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Abstract

Randomized (dithered) quantization is a method capable of achieving white
reconstruction error independent of the source. Dithered quantizers have tra-
ditionally been considered within their natural setting of uniform quantization.
We extend conventional dithered quantization to nonuniform quantization, via
a subterfage: dithering is performed in the companded domain. Closed form
necessary conditions for optimality of the compressor and expander mappings
are derived for both fixed and variable rate randomized quantization. Numer-
ically, mappings are optimized by iteratively imposing these necessary condi-
tions. The framework is extended to include an explicit constraint that de-
terministic or randomized quantizers yield reconstruction error that is uncor-
related with the source. Surprising theoretical results show direct and simple
connection between the optimal constrained quantizers and their unconstrained
counterparts. Numerical results for the Gaussian source provide strong evidence
that the proposed constrained randomized quantizer outperforms the conven-
tional dithered quantizer, as well as the constrained deterministic quantizer.

1 Introduction

Dithered quantization is a randomized quantization method introduced in [1]. A cen-
tral motivation for dithered quantization is its ability to yield quantization error that
is white and independent of the source, which can be achieved if certain conditions,
determined by Schuchman, are met [2]. Traditionally, dithered quantization has been
studied in the framework where the quantizer is uniform (with step size ∆) and the
dither signal is uniformly distributed over (−∆

2
, ∆

2
), matched to the quantizer interval

as shown in Figure 1. A uniformly distributed dither signal is added before quantiza-
tion and the same dither signal is subtracted from the quantized value at the decoder
side. Note that only subtractive dithering is considered in this paper. In the variable
rate case, the quantized values are entropy coded, conditioned on the dither signal.
Randomized (dithered) quantizers have been studied in the past due to important
properties that differentiate them from deterministic quantizers, and were employed
to characterize rate-distortion bounds for universal compression [3, 4]. Zamir and
Feder provide extensive studies of the properties of dithered quantizers [5, 6].
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⊕Source
X ∼ fX(x)

Dither
Z ∼ U(−∆/2, ∆/2)

Uniform Quantizer
Q(·) ⊕

−Z

Reconstruction
X̂ = X + N

Figure 1: The basic structure of dithered quantization

Beyond its theoretical significance, randomized quantization is of practical inter-
est. Many filter/system optimization problems in practical compression settings, such
as the rate-distortion optimal filterbank design problem [7], or low rate filter opti-
mization for DPCM compression of Gaussian auto-regressive processes [8], assume
quantization noise that is independent of (or uncorrrelated with) the source. Al-
though this assumption is satisfied at asymptotically high rates [9], such systems are
mostly useful for very low rate applications. For example, in [8], it is stated that the
assumptions made in the paper are not satisfied by deterministic quantizers, and that
dithered quantizers satisfy the assumptions exactly. However, conventional (uniform)
dithered quantization suffers from suboptimal compression performance. Hence, a
quantizer that mostly satisfies the assumptions, but at minimal cost in performance
degradation, would have considerable impact on many such applications.

In this paper, we consider a generalization to enable effective dithering of nonuni-
form quantizers. To the best of our knowledge, this paper is the first attempt (other
than our preliminary work in [10]) to consider dithered quantization in a nonuniform
quantization framework. One immediate problem with nonuniform dithered quan-
tization is how to apply dithering to unequal quantization intervals. In traditional
dithered quantization, the dither signal is matched to the uniform quantization in-
terval while maintaining independence of the source, but it is not clear how to match
the generic dither to varying quantization intervals. As a remedy to this problem, we
propose dithering in the companded domain. We derive the closed form necessary
conditions for optimality of the compressor and expander mappings for both fixed
and variable rate randomized quantization. We numerically optimize the mappings
by iteratively imposing these necessary conditions

However, the resulting (unconstrained randomized) quantizer does not render re-
construction error orthogonal to the source. Therefore, we extend the framework
to include an explicit such constraint. Surprising theoretical results show direct and
simple connection between the optimally constrained random quantizers and their un-
constrained counterparts. We note in passing that the nonuniform dithered quantizer
subsumes the conventional uniform dithered quantizer as an extreme special case.

For the variable rate case, the proposed nonuniform dithered quantizer is ex-
pected to outperform the conventional dithered quantizer, most significantly at low
rates where the optimal variable rate (entropy coded) quantizer is often far from
uniform. We observe that a deterministic quantizer cannot render the quantization
noise independent of the source but can make it uncorrelated with the source. We
hence also present an alternative deterministic quantizer that provides quantization
noise uncorrelated with the source. We derive the optimality conditions of such con-
strained quantizers, for both fixed and variable rate quantization, and compare their
rate-distortion performance to that of randomized quantizers.

The paper is organized as follows: In Section 2, we present a review of dithered
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Compressor
g(x) ⊕Source

X ∼ fX(x) ⊕ Reconstruction
X̂

Uniform Quantizer
Q(·)

Y

−Z

Expander
w(y)

Dither
Z ∼ U(−∆/2,∆/2)

Figure 2: The proposed nonuniform dithered quantizer

quantization. In Section 3, we present the proposed nonuniform randomized quan-
tizer. In Section 4, the constrained quantizers are analyzed. Experimental results
that compare the proposed quantizers to the conventional dithered quantizer are pre-
sented in Section 5. We discuss the obtained results and summarize the contributions
in Section 6.

2 Review of Dithered Quantization

We follow standard notation for information-theoretic quantities (see e.g., [11]). We
assume zero mean sources throughout the paper. Hence, RX = E(XXT ) denotes
both the autocorrelation matrix and covariance matrix of X. Zero-mean vectors
X ∈ RK and Y ∈ RM are said to be uncorrelated if they are orthogonal: E[Y XT ] = 0
where 0 is M ×K matrix of zeros. A quantizer is defined by a set of reconstruction
points and a partition. The partition P = {Pi} associated with a quantizer is a
collection of disjoint regions whose union covers RK . The reconstruction points R =
{ri} are typically chosen to minimize a distortion measure. The vector quantizer is
a mapping Q : RK → C ⊂ RK , where C is a countable set called the codebook, that
maps every vector X ∈ RK into the reconstruction point that is associated with the
cell containing X,

Q(X) = ri if X ∈ Pi (1)

While our theoretical results are general, for a vector quantizer of arbitrary dimen-
sions, for presentation simplicity, we will primarily focus on scalar quantization in the
treatment of numerical optimization of nonuniform dithered quantizer and for experi-
mental results. The nonuniform dithered quantization approach is directly extendable
to vector quantization by replacing the uniform quantizer with a lattice quantizer,
although at the cost of significantly more challenging numerical optimization.

The scalar uniform quantizer, with reconstructions {0,±∆,±2∆, ...,±T∆}, is a
mapping Q : R→ R such that

Q(x) = i∆ for i∆−∆/2 < x ≤ i∆ + ∆/2 (2)

In fixed rate quantization, the range parameter T is determined by the rate Rf =
log(2T + 1) while in variable rate quantization T need not, in principle, be finite and
we will assume T → ∞. In this case, uniform quantization is followed by lossless
source encoding (entropy coder). Let dither Z be a random variable, statistically
independent of the source X, distributed uniformly on the interval (−∆/2,∆/2).
Then, conventional dithered quantizer approximates the source X by

X̂ = Q(X + Z)− Z (3)

It can be shown that the reconstruction error of this quantizer (denoted N) is in-

dependent of the source value X = x, i.e., N = X̂ − X = Q(X + Z) − Z − X is
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independent of X and uniformly distributed over (−∆/2,∆/2) for all X. Contrast
that with a deterministic quantizer, whose error is completely determined by the
source value [9].We note that for this property to hold, the quantizer should span the
support of the source density i.e., there should be no overload distortion. While this
is often the case for variable rate quantization, for fixed rate overload distortion is
inevitable if the source has unbounded support such as a Gaussian source. For prac-
tical purposes though, it is common to assume that the source has finite support and
we also follow this assumption in our analysis of fixed rate randomized quantization:
the quantization error of conventional (uniform) dithered fixed rate quantization is
assumed to be independent of the source.

The realization of the dither random variable Z is available to both the encoder
and the decoder. Thus, assuming an optimal entropy coder, the rate of the variable
rate quantizer tend to the conditional entropy of the reconstruction given the dither,

Rv = H(X̂|Z) = H(Q(X + Z)|Z) (4)

In [5], it was shown that the following holds:

H(Q(X + Z)|Z) = h(X +N)− log ∆ (5)

3 Nonuniform Dithered Quantizer

The main idea is to circumvent the main difficulty due to unequal quantization in-
tervals by performing uniform dithered quantization in the companded domain (see
Figure 2). The source X is transformed through compressor g(·) before dithered uni-
form quantization. At the decoder side, the dither is subtracted to obtain Y . Since
we perform uniform dithered quantization in the companded domain, it is easy to
show that Y = g(X) + N , where N is uniformly distributed over (−∆/2,∆/2) and
independent of the source. The reconstruction is obtained by applying the expander
X̂ = w(Y ). The objective is to find the optimal compressor and expander mappings
g(x), w(y) that minimize the expected distortion under the rate constraint. The MSE
distortion can be written as:

D =

ˆ ˆ
[x− w(g(x) + n)]2fX(x)fN(n)dxdn (6)

Note that the conventional dithered quantizer is a special case employing the trivial
identity mappings, i.e., g(x)=w(x)=x,∀x.

3.1 Optimal Expander

The conditional expectation w(y) = E{X|Y = y} minimizes MSE between the source
and the estimate. Then, the optimal expander w is

w(y) =

γ+́

γ−

xfX(x)dx

γ+́

γ−

fX(x)dx

(7)
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where for fixed rate γ+ = min{g−1(∆T ), g−1(y+∆/2)} and γ− = max{g−1(−∆T ), g−1(y−
∆/2)}, while for variable rate γ+ = g−1(y + ∆/2) and γ− = g−1(y −∆/2).

Note: We restrict the discussion to regular quantizers throughout this paper,
hence g(x) is monotonically increasing.

3.2 Optimal Compressor

Unlike the expander, the optimal compressor cannot be written in closed form. How-
ever, a necessary optimality condition can be obtained by setting the functional
derivative of the cost to zero. Thus, for a given expander w(y), the functional deriva-
tive of the total cost, J , along the direction of any variation function η(x) vanishes
[12], i.e.,

∇J =
∂

∂ε

∣∣∣∣
ε=0

J [g(x) + εη(x)] = 0, ∀x ∈ R (8)

for the locally optimal compressor g(x).

3.2.1 Fixed rate

For fixed rate, we have granular distortion, denoted Dg, and overload distortion,
denoted Dol. Note that we need the overload distortion terms here, because if we
neglect the overload distortion in our derivation, g(x) will grow unboundedly in the
iterations of the proposed algorithm. Since the rate is fixed, the total cost is identical
to the distortion in the fixed rate case, i.e.,Jf = Dg +Dol and Dg and Dol are:

Dg=
1

∆

∆/2ˆ

−∆/2

g−1(∆T )ˆ

g−1(−∆T )

[x− w(g(x) + n)]2fX(x)dxdn (9)

Dol=
1

∆

∆/2ˆ

−∆/2

g−1(−∆T )ˆ

−∞

[x−w(−T∆+n)]2fX(x)dx+

∞̂

g−1(∆T )

[x−w(T∆+n)]2fX(x)dxdn

(10)

3.2.2 Variable rate

To find the rate by (5), we need the distribution of Y = g(X) + N , which can be
written as

fY (y) =
1

∆

[
FX(g−1(y + ∆/2))−FX(g−1(y −∆/2))

]
(11)

where FX(x) is the cumulative distribution function of X. The rate is then evaluated
as

Rv = h(Y )− log ∆ (12)

The total cost for variable rate quantization is Jv = D+λR where λ is the Lagrangian
parameter that is adjusted to obtain the desired rate.
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3.3 Design Algorithm

The basic idea is to iteratively alternate between enforcing each necessary condition
for optimality, thereby successively decreasing the total cost. Iterations are performed
until the algorithm reaches a stationary point. Solving for the optimal expander is
straightforward since the expander is expressed in closed form as a functional of the
known quantities, g(x), fX(x). Since the compressor condition is not in closed form,
we perform steepest descent, i.e., move in the direction of the functional derivative of
the total cost with respect to the compressor mapping g.

gi+1(x) = gi(x)− µ∇J [g] (13)

By design, the total cost decreases monotonically as the algorithm proceeds iteratively.
The compressor mapping is updated according to (13), where i is the iteration index,
∇J [g] is the directional derivative and µ is the step size. There is no guarantee that an
iterative descent algorithm of this type will converge to the globally optimal solution.
As a low complexity approach to mitigate the poor local minima problem, we used
the “noisy channel relaxation” method of [13, 14].

4 Reconstruction Error Uncorrelated with the Source

In this section, we propose two quantization schemes (one deterministic, one random-
ized) that satisfy the assumption reconstruction error uncorrelated with the source.

4.1 Constrained Deterministic Quantizer

A deterministic quantizer cannot yield quantization noise independent of the source
[9]. However, it is possible to render the quantization noise uncorrelated with the
source. An early prior work along this line appeared in [15], where a uniform quan-
tizer is converted to a quantizer whose quantization noise is uncorrelated with the
source, by adjusting the reconstruction points. In this section, we derive the optimal
(nonuniform in general) deterministic quantizer which is constrained to give quanti-
zation error uncorrelated with the source. Let ri and r̂i be the reconstruction points

and Pi and P̂i represent the ith quantization region, for the constrained (i.e., whose
quantization error is uncorrelated with the source) and unconstrained MSE optimal
quantizer, respectively. Also, let pi and p̂i denote the probability of X falling into
the ith cell of the constrainted and unconstrained quantizers, respectively.

Theorem 1. Pi = P̂i and ri = Cr̂i,∀i where C = RX

(
M∑
i=1

pir̂ir̂
T
i

)−1

Proof. We start with the fixed rate analysis. LetM denote the number of quantization
cells. The distortion can be expressed as

D =
M∑
i=1

ˆ

x∈Pi

(x− ri)T (x− ri)fX(x) dx (14)
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and the “uncorrelatedness” constraint may be stated via the orthogonality principle

M∑
i=1

ˆ

x∈Pi

x(x− ri)TfX(x) dx = 0 (15)

Note further that (15) can be written as:

M∑
i=1

ril
T
i = RX where li =

ˆ

x∈Pi

xfX(x) dx (16)

The constrained problem of minimizing D subject to
M∑
i=1

ril
T
i = RX is equivalent to

the unconstrained minimization of Lagrangian J , where

J = D +
K∑
k=1

γ(k)T

[
RX(k)−

M∑
i=1

rili(k)

]
(17)

where γ = [γ(1) γ(2)... ,γ(K)] denotes the K×K Lagrangian matrix,RX(k) denotes
the kth column of RX and li(k) denotes the kth element of li. By setting ∇riJ = 0,
we obtain the condition:

∇riJ = −2lTi + 2pir
T
i −

K∑
k=1

γ(k)T li(k) = 0 (18)

Noting that
∑K

k=1 γ(k)T li(k) = lTi γ,we obtain ri = 1
pi
Cli where C is a constant

M ×M matrix. C is found by plugging this into (16):

C = RX

(
M∑
i=1

1

pi
lil

T
i

)−1

(19)

Note that li/pi is the MSE optimal reconstruction of an unconstrained quantizer that
shares the same decision boundary with the constrained one, Pi. Plugging (19) into
(14) and after some algebraic manipulations, we obtain:

D =
σ2
X

σ2
X −D∗

D∗ (20)

where D∗ is the distortion associated with the quantizer given by Pi and with corre-
sponding optimal reconstruction points li/pi. (20) implies that D achieves its mini-
mum whenever D∗ is minimized. Hence,

Pi = P̂i ⇒ li = pir̂i (21)

Plugging (21) into (19), we obtain the result. The proof for variable rate goes along
similar lines, and we skip that part for brevity.
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4.2 Constrained Randomized Quantizer

Due to the effect of companding, the nonuniform randomized quantizer described
above does not guarantee reconstruction error uncorrelated with the source even
though it builds on the (conventional) dithered quantizer whose quantization error is
independent of the source. We therefore explicitly constrain the randomized quantizer
to generate uncorrelated reconstruction error, by adding a penalty term to the total
cost function. The Lagrangian parameter λc ≥ 0 is set to ensure E{xw(g(x) + n)} =
E{x2}.

Jc = J + λcE[x2 − xw(g(x) + n)] (22)

where J = Jv in the case of variable rate and J = Jf for fixed rate. We find the
necessary conditions of optimality of constrained compressor and expander mappings
at fixed and variable rate, by setting the functional derivative of the total cost (Jc) to
zero. Surprisingly, the optimally constrained compressor mapping remains unchanged
(compared to the unconstrained optimal compressor) and the only modification of the
optimally constrained expander mapping is simple scaling. We state this result in the
following theorem.

Theorem 2. Let g and w be the compressor and expander mappings of the uncon-
strained optimal randomized quantizer. Let gc and wc denote the optimal mappings
subject to the constraint that the reconstruction error be uncorrelated with the source.
Then,

gc(x) = g(x), wc(y) = (1− λc)w(y) (23)

where λc is the Lagrangian multiplier of (22).

Note that this result applies to both fixed and variable rate.

Proof. The optimal expander is no longer the standard conditional expectation, since

it is impacted by the constraint. By setting ∂
∂ε

∣∣∣∣
ε=0

Jc [w(y) + εη(y)] = 0, we obtain

the optimal expander in closed form as wc(y) = (1 − λc)w(y). The update rule

for gc(x) can be derived similarly. Setting ∂
∂ε

∣∣∣∣
ε=0

Jc [g(x) + εη(x)] = 0 and plugging

wc(y) = (1− λc)w(y) yields, after straightforward algebra, gc(x) = g(x).

5 Experimental Results

In this section, we numerically compare the proposed quantizers to the conventional
(uniform) dithered quantizer and to the optimal quantizer, for a standard unit vari-
ance scalar Gaussian source. We implemented the proposed quantizers by numerically
calculating the derived integrals. For that purpose, we sampled the distribution on
a uniform grid. We also imposed bounded support (−3σ to 3σ) i.e., we numerically
neglected the tails of the Gaussian. In this paper, we proposed three quantizers:

Quantizer 1: Unconstrained randomized quantizer.
Quantizer 2: Constrained randomized quantizer which renders the quantization

error uncorrelated with the source.
Quantizer 3: Constrained deterministic quantizer which renders the quantization

error uncorrelated with the source.
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(b) Variable rate (entropy coded) quantization

Figure 3: Performance comparison in terms of SNR versus rate.

Figure 3 demonstrates the performance comparisons among quantizers for fixed
and variable rates. Note that for both fixed and variable rate, the optimal randomized
quantizer performs very close to the optimal quantizer. However, it does not provide
the statistical benefits of the other quantizers.

Note that for fixed rate, conventional (uniform) dithered quantization suffers sig-
nificantly from the suboptimality of having equal quantization intervals irrespective
of the rate region. However, at variable rate, the difference between the proposed
and conventional dithered quantizer diminish at high rates, while at low rates the
difference is quite significant. This is theoretically expected since at high rates, the
optimal variable rate quantizer is very close to uniform, hence there is not much to
gain from using a non-linear compressor-expander.

For both fixed and variable rate, the constrained randomized quantizer outper-
forms its deterministic counterpart, while both of them perform significantly better
than the conventional dithered quantizer. Both of the proposed quantizers render
quantization error uncorrelated with the source with low performance degradation
while the dithered quantizer renders error independent of the source but (depending
on the rate) at significant distortion penalty.

Numerical comparisons show that the proposed quantization schemes can signif-
icantly impact the design of compression systems such as [8, 7] where quantization
error is assumed to be uncorrelated with the source. Note that the constrained ran-
domized quantization satisfies this assumption exactly and significantly outperforms
the conventional dithered quantization, which has been presented in such prior work
as the viable option to satisfy these assumptions. In fact, besides the conventional
dithered quantization, we derived additional quantization schemes that satisfy those
assumptions: constrained deterministic quantization and constrained nonuniform ran-
dom quantization. We also derived an unconstrained randomized quantizer, which
performs almost as well as the optimal (deterministic) quantizer, yet offers perceptual
benefits typical to dithered quantization.
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6 Discussion

In this paper, we proposed a nonuniform randomized quantizer where dithering is per-
formed in the companded domain to circumvent the problem of matching the dither
range to varying quantization intervals. The optimal compressor and expander map-
pings that minimize the mean square error are found via a novel numerical method.
Also, we discovered the connections between the optimal quantizer and the one whose
reconstruction error is constrained to be orthogonal to the source, for both deter-
ministic and randomized quantization. The proposed constrained randomized quan-
tization outperforms conventional dithered quantization and also its deterministic
counterpart, while still satisfying the requirement that the reconstruction error be
uncorrelated with the source.
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