;R

′′
) with slope > 1 to the region with

slope equal to 1.
Proof: We first assume that there exists some R∗ ∈

[0, I(X;Y )), for which S+(R∗) = −1. We must prove that
C(X,Y ;R∗) = CGK(X,Y ). We denote this point by PGK

in the figure. Let R̃ be such that R∗ ≤ R̃ < I(X;Y ) and
let Ũ be the random variable which achieves the minimum
shared information rate at R̃ in Theorem 1. Then it follows
from Lemmas 1 and 3 that S+(R̃) = −1. Then the point in
the GW region corresponding to Ũ satisfies the following two
conditions:

R0 = I(X,Y )− R̃

R0 + R1 + R2 = H(X,Y ) + R̃ (23)

Adding the two equations, we have 2R0+R1+R2 = H(X)+
H(Y ), which implies that R0 +R1 = H(X) and R0 +R2 =
H(Y ). Therefore, the point corresponding to Ũ satisfies Gács-
Körner constraints (17). Hence, it follows that, any R̃ such that
S+(R̃) = −1 leads to an operating point in the GW region
which satisfies Gács-Körner constraints.

Next, we need to show the converse. Consider any point in
the GW region satisfying Gács-Körner constraints. It can be
written as,

R0 = I(X;Y )− R̃

R1 = H(X)− (I(X;Y )− R̃)

R2 = H(Y )− (I(X;Y )− R̃) (24)

for some CGK(X,Y ) ≤ R̃ ≤ I(X;Y ). On summing the three
equations, we have R0 + R1 + R2 = H(X,Y ) + R̃. It then
follows from the convexity of C(X,Y ;R

′
) that S+(R̃) = −1.

Therefore, we have,

C(X,Y ;R∗) = I(X;Y )−R∗

= I(X;Y )− min
R̃:S+(R̃)=−1

R̃

= max R0 : (R0, R1, R2) satisfies (17)
= CGK(X,Y ) (25)

proving the first part of the theorem. However, if there exists
no R

′ ∈ [0; I(X;Y )] for which S+(R
′
) = −1, it implies that

∀R′ ∈ [0; I(X;Y )), C(X;Y ;R
′
) > I(X;Y ). Therefore (17)

is not satisfied with equality for any R
′ ∈ [0; I(X;Y )). Hence

CGK(X,Y ) = 0.
Note that the characterizations of CGK(X,Y ) and

CW (X,Y ) in Theorem 2 are of fundamentally different nature
from that in (12) and (16). These definitions not only provide
further insight into the understanding of shared information,
but also play a crucial role in finding the minimum commu-
nication cost for networks when the cost of transmission on
each link is a non-linear function of the rate, for example,
in capacity constrained networks. Just to illustrate, consider a
network setting as shown in Fig. 1b, where the cost of trans-
mission from the collector to the sinks is significantly higher
than that from source to the collector. If the source-collector
branch has a capacity constraint of RC , then it follows directly
from Theorem 2 that, ∀RC ≥ H(X) + H(Y )−CGK(X,Y ),
the minimum total cost is just a function of CGK(X,Y ) and
RC .

V. CONCLUSION

Motivated by its applications in databases and routing in
networks, the tradeoff between the the total transmit versus
receive rate for the Gray-Wyner network was studied. Infor-
mation theoretic characterizations for the tradeoff curves were
established. Two well known notions of common information
(Wyner’s and Gács-Körner’s) were shown to arise as extreme
special cases of this broader framework. Using this relation,
alternate characterizations under a common framework were
derived for the two notions of common information.
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