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Abstract

This paper is concerned with transform coding of correlated sources in con-
junction with variable rate quantization at high resolution. The approach builds
on our prior work on optimality conditions for transform coding in the point-
to-point setting. The first contribution involves transform coding with decoder
side information. In this setting, side information is only available to the de-
coder, whereas the encoder knows the joint statistics. The necessary and suf-
ficient condition for optimality of a unitary transform in the side information
setting is derived, namely, such transform minimizes a conditional divergence-
based measure of inter-dependence of the transform coefficients, given the side
information. This optimality result subsumes prior, known results that were
restricted to the Gaussian case, where the conditional Karhunen-Loeve trans-
form is optimal. The second contribution involves distributed transform coding,
where two correlated sources are to be transform coded separately, but decoded
jointly. The necessary and sufficient condition for optimality of unitary trans-
forms in the distributed coding setting is derived. It is then specialized to
produce closed form optimal transforms for specific source densities, including
the case of jointly Gaussian sources.

1 Introduction

Transform coding is a computationally attractive approach to source coding, and is
widely used in audio, image and video compression. The transform coding problem
has been studied extensively. In their seminal paper, Huang and Schulthesis have
shown [1] that if the vector source is Gaussian and the bit budget is asymptotically
large, then the Karhunen-Loève transform (KLT) and its inverse are an optimal pair
of transforms for fixed-rate coding. A more recent paper by Goyal, Zhuang and
Vetterli strengthened that result by showing the optimality of KLT for Gaussian
sources without recourse to high resolution assumptions [2].

In [3], the “popular faith” in the optimality of KLT was challenged and it was
demonstrated by examples that KLT can be suboptimal for both fixed and variable
rate quantization, at asymptotically high rate (with high resolution approximations).
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Moreover, a sufficient condition for optimality of KLT was derived: if KLT generates
independent coefficients then it is the optimal transform for variable rate coding. This
condition is obviously satisfied in the Gaussian case. In [4], a significant extension
of the known range of optimality of KLT was obtained: KLT, in conjunction with
variable rate high resolution coding, is not only optimal for Gaussians but also for
the broader family of Gaussian vector mixtures.

In our recent work, [5], we derived a necessary and sufficient condition for op-
timality of a transform in conjunction with variable rate coding at high resolution.
Specifically, we showed that the optimal transform is the one that minimizes the di-
vergence between the joint distribution of the resulting transform coefficients and the
product of their marginals. In other words, it minimizes a quantitative measure of
the dependence between the transform coefficients. Note furthermore that this result
not only resolves the question of when KLT is optimal (at high resolution), but it
also determines the optimal transform when it is not KLT. Since minimizing a mea-
sure of dependence is closely related, at the high level, to the objective of a variant
of the well studied problem of source separation, we leveraged the rich reservoir of
numerical algorithms, most importantly relating to independent component analysis
[6], in order to derive an algorithm to optimize the transform.

In the present work, we study the transform coding problem in the broader scope of
network settings. First, transform coding with side information is analyzed. Most of
the optimality results involving transformation in distributed settings were restricted
to Gaussian sources. Linear approximation and rate-distortion analysis (asymptotic
delay) for Gaussian sources were studied in [7] which led to the optimality of the
conditional KLT. Transform coding of Gaussian sources with high resolution variable
rate scalar quantizers was studied in [8], where it is shown that conditional KLT is
optimal for jointly Gaussian source and side information. The objective of this paper
is to derive general optimality results without recourse to Gaussian assumptions. We
present the necessary and sufficient condition for optimality of a unitary transform
in the side information setting, as well as specializing the result to demonstrate the
optimality of conditional KLT for a family of non-Gaussian sources. Finally, we
consider the distributed transform coding setting, where two correlated sources are
to be encoded separately, via transform coding. This setting has also been studied in
[7], where optimal transforms for linear approximation and asymptotical compression
(Shannon sense) were derived for Gaussian sources.

The paper is organized as follows: in Section 2, we present preliminaries, including
review of prior work on the point-to-point setting. Transform coding in the decoder
side information setting and in the distributed settings, is studied in Sections 3 and
4, respectively. Conclusions are presented in Section 5.

2 Preliminaries

2.1 Notation

In general, lowercase letters (e.g., c) denote scalars, boldface lowercase (e.g., x) vec-
tors, upper- case (e.g., C,X) matrices and random variables, and boldface uppercase
(e.g., X) random vectors. Throughout this paper, vectors are N -tuples, and matri-
ces have size N × N . Let I denote the identity matrix, and let U denote the set of
real unitary matrices. Without loss of generality we will assume zero-mean sources.
Hence, RX = E(XXT ) denotes both the autocorrelation matrix and covariance ma-
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trix of X, and RXZ = E(XZT ) denotes the matrix of its cross-covariance with Z.
We follow standard notation for information-theoretic quantities (see e.g., [9]). A
scalar quantizer Q is a mapping Q : R → C ⊂ R, where C is a countable set called
the codebook. We restrict this paper to variable rate analysis, and the rate needed to
describe random variable Y after quantization by quantizer Q is determined by the
entropy, H[Q(Y )]. A transform coding scheme is a structured vector quantizer where
the random vector X is transformed into Y = UX by a unitary matrix U ∈ U , and
then each component Yi is quantized by a scalar quantizer Qi. The total rate of the
transform coder is

RT =
∑
i

H(Qi(Yi)) (1)

At the decoder, inverse transformation by the matrix U−1 = UT is used to obtain
an estimate of the source vector. The corresponding distortion is measured as mean
square error,

DT = E{||X − UTQ(UX))||22} (2)

where Q(X) = [Q1(X1), .., QN(XN)]T .

2.2 High rate approximation

It is well known that uniform quantizers are asymptotically (at high resolution) opti-
mal for variable rate coding, irrespective of the density of the source to be quantized
[10]. Therefore, we use uniform quantizers throughout the paper. Let ∆i be step
size for the ith transform coefficient. Under the mild assumption that the density
of a scalar random variable is Riemann integrable, at sufficiently high rate the dis-
tribution within a quantization interval is uniform [10]. This assumption results in
quantization noise that is uniformly distributed over (−∆i/2,∆i/2). Thus, at high

resolution the distortion Di is approximated as Di =
∆2

i

12
. We present the following

lemma without proof.

Lemma 1 ([4, 11]). At high resolution, subject to the distortion constraint, D, the
average bit rate R(D) is minimized if the quantizer step sizes are equal and given by

∆∗i =

√
12D

N
, 1 ≤ i ≤ N, (3)

regardless of the unitary transform U and the density of source X.

Note that, unlike the optimal step size ∆, which is invariant to the source statis-
tics, the optimal transform U depends on the source. The following straightforward
auxiliary lemma (a consequence of high resolution quantization) relates the differ-
ential entropy of a continuous random variable with the entropy of its reproduction
after uniform quantization at high resolution:

Lemma 2 (e.g., [9]). If density fX(·) of random variable X is Riemann integrable,
and Q(X) is its reproduction after uniform quantization with step size ∆, then the
following holds asymptotically, as ∆→ 0:

H(Q(X)) + log ∆→ h(X) (4)
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2.3 On the Question of KLT Optimality

KLT : The matrix RX is real, symmetric, and positive semidefinite, with eigenvalues
λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0. It allows thus a diagonalization given by

RX = STXΛXSX (5)

where SX ∈ RN×N is a unitary matrix whose columns are the eigenvectors of the
matrix RX ordered by decreasing eigenvalues , and ΛX ∈ RN×N is diagonal with
entries λ1, λ2, ..., λN . The matrix SX is called Karhunen Loeve transform (KLT) of
X.

Clearly, KLT generates uncorrelated coefficients. It is well known that KLT is
optimal for “zonal sampling” or “linear approximation”: if the source estimate is ap-
proximated by expansion from a pre-determined subset of the transform coefficients,
then the KLT (if unique) minimizes the approximation error. It has more recently
been shown that KLT is optimal for Gaussian sources for both variable and fixed rate
and at any operating rate regime, i.e., without high resolution approximations [2].

Note that KLT is not necessarily unique. As example, when RX = I, any unitary
transform U “diagonalizes” RX as UIUT = I. Then a natural question arises: do
all these KLTs perform equally? A sufficient condition for optimality of a KLT (that
resolves this question if satisfied by one of the contenders) was given in [3] and is
reproduced here.

Theorem due to Effros-Feng-Zeger (EFZ) [3]: If a KLT produces independent
transform coefficients, then it is optimal for variable-rate transform coding at high
resolution.

Note that the sufficient condition of EFZ is not necessary for optimality. Specifi-
cally, there is a family of distributions where KLT has been shown to be optimal for
transform coding although it does not generate independent coefficients [4].

Gaussian Vector Scale Mixtures: A random vector X taking values in RN

is called Gaussian Vector Scale Mixture (GVSM) if X = CT (Z � V ) where C is a
constant unitary matrix, random vector Z ∼ N(0, I), scale vector V is a random
vector independent of Z and taking values in R+, and � denotes the element-wise
product.

Theorem due to Jana-Moulin (JM) [4]: KLT is optimal for a GVSM source for
variable rate coding at high resolution.

This theorem clearly identifies a set of source distributions for which KLT is
optimal, but leaves open the question of whether KLT is strictly suboptimal outside
this set.

2.4 Optimality Condition for the Single Terminal Setting

The state of the art, summarized so far, leaves several natural follow-up questions
open: when is KLT optimal for transform coding of general non-Gaussian sources?
What is a conclusive condition for optimality of a general (not necessarily KLT)
transform? If KLT is suboptimal, how can we numerically find the optimal transform?
In this section, we review our recent result that provided, for the point-to-point
setting, a necessary and sufficient condition for optimality of a transform, regardless
of whether or not it is KLT. In other words, this condition naturally determines if
KLT is optimal, and when KLT is suboptimal, it provides the means to identify the
non-KLT optimal transform. In fact, this condition leads to an algorithm to optimize
the transform.

250



Single Terminal Transform Optimality Theorem [5]: Unitary transform U∗ is op-
timal if and only if the following is satisfied:

U∗ = argmin
U∈U

D(fY ||
N∏
i=1

fYi
) (6)

where Y = UX and D is the divergence.

Remark 1. This result subsumes the EFZ theorem [3], as well as the known optimal-
ity of KLT for jointly Gaussian sources at high resolution variable rate coding [10],
as represented by the extreme special case where KLT yields independent coefficients.

Remark 2. This theorem essentially states that the optimal transform is the one that
minimizes a measure of statistical dependence of the transform coefficients. KLT con-
siders second order statistics and decorrelates the transform coefficients, but this is
neither necessary nor sufficient to minimize the overall statistical dependence as mea-
sured by the above divergence. The theorem also suggests that the optimal transform
deviates from KLT whenever second order statistics do not capture well the overall
dependence.

3 Transform Coding with Side Information

We consider the setting where a random variable Z, which is correlated with source
X, is only available to the decoder, as shown in Figure 1. The encoder does not have
access to the realization of the side information Z, but knows the joint statistics of X
and Z. The decoder first decodes the entropy coded transform coefficients Ŷ using
the side information Z, then applies the inverse transform U−1 = UT to obtain the
reconstruction X̂ = UT Ŷ that minimizes E{||X − X̂||2}.

This problem has been studied extensively from an asymptotic (in the Shannon
sense) point of view [12, 13]. Specifically of interest here is the seminal result of
Slepian-Wolf that source X can be losslessly reconstructed at the decoder at rate
H(X|Z) when the side information Z is only available to the decoder [12]. Recently,
researchers considered the distributed transform coding problem [7, 8]. Specifically,
[7] studied optimal transforms for linear approximation and asymptotic (in delay)
compression. Conditional KLT was introduced and shown to be the optimal transform
in the case of jointly Gaussian sources. A high resolution analysis of transform coding
with scalar quantizers in conjunction with decoder side information was provided in
[8]. It was shown that for Gaussian sources conditional KLT and uniform quantizers
are optimal for variable rate coding at high resolution. In this section we derive
general optimality conditions without restriction to Gaussian sources. Let us start
with relevant definitions.

Conditional KLT1: A conditional KLT of X ∈ RN with respect to Z ∈ RK is
the linear transform characterized by the matrix SX|Z that satisfies

STX|ZRESX|Z = diag(λE,1, λE,2, ..., λE,N) (7)

1This definition differs from the one appearing in [7] in that it makes explicit the relation to
prediction error covariance.
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Figure 1: Transform coding with decoder side information

where RE is the covariance of the prediction error of the best linear predictor of X
from Z

RE = RX −RXZR
−1
Z RT

XZ (8)

We summarize a few straightforward observations and properties of conditional KLT
(some directly inherited from the standard KLT):

Remark 3. Conditional KLT is a unitary transform and it is not unique.

Remark 4. Components of the vector Y = SX|ZX, i.e., the transform coefficients
are conditionally uncorrelated given Z. For jointly Gaussian source X and Z, the
transform coefficients are conditionally independent given Z, i.e., Yi ↔ Z ↔ Yj form
a Markov chain for i 6= j.

The optimality of uniform quantization followed by Slepian-Wolf encoding was
shown in [8]. The following lemma states the optimality of identical uniform quantiz-
ers when transform coding is performed within the decoder side information setting.

Lemma 3. Subject to the distortion constraint, D, the average bit rate is minimized
if the quantizer step sizes are equal and given by

∆i = ∆ =

√
12D

N
,∀i (9)

regardless of the unitary transform U , the joint density of source X and side infor-
mation Z.

Proof. The proof follows the footsteps of the proof of Lemma 1 (optimality of uniform
quantization for transform coding).

Our main result for this setting, given in the following theorem, states the neces-
sary and sufficient condition for optimality of a unitary transform.

Theorem 1. Unitary transform U∗ is optimal, for source X and side information
Z, if and only if the following is satisfied:

U∗ = argmin
U∈U

D(fY |Z ||
N∏
i=1

fYi|Z) (10)

where Y = UX and D is the conditional divergence.
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Proof. Using Lemma 3 we have the following for total distortion, and for total rate,

DT =
N∆2

12
, RT =

∑
i

H(Q(Yi)|Z) (11)

assuming an ideal entropy coder that achieves the conditional entropy due to the
asymptotic optimality of Slepian-Wolf encoding [12]. Since the distortion is indepen-
dent of the distribution of the transform coefficients, the aim of the transform coder
is to minimize the total rate RT . Using Lemma 2, we can rewrite RT as

RT = −
∑
i

∫
fYi,Z(yi, z) log fYi|Z(yi, z)dyidz + log ∆ (12)

where fyi,Z is the joint density of the ith transform coefficient and the side information
Z. Since the quantization intervals are fixed, the optimal transform must minimize
the first term, hence the cost function:

J = −
∑
i

∫
fYi,Z(yi, z) log fYi|Z(yi, z)dyidz

= −
∫
fY Z(y, z)

[∑
i

log fYi|Z(yi, z)

]
dydz (13)

Noting that differential entropy is invariant to unitary transformations, h(UX|Z) =
h(X|Z), we write the conditional entropy h(Y |Z) as

h(Y |Z) = h(X|Z) = −
∫
fXZ(x, z) log fX|Z(x, z)dxdz = C (14)

where C is used to emphasize that the joint entropy is determined by the source and
the side information and is hence constant with respect to the transform. Subtracting
the constant C from both sides of (13), and noting that minimizing J is equivalent
to minimizing J − C, we obtain

J − C = −
∫
fY Z(y, z)

[∑
i

log fYi|Z(yi, z)

]
dydz +

∫
fY Z(y, z) log fY |Z(y, z)dydz

= D(fY |Z ||
N∏
i=1

fYi|Z)

Corollary 1. Conditional KLT is optimal for transform coding of jointly Gaussian
source and side information as well as a source distributed as jointly Gaussian con-
ditioned on the (possibly non-Gaussian) side information.

Proof. Remark 4 states that, conditional KLT renders the transform coefficients con-
ditionally uncorrelated given the side information which in turn implies conditional
independence for a conditionally Gaussian source. This guarantees that the condi-
tional divergence of the optimality condition is zero.

Corollary 2. Conditional KLT is optimal for sources that are conditionally GSVM
given the (possibly non-Gaussian) side information.

The proof can be obtained by using the proof of JM Theorem and Theorem 1,
and is omitted here for brevity.
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Figure 2: Distributed transform coding problem

4 Distributed Transform Coding

We consider the setting where two correlated sources are separately encoded via
transform coding as shown in Figure 2. Vector sources X ∈ RN and Z ∈ RK

are transformed by unitary transforms UX , UZ ∈ U to produce Y = UXX and T =
UZZ. Transform coefficients are then quantized with high resolution scalar quantizers
(QX

1 , ..., Q
X
N and QZ

1 , ..., Q
Z
K) followed by entropy coding. The decoder first decodes

the entropy coded quantized coefficients, Ŷ and T̂ and then generates X̂ = UXY
and Ẑ = UZT that minimize the weighted error distortion metric:

α
1

N
E||X − X̂||2 + (1− α)

1

K
E||Z − Ẑ||2 (15)

where α ∈ [0, 1]. The following lemma states the intuitive fact that conditioning
entropy on the high resolution reconstruction of a random variable is equivalent to
conditioning it on the original source.

Lemma 4. Let continuous random variables X, Y have a Riemann integrable joint
density. Let Q(X,D) denote the quantized version of X with the optimal variable rate
quantizer whose MSE distortion is D. Then,

lim
D→0

h(Y |Q(X,D)) = h(Y |X) (16)

The proof can be obtained by considering the conditional entropy given discretized
X as a Riemann sum where sampling of the real line is governed by the high resolution
quantizer.

Theorem 2. The optimal quantizers for distributed transform coding are uniform
with step sizes ∆X and ∆Z for all transform coefficients of X and Z. Also optimal
step sizes do not depend on the transforms and are given by:

∆X,i = ∆X =

√
6ND

α
,∆Z,j = ∆Z =

√
6KD

1− α
,∀i, j (17)
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Proof. We consider optimality of one encoder while fixing the other. If we fix the

second encoder, the decoder has access to T̂ . Using Lemma 4, we have

h(Y |T̂ ) ≈ h(Y |T ) = h(Y |Z) as D → 0 (18)

Hence, the required rate is the same as if Z were available to the decoder. Using this
and Lemma 4, we deduce that the optimal quantizers are uniform. Let J = D + γR
where

D =
α

12N

N∑
i=1

∆2
X,i +

1− α
12K

K∑
j=1

∆2
Z,j (19)

R =
N∑
i=1

h(Y i|Z)− log ∆X,i +
K∑
j=1

h(T j|X)− log ∆Z,j (20)

Then, ∂J
∂∆X,i

= 0 and ∂J
∂∆Z,j

= 0 yield (17). Note that the cost function J is indeed

convex with respect to ∆X,i (and ∆Z,j),
∂2J
∂∆2

X,i
= 2α

12N
+ 1

2∆2
X,i
≥ 0.

The following theorem presents our main result within this setting:

Theorem 3. Unitary transforms U ∗X and U ∗Z are optimal for distributed transform
coding of sources X and Z, if and only if the following is satisfied:

U∗X = argmin
UX∈U

D(fY |Z ||
N∏
i=1

fYi|Z), U∗Z = argmin
UZ∈U

D(fT |X ||
N∏
i=1

fTi|X) (21)

where Y = UXX, T = UZZ and D is the conditional divergence.

Proof. The proof uses ideas from the proof of Theorem 2. Note that distortion does
not depend of the transforms UX , UZ and only the rate does. The total rate expression
(20) has two terms which are identical to that of the side information setting. Hence,
following the same steps used in proving Theorem 2, we have Theorem 3.

Corollary 3. The optimal unitary transform for jointly Gaussian sources is given by
the conditional KLTs: U∗X = SX|Z and U∗Z = SZ|X .

Remark 5. The above results can be trivially extended to more than 2 sources or to
a mixed setting where some of sources are directly available to the decoder and others
are encoded through transform coding.

5 Conclusion

In this paper, we studied the high resolution, variable rate transform coding problem
for network settings. Two specific settings were considered: decoder side informa-
tion and distributed transform coding. In the side information setting, known results
were restricted to Gaussian sources. We derived optimality results for general, non-
Gaussian sources and side information. Specifically, the optimal unitary transform
minimizes the conditional divergence between the joint density of transform coeffi-
cients and the product of their marginals, given the side information. For the dis-
tributed transform coding problem, we derived the necessary and sufficient condition
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for optimality of a unitary transform. We also specialized the results to prove the
optimality of conditional KLT for various classes of sources. The scope of this paper is
limited to unitary transforms, as is the case of most prior work in this area. Neverthe-
less the basic ideas in this paper can be extended (albeit nontrivially) to non-unitary
transforms, and to other transform coding settings which are the subjects of ongoing
investigation.
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