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ABSTRACT
There has been considerable interest in distributed source
coding within the compression and sensor network research
communities in recent years, primarily due to its potential
contributions to low-power sensor networks. However, two
major obstacles pose an existential threat on practical de-
ployment of such techniques in real world sensor networks,
namely, the exponential growth of decoding complexity with
network size and coding rates, and the critical requirement
for error-resilience given the severe channel conditions in
many wireless sensor networks. Motivated by these chal-
lenges, this paper proposes a novel, unified approach for
large scale, error-resilient distributed source coding, based
on an optimally designed classifier-based decoding frame-
work, where the design explicitly controls the decoding com-
plexity. We also present a deterministic annealing (DA)
based global optimization algorithm for the design due to
the highly non-convex nature of the cost function, which
further enhances the performance over basic greedy itera-
tive descent technique. Simulation results on data, both
synthetic and from real sensor networks, provide strong ev-
idence that the approach opens the door to practical de-
ployment of distributed coding in large sensor networks. It
not only yields substantial gains in terms of overall distor-
tion, compared to other state-of-the-art techniques, but also
demonstrates how its decoder naturally scales to large net-
works while constraining the complexity, thereby enabling
performance gains that increase with network size.

Categories and Subject Descriptors
E.4 [Coding and information theory]: Data compaction
and compression, Error control codes; G.3 [Probability
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and statistics]: Probabilistic algorithms; I.4.2 [Compression]:
Approximate methods

General Terms
Algorithms, Theory, Experimentation

Keywords
Distributed source-channel coding, Large scale sensor net-
works, Error resilient coding

1. INTRODUCTION AND MOTIVATION
Sensor networks have gained immense importance in re-

cent years, both in the research community as well as in
the industry, mainly due to their practicability in numer-
ous applications. Sensors are typically low power devices
and minimizing the number of transmissions is one of the
primary objectives for a system designer. It is widely ac-
cepted that exploiting inter-sensor correlations to compress
information is an important paradigm for such energy effi-
cient sensor networks. The problem of encoding correlated
sources in a network has conventionally been tackled in the
literature from two different directions. The first approach
is based on ‘in-network compression’ wherein the compres-
sion is performed at intermediate nodes along the route to
the sink [8]. Such techniques tend to be typically wasteful in
resources at all-but the last hop of the sensor network. The
second approach involves ‘distributed source coding’ (DSC)
wherein the correlations are exploited before transmission at
each sensor [3].

The basic DSC setting involves multiple correlated sources
(e.g., data collected by a number of spatially distributed
sensors) which need to be transmitted from different lo-
cations to a central data collection unit/sink. The main
objective of DSC is to exploit inter-source correlations de-
spite the fact that each sensor source is encoded without
access to other sources (see Fig. 1). The only informa-
tion available before designing DSC is their joint statistics
(e.g., a training dataset). Today the research in DSC can be
categorized into two broad camps. First approach derives
its principles from channel coding, wherein block encoding
techniques are used to exploit correlation [1, 9, 18]. While
these techniques are efficient in achieving good compression
and error-resilience (using efficient forward error correcting
codes), they suffer from significant delays and high encoding
complexities, which make them unsuitable for several sen-
sor network applications. The second approach is based on
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source coding and quantization techniques, which introduce
practically zero delay into the system. Efficient design of
such zero delay DSC for noiseless systems has been studied
in several publications including [4, 5, 12, 14], and will be
more relevant to us in this paper.

However, two major obstacles have deterred these ap-
proaches from gaining practical significance in real world
sensor networks. Firstly, the decoder complexity grows ex-
ponentially with the number of sources making these con-
ventional techniques (typically designed for 2 - 3 sources)
infeasible for large sensor networks. Surprisingly, very few
researchers have so far addressed this important issue, e.g.
[6, 10, 19, 20]. However most of these approaches suffer
from important drawbacks which will be explained in detail
in section 3.

The second important reason for inefficiency of current
DSC methods is the fact that sensor networks usually op-
erate at highly adverse channel conditions and codes de-
signed for a noise-less framework provide extremely poor
error-resilience. The design of such error-resilient DSC is
a very challenging problem, as the objectives of DSC and
channel coding are counter-active in the sense that one tries
to eliminate dependencies, while the other tries to correct
errors using the dependencies. On the one hand, the system
could be made compression centric and designed to exploit
inter-source correlations analogous to the noiseless frame-
work. However, this reduces the dependencies among the
transmitted bits leading to poor error-resilience at the de-
coder and eventually poor reconstruction distortions. On
the other extreme, the encoders could be designed to pre-
serve all the correlations among the transmitted bits which
could be exploited at the decoder to achieve good error re-
silience. However, such a design fails to exploit the gains
due to distributed compression leading to poor over all rate-
distortion performance.

Motivated by these practical challenges, in this paper we
address the problem of error-resilient and zero-delay dis-
tributed compression for large scale sensor networks. In a
recent work [16], a new decoding paradigm for large scale
DSC was proposed in case of noiseless networks, wherein the
received bits were first compressed (transformed) down to an
allowable decoding rate and the decoding was performed in
the compressed space. In this paper, we build upon the work
in [16] and propose an optimal method to compress the re-
ceived bits which naturally builds error resilience into the
system leading to a unified error-resilient and complexity
constrained mechanism for distributed coding in large scale
sensor networks. Essentially, we map every received index to
a cloud center based on a minimum distance criterion lead-
ing to a classification of indices into decoding spheres. The
reconstructions are purely based on the sphere to which the
received index belongs. These spheres (cloud centers), when
designed optimally, lead to an error-correcting code which
serves the dual purpose of a source-channel decoder. We use
design principles from source-channel coding for individual
sources, and propose a global optimization technique based
on deterministic annealing [13] to address the intricate na-
ture of the design problem. As we will present in section 4,
our methodology overcomes all the drawbacks with the con-
ventional approaches, presented in section 3, and provides
significant improvements in reconstruction distortion over
state of the art methods for both synthetic and real world
sensor network datasets.

Figure 1: Basic DSC setup - Lookup table based decoder

The rest of the paper is organized as follows. In Sec. 2, we
formulate the problem, introduce notation, and discuss the
difficulties in the design of large-scale distributed source cod-
ing system. In Sec. 3, we review related work, and explain
our proposed compression/classification based approach in
Sec. 4. Sec. 5 describes the algorithm for system design
with details about complexity in Sec. 6. Finally, results are
presented in Sec. 7, followed by Conclusions in Sec. 9.

2. DESIGN FORMULATION
Before describing the problem setup, we state some of the

assumptions made in this paper. Firstly, to keep the un-
derstanding simple, we only consider spatial correlations be-
tween sensors and neglect the temporal correlations. Tempo-
ral correlations can be easily incorporated using techniques
similar to that in [15]. Secondly, in this paper we consider
only channels with errors, noting that the methodology can
be easily extended to incorporate erasures. We will briefly
address this issue in section 8. Further, we assume that
there exists a separate channel from every sensor to the cen-
tral receiver, i.e., information is not routed in a multi-hop
fashion. However, the method we propose is fairly general
and is applicable to the multi-hop setting. Throughout this
paper, we make the practical assumption that while the joint
densities may not be known during the design, there will be
access to a training sequence of source samples and channel
errors during design. In practice this could either be gath-
ered off-line before the deployment of the sensor network or
could be collected during an initial phase after deployment.

We begin with the description of the conventional (zero
delay) DSC setup. We refer to [6] for a detailed descrip-
tion. Consider a sensor network composed of N sensors
(denoted by s1, s2 . . . , sN respectively). The sensors com-
municate with a central receiver (denoted by S) at rates
(R1, R2 . . . RN) respectively over noisy channels as depicted
in Fig. 1. At regular time intervals, each sensor observes
some physical phenomenon (eg. temperature, pressure etc).
These sensor observations are modeled as correlated random
variables denoted by (X1, X2 . . . XN ). Sensor si encodes Xi

using Ri bits and transmits it to the receiver. The central re-
ceiver attempts to jointly reconstruct (X1, X2 . . . XN ) using
bits received from all the sensors. The objective is to design
the encoders at each of the sensors and decoders (estimators)
at the central receiver so that the overall distortion between
the observations and the reconstructions is minimized.



Figure 2: Example of a typical encoder (irregular quantizer).
In this example, Ni = 16 quantization regions and Ri = 2
bits.

Encoding at each sensor is composed of two stages. At
sensor si, the first stage is a simple high rate quantizer (la-
beled as “HQ” in Fig. 1), Hi, which discretizes the real space
into a finite number of non-overlapping regions Ni. Specifi-
cally, Hi is a mapping which assigns one of the quantization
indices to every point in the real space, i.e.,

Hi : Xi ∈ R → Qi = {1 . . . Ni} (1)

Note, that the quantizers are high rate so as to exclude
them from the joint encoder-decoder design. This is a prac-
tical engineering necessity, and the primary purpose of the
high-rate quantizers is to discretize the sources. We refer to
[14] for further details. The second stage of encoding, which
we call, a ‘Wyner Ziv map’/WZ-map1(also called binning in
some related work [20]), relabels the Ni quantization regions
with a smaller number, 2Ri , of transmission indices. Math-
ematically, the Wyner Ziv map at source i, denoted by Wi,
is the following function:

Wi : Qi → Ii = {1 . . . 2Ri} (2)

and the encoding operation can be expressed as a composite
function:

Ii = Ei(xi) =Wi (Hi(xi)) ∀i (3)

A typical example of a WZ-map is shown in Fig. 2. Ob-
serve that the WZ-map performs lossy-compression. In fact,
some regions which are far apart are mapped to the same
transmission index, and this makes the encoding operation
at each source equivalent to that of an irregular quantizer.
Although this operation might seem counter intuitive at
first, if designed optimally, it is precisely these modules
which assist in exploiting inter-source correlations without
inter-sensor communication. Essentially, the design would
be such that, it enables the decoder to distinguish between
the possible quantization regions for the transmitted index
of the particular source using the indices transmitted from
other sources. It is fairly well known in the source cod-
ing literature (see [12, 14, 20] and the references therein)
that these WZ-maps, if properly designed, provide signif-
icant improvements in the over all rate-distortion perfor-
mance compared to that achievable by regular quantizers
operating at the same transmission rates (see also section
7.4). It is important to note that the WZ-maps must be de-
signed jointly before the sensor network begins its operation
using the source-channel statistics or a training sequence of
observations. Efficient design of these mappings for noise-
less networks has been studied in several prior publications
such as [6, 14].

The encoder at sensor si transmits the binary representa-
tion of Ii, determined by a standard Gray mapping, to the
remote receiver using a standard BPSK modulation scheme.

1The term ‘Wyner-Ziv map’ is coined after Wyner and Ziv
[17] who first solved the lossy version of the side information
setup in information theory

In this paper, we assume that the channels are independent
additive white Gaussian noise and the receiver employs sep-
arate optimal detection. This makes the effective channel
seen by each bit an independent Binary Symmetric Channel
(BSC) whose cross-over probability depends on the variance
of the noise. However, we note that the design principles
presented in the paper are based on an available training set
of source samples and channel errors and hence can be easily
extended to more general modulation-demodulation schemes
and channel error patterns. In particular, the method can be
easily applied to the setting where bits are routed over mul-
tiple hops (in which case the channel errors are correlated),
by collecting the corresponding training set of error samples
and designing the system using the collected training sets.
We denote the symbol obtained following optimal detection
and inverse Gray mapping by Îi ∈ Ii as shown in Fig. 1. We
use the short-hand I = (I1, I2 . . . IN ) and Î = (Î1, Î2 . . . ÎN).

Note that both I and Î take values in I = I1 × I2 . . . IN .
Observe that the total number of bits received at the de-

coder is Rr =
∑N

i=1 Ri, of which a subset could be erroneous.
The decoder reconstructs each source based on the received
index Î . Formally, the decoder for source i is a mapping
from the set of received index tuples to the reconstruction
space and is given by:

Di : I → X̂i ∈ R (4)

Usually the decoder is assumed to be a lookup table, which
has the reconstruction values stored for each possible re-
ceived index as shown in Fig. 1. For optimal decoding,
the lookup table has a unique reconstruction stored for each
possible received index tuple. Hence the total storage at the

decoder grows as O(N × 2Rr ) = O(N × 2
∑N

i=1 Ri), which is
exponential in N . We call the total storage of the lookup ta-
ble as the decoder complexity. In most prior work, DSC was
performed for a few (typically 2 - 3) sources, with the im-
plicit assumption of design scalability with network size. But
this exponential growth in decoder complexity for optimal
decoding with the number of sources and transmission rates
makes it infeasible to use the conventional setup in practical
settings even with moderately large number of sources. Just
to illustrate, consider a sensor network with 20 sources com-
municating at Ri = 2 bits per source. The decoder receives
40 bits of information and has to store a unique reconstruc-
tion for every received bit combination. This would require

a decoder storage of over 20×2
∑20

i=1 2 ≈ 175 TeraBytes. . . In
the next section, we describe some of the related work which
has been done to address this huge exponential storage at
the decoder.

It is worthwhile to note that the encoding operation in the
above scheme involves a simple quantization of the source
samples followed by a direct look up of the transmission in-
dex. The total storage at each encoder includes its high rate
quantization codebook (of size |Qi|) and the corresponding
WZ-map (of size |Qi|2Ri). For typical values of |Qi| and Ri,
the encoder complexity is significantly small and hence can
be easily implemented on a physical sensor mote. This inher-
ent advantage makes such approaches to distributed coding
more viable in low cost practical sensor networks than the
channel coding based methods, such as [9, 18], which re-
quire complex Slepian-Wolf coders at each source. Hence,
hereafter, our concern will be only towards addressing de-
coder complexity, assuming that the encoders can be easily
implemented on a physical sensor mote.



3. RELATED WORK
One practical solution proposed in the past to handle the

exponential growth in decoder complexity is to group the
sources based on source statistics [6] and to perform DSC
within each cluster. By restricting the number of sources
within each group, the decoder complexity is maintained at
affordable limits. Evidently, even in the noiseless scenario,
such an approach does not exploit inter-cluster dependencies
and hence would lead to sub-optimal estimates. Moreover,
when there is channel noise, the resilience of the decoder to
channel errors degrades significantly as it is forced to use
only a subset of received bits to correct any error. Also in
most prior work, source groups are designed only based on
the source statistics, completely ignoring the channel condi-
tions. Indeed, it is a much harder problem to come up with
good source grouping mechanisms which are optimized for
both source and channel statistics.

It is worthwhile to mention that an alternate approach,
other than the lookup table has been proposed in the liter-
ature to practically implement the decoder [6, 19, 20]. In
this approach, the decoder computes the reconstructions on
the fly by estimating the posterior probabilities for quanti-
zation index qi as P (qi|Î), when a particular Î is received.
Such an approach requires us to store the high rate quanti-
zation codewords at the decoder, which grow only linearly in
N . However, to compute the posterior probabilities P (qi|Î),
using Bayes rule, we have:

P (q̃i|Î) = γ
∑

Q:qi=q̃i

P (Î
∣∣∣I(Q))P (Q) (5)

where γ is a normalization constant, andQ = (q1, q2 . . . , qN ).
The above marginalization requires an exponential num-
ber of operations to be performed at the decoder, let alone
the exponential storage required to store the probabilities
P (q1, . . . qN ).

To limit the computational complexity, prior work such
as [2, 6, 20] have proposed clustering the sources and link-
ing the clusters using a limited complexity Bayesian net-
work (or a factor graph), and thereby using message pass-

ing algorithms to find P (q̃i|Î) with affordable complexities.
These approaches provide significant improvement in distor-
tion over simple source grouping methods at fixed transmis-
sion rates and channel SNRs as they exploit inter-cluster
correlations efficiently. However, a major drawback of such
techniques, which is usually overlooked, is that they require
the storage of the Bayesian network/factor graph at the de-
coder. Though this storage grows linearly in N , it grows
exponentially with the rate of the ‘high rate quantizers’. To
be more precise, if we choose Ni = 2Rq∀i, then the storage
of the Bayesian network grows of the order of O(N2MRq )
where M is the maximum number of parents for any source
node in the Bayesian network. Typically (see for example
[12, 14, 6]), in source coding, Rq is chosen as R+3 or R+4
for the Wyner-Ziv maps to exploit the inter source corre-
lations efficiently. This makes the Bayesian network based
techniques less efficient as the gains in distortion obtained by
introducing the Bayesian network are superseded by the ex-
cess storage required to store the Bayesian network. We will
show in our results that the Bayesian network based meth-
ods under-perform even the source grouping techniques even
for moderate values of N at a fixed storage. Hence, though
it is counter-intuitive at first, it is indeed beneficial to group

Figure 3: Prototype based bit-mapper approach to decoding

more sources within a cluster instead of connecting the clus-
ters using a Bayesian network.

We note that, the storage required for transition proba-
bilities in the Bayesian network can be significantly reduced
if the joint densities of source distributions are parameter-
ized (for example as multivariate Gaussian). However, such
approximations are highly prone to estimation inaccuracies
and could lead to sub-optimal designs for more general/real
world source and channel statistics as has been observed in
[20]. We next describe our proposed classification-based ap-
proach for decoding which overcomes these drawbacks and
achieves a unified approach to error resilient and complexity
constrained distributed compression.

4. THE CLASSIFICATION/COMPRESSION
BASED APPROACH TO DECODING

Recall that the decoder receives Rr =
∑N

i=1 Ri bits of
information of which part could be erroneous. The look up
table at the receiver cannot store a unique reconstruction for
every possible received combination of bits. Hence, to de-
code source si, we first find an optimal classification scheme
which groups the set of all possible received index tuples, I,
into Ki groups. We then assign a unique reconstruction for
all received combinations which belong to the same group.
Essentially, we decompose the monolithic decoder, which
was a simple look-up table, into a compressor/classifier/bit-
mapper followed by a look-up table of reconstructions. Note
that the classification could possibly be different for decod-
ing each source. This would bring down the total storage
required for codebooks from N2Rr to

∑N
i=1 Ki, which can

easily be controlled by varying the number of groups.



However, a generic bit mapper would require us to store
the class information for every possible received index which
entails a storage exponential in N , defeating the purpose of
classification. Hence we impose the structure of a ‘nearest
neighbor classifier’ or a ‘vector quantizer’ for the bit-mapper
which enforces each received index tuple to be clustered to
one of the cloud centers based on a minimum distance cri-
terion as shown in Fig. 3. Such a modification to the bit-
mapper, though leads to some loss in optimality, provides
a two fold advantage. On one hand, it dramatically reduces
the storage overhead required to store the bit-mapper, as it
requires us to store only the cloud centers. On the other
hand, it builds error resilience into the system as it essen-
tially implements an error correcting code at the decoder by
assigning the same codeword to nearby received indices. If
the probability of channel error is not large, we would expect
Î to be sufficiently close to I and hence belong to the same
decoding sphere (group) as I . If the prototypes, encoders
and reconstruction codebooks are optimally designed for the
given source-channel statistics/training sequences, such an
approach would assist error correction leading to improved
end-to-end reconstruction distortion.

These cloud centers are called ‘prototypes’ in the litera-
ture [13] and the structure is normally termed ‘nearest proto-
type classifier’. Technically, these prototypes can be defined
in any sub-space (for example RN ) with an appropriate dis-
tance metric defined between the received index tuples to
the prototypes. However, we require these prototypes to en-
tail minimal excess storage, but at the same time provide
enough diversity for achieving good error-resilience. Hence
we enforce each prototype to belong to I and choose the cor-
responding distance metric to be the Hamming distance be-
tween the binary representations of the received indices and
prototypes. Given a set of prototypes Ji = {Si1 . . . SiKi},
Si,j ∈ I ∀i, j, the bit-mapper can mathematically be written
as:

Bi(I) : arg min
S∈Ji

di(I, S) (6)

where di(·, ·) denotes the Hamming distance. We note that,
the design methodology is applicable for prototypes chosen
from any generic sub-space.

In the next stage of decoding, each prototype is associ-
ated with a unique reconstruction codeword. We denote
this mapping by Ci(Si,j). Hence, if the received index is Î

and if the nearest prototype to Î is Si,j , then the estimate
of source i is x̂i = Ci(Si,j), i.e., the composite decoder can
be written as:

X̂i(Î) = Di(Î) = Ci(Bi(Î)) (7)

5. ALGORITHM FOR SYSTEM DESIGN
As mentioned in section 2, we assume that a training set

of source and channel samples is available during design.
Hence, given a training set, T = {(x,n)}, of source and
noise samples, our objective in this section is to find the
encoders, prototypes and reconstruction codebooks which
minimize the average distortion on the training set, which
is measured as:

Davg =
1

N |T |
∑

(x,n)∈T

||x− x̂||2 (8)

Note that in the above equation, we have assumed the distor-

tion metric to be the mean squared error (MSE) and given
equal weightings to all the sources similar to [6, 20]. How-
ever, the design methodology is applicable to any other gen-
eral distortion measure.

We first note that the high rate quantizers are designed
separately using a standard Lloyd-Max quantizer design tech-
nique to minimize the respective average squared error. The
challenging part is to design the Wyner-Ziv maps jointly
with the prototypes and the reconstruction codebooks to
minimize Davg. We note that readers who are not partic-
ularly interested in implementing the system, can conve-
niently skip the rest of this section.

Note that the design of such ‘nearest prototype classifiers’
or ‘generalized vector quantizers’ has been studied earlier in
the context of source-channel coding for a single source and
is known to be a very challenging problem [11]. The main
challenge arises due to the fact that, unlike the standard
quantizer design problem where the objective is to mini-
mize the average quantization distortion, here the classi-
fiers/quantizers are to be designed to minimize the distor-
tion in the reconstruction space. One straight forward de-
sign approach is to employ a greedy-iterative descent tech-
nique which reduces Davg in each iteration. Such an algo-
rithm would initialize the Wyner-Ziv maps, the prototypes
and the reconstruction codebooks randomly and then up-
date the parameters iteratively, reducing Davg in each step,
until convergence. As the number of possible Wyner-Ziv
maps and prototypes is finite, convergence is guaranteed to
a local minimum for any initialization.

However, in (8), the prototypes are present inside a highly
non-convex function which makes the greedy approach likely
to get trapped in very poor local minima (even with multi-
ple random initializations), thereby leading to sub-optimal
designs. Finding a good initialization for such greedy itera-
tive descent algorithms, even for problems much simpler in
nature than the one at hand, is known to be a very difficult
task. Hence in the following section, we propose a global op-
timization technique based on deterministic annealing (DA)
which provides significant gains by avoiding poor local min-
ima. Also note that the design approach we propose, op-
timizes all the system parameters for the given source and
channel statistics. However the design approaches proposed
in most prior work such as [6, 20] optimize the WZ-maps for
the noiseless scenario (without the knowledge of the channel)
and then design only the decoder codebooks for the given
channel statistics. We particularly study the gains due to
this optimal design later in section 7.

5.1 Deterministic Annealing Based Design
A formal derivation of the DA algorithm is based on prin-

ciples borrowed from information theory and statistical physics.
Here, during the design stage, we cast the problem in a
probabilistic framework, where the standard deterministic
bit-mapper is replaced by a random mapper which asso-
ciates every training sample to all the prototypes in prob-
ability. The expected distortion is then minimized subject
to an entropy constraint that controls the “randomness” of
the solution. By gradually relaxing the entropy constraint
we obtain an annealing process that seeks the minimum dis-
tortion solution. More detailed derivation and the principle
underlying DA can be found in [13].

Specifically, for every element in the training set, the re-
ceived index tuple, Î, is mapped to all the prototypes, Ji,



in probability. These probabilities are denoted by Pi(j|k)
∀i ∈ (1, . . . , N), j ∈ (1, . . . , |Ji|), k ∈ (1, . . . , |T |), i.e., the
received index tuple for training sample k is associated to
prototype j in Ji with probability Pi(j|k). Hence, the aver-
age distortion is:

Davg =
1

N |T |

|T |∑
k=1

N∑
i=1

∑
j∈Ji

Pi(j|k) (xi(k)− x̂i(j))
2 (9)

where xi(k) is training sample k of Xi and x̂i(j) = Ci(Sij).
Note that this includes the original hard cost function as a
special case when probabilities are hard, i.e.,:

Pi(j|k) =
{

1 if argminj′ di(Sij′ , Î(k)) = j
0 else

(10)

It is important to note that these mappings are made soft
only during the design stage. Of course, our final objective
is to design hard bit-mappers which minimize the average
distortion.

Further, we impose the ‘nearest prototype’ structural con-
straint on the bit-mapper partitions by appropriately choos-
ing a parametrization of the association probabilities. Sim-
ilar methods have been used before in the context of design
of tree-structured quantizers [13], generalized VQ design [11]
and optimal classifier design [7]). It can be shown using the
principle of entropy maximization that (refer to [13]), to im-
pose a ‘nearest prototype’ structure, at each temperature,
the association probabilities must be governed by the Gibbs
distribution:

Pi(j|k) =
e−βi(di(Î(k),Sij))

∑
j e

−βi(di(Î(k),Sij))
(11)

Observe that this parametrization converging to the ‘nearest
prototype classifier’ as βi →∞.

These mappings introduce randomness into the system
measured by the Shannon entropy as:

H =
1

N |T |
∑
k∈T

N∑
i=1

∑
j∈Ji

Pi(j|k) logPi(j|k) (12)

DA algorithm minimizes Davg in (9), with a constraint on
the entropy of the system, (12), where the level of random-
ness is controlled by a Lagrange parameter (usually called
the temperature in the literature due to its roots in statisti-
cal physics), T as:

J = Davg − TH (13)

Initially, when T is set very high, our objective is to maxi-
mize H and hence all the βi are very close to 0. This leads
to a very fuzzy system where all the received indices are
mapped to every prototype with equal probability. Then at
each stage, the temperature is gradually lowered maintain-
ing the Lagrangian cost at its minimum. βi gradually raises
as T reduces, thereby making the association distribution
less fuzzy. Finally as T → 0 all the βi → ∞ and we obtain
hard mappings where every received index maps to the clos-
est prototype. As T → 0 our Lagrangian cost becomes equal
to Davg and our original objective is realized. At each tem-
perature, we minimize J with respect to Wi, Ji, βi and Qi

∀i. This minimization is achieved using a standard gradient
descent method with update rules given below.

5.1.1 Wyner-Ziv Map Update
At fixed T , the WZ-map update rules are given by:

W∗
i (m) = argmin

l∈Ii

J(Wi(m) = l) (14)

∀i ∈ (1, . . . , N),m ∈ Qi where J(Wi(m) = l) denotes the
Lagrange cost obtained on the training set when Wi(m) is
set to l with all the remaining parameters unchanged.

5.1.2 Prototype Update
Note that each prototype can take values in the set I and

the size of the set |I| = 2
∑N

i=1 Ri , which grows exponential
in N . Hence, for large sensor networks, it is infeasible to find
the best prototype in each iteration from the set I. Hence, in
each step, we find an incrementally better prototype among
the neighboring prototypes, which are at a Hamming dis-
tance of one. Mathematically, for fixed Wyner-Ziv maps and
reconstruction codebooks, the update rule for prototypes is:

S∗
ij = arg min

s∈N(Sij)
J(Sij = s) (15)

where J(Sij = s) is the Lagrange cost obtained by setting
Sij = s with all the remaining parameters unchanged and
N(Sij) denotes all neighboring prototypes of Sij .

5.1.3 βi Update
As βi are real values, we find the gradient of J with re-

spect to βi for fixed Wyner-Ziv maps, prototypes and recon-
struction codebooks and employ a standard gradient descent
operation to update βi. The gradients of J with respect to
βi ∀i is given by:

δJ

δβi
=

1

N |T |
∑
k,j

{
(xi(k)− x̂i(k))

2 + T log(2Pi(j|k))

Pi(j|k)
(∑

j′
Pi(j

′|k)d(Î(k), Sij′)− di(Î(k), Sij)
)}

(16)

Then the update rule for βi is given by:

β∗
i = βi −�

δJ

δβi
(17)

where � is the step size for descent.

5.1.4 Reconstruction Codebook Update
Note that, J is a convex function of the reconstruction

values and hence the optimum codebook which minimizes J
for any fixed encoders, prototypes and βi is given by:

x̂i(j) = Ci(j) =
∑

k Pi(j|k)xi(k)∑
k Pi(j|k)

(18)

The complete steps for DA are shown as a flowchart in Al-
gorithm 12. T is initialized to a very high value and βis are
set very low. All the Wyner-Ziv maps and the reconstruc-
tion codebooks are initialized randomly. The prototypes are
set to the median of the received indices so as to minimize
the average Hamming distance. Temperature is gradually
lowered using an exponential cooling schedule, T ∗ = αT . In
all our simulations, we used α = 0.98. At each temperature,
all the system parameters are optimized using Eqns. (14),
(15), (17) and (18) till the system reaches equilibrium. This

2The simulation code is available at:
http:www.scl.ece.ucsb.edu/html/database/Error Resilient DSC.



equilibrium is perturbed and used as an initialization for the
next temperature. These iterations are continued till T ap-
proaches zero. In practice, the system is ‘quenched’, i.e, T
is set to zero and the bit-mapper is made hard, once the en-
tropy becomes sufficiently small. Note that the optimization
steps at T = 0 are same as that for the greedy approach.
However, instead of a random guess, the equilibrium at the
previous temperature is now used as the initialization. We
further note that under certain conditions on continuity of
phase transitions in the process, DA achieves the global min-
imum [13], but its ability to track the global minimum as we
lower the temperature depends on a sufficiently slow cooling
schedule (i.e., α sufficiently close to 1). However in practice
α is restricted based on the available design time. In our
simulations, we observed that using α = 0.98 achieves sig-
nificantly better solutions compared to the greedy descent
approach.

Algorithm 1. DA Approach for System Design
————————————————————————
Inputs: Ni (Number of high rate quantization indices),
Ri (Transmission rates),
Rdi (Decoding rate, i.e., |Ji| = Ki = 2Rdi ),
T (Training set), Tmax(∼ 1− 10), Tmin(∼ 10−5 − 10−4),
βmin(∼ 0.1−0.2), Hmin(∼ 0.1−0.2), α < 1 (Cooling Rate),
�(∼ 0.1− 0.2).
Outputs : Hi (High rate quantizers),
Wi (WZ-maps),
Ji (Prototypes),
and Ci (Reconstruction codebooks)
————————————————————————

1. Design the high rate quantizers individually using a
standard Lloyd-Max algorithm.

2. Initialize: T = Tmax, βi = βmin, Initialize WZ-
maps randomly, set Sij = Median(Î(x), x ∈ T ) ∀i ∈
(1, . . . , N), j ∈ (1, . . . ,Ji).

3. Compute: Pi(j|k) using (11) and Ci(j) using (18).

4. Update:

• WZ-maps using (14).

• Prototypes using (15).

• βi using (17), and then compute Pi(j|k) using
(11).

• Ci(j) using (18).

5. Convergence: Compute J and H using (13) and (12)
respectively. Check for convergence of J. If not satis-
fied go to step (4)

6. Stopping: If T ≤ Tmin or H ≤ Hmin, set Pi(j|k)
as (10) and perform last iteration for T = 0. Then
STOP.

7. Cooling:

• T ∗ ← αT .

• Perturb prototypes: S∗
ij ← s ∈ Neighborhood(Sij),

where s is chosen randomly.

• Perturb β∗
i ← βi + δ for small δ > 0 generated

randomly.

• Go to (4)

5.2 Note on Design Complexity
The design complexity for the proposed setup, either us-

ing the greedy approach or using DA grows as O(R3
r |T |).

The DA approach has a larger constant and requires more
computations compared to greedy approach for a single ini-
tialization. However, as the greedy approach has to be run
over multiple random initializations to achieve a good so-
lution, the exact comparison of design complexities is dif-
ficult and depends on the actual source-channel distribu-
tions. A generally accepted and observed fact (see [13]) is
that for a given design time, DA provides far better solu-
tions compared to that achieved by greedy approaches over
multiple random initializations for such complex non-convex
optimization functions.

6. OPERATIONAL COMPLEXITY
In this section we compare the computational and storage

complexities during operation of all the three approaches for
large scale DSC described earlier. For comparison purposes,
we assume that every source sends information at rate R
and all the high rate quantizers operate at rate Rq ≥ R.
Also, we assume that the decoding rate is Rdi = Rd (Rd ≤
NR) for all sources. For the source grouping approach, this
means that the maximum number of sources in any cluster
is Rd/R; for the Bayesian network approach, this implies
that the maximum number of parent nodes for any source
node is Rd/R and for the proposed approach, this implies
that the number of prototypes for decoding any source is
|Ji| = |Ki| = 2Rd∀i.

6.1 Computational Complexity
Firstly, we note that the computational complexity dur-

ing operation of all the three approaches is polynomial in
N . It is easy to observe that the decoder in the source
grouping method has literally no computations to make,
i.e. the complexity is a constant, O(1). The decoder in
the Bayesian network approach has to implement a message
passing algorithm for every received combination of indices.
This leads to a computational complexity which grows as
O(N2RqRd/R). On the other hand, the proposed prototype
based bit-mapper approach finds the closest prototype for
every received index tuple, which requires O(2RdN logN)
bit comparisons. Note that, though the complexity grows
slightly faster than N , it requires only bit comparisons, and
will incur much lesser machine cycles than required for im-
plementing each iteration in the Bayesian network approach.
As all the three methods can be implemented in practice
with affordable computational complexities, we hereafter as-
sume they are ‘equivalent’ with respect to computations and
focus only on their storage requirements.

6.2 Storage Complexity
Table I shows the order of growth in storage as a function

of N ,R, Rq and Rd for all the three approaches. Here, F de-
notes the bits required to store a real number or the floating
point accuracy. In all our simulations, we use F = 32 bits.



Storage due to Codebook Module

Source grouping N2RdF N log2(
NR
Rd

)

Bayesian network N2RqF N2(RqRd/R)F
+N log2(N)

Prototype based N2RdF N2R2Rd

bit-mapper

Table 1: Order of growth in storage complexities

The codebook storage in all the three settings are con-
siderably easier to derive. For example in the prototype
approach, there is a unique codeword associated with ev-
ery prototype. There are 2Rd prototypes for decoding each
source and hence the total storage for the reconstruction
codebooks is N2RdF . Similar arguments lead to the code-
book storage for the other approaches as given in Table I.

For analysis of module storage, we first begin with the
source grouping method. It requires us to store the group
labels for each source. As there are at least NR/Rd groups,
we need at least N log2(

NR
Rd

) bits to store the source group-

ings. For the Bayesian network approach, we require an
order of N Rd

R
log2(N) bits to store the parent node informa-

tion for each source. However, there is an additional storage
required to store the transition probabilities which grows as
N2RqRd/RF . The prototype based bit-mapper approach re-
quires us to store all the prototypes at the decoder. Each
prototype requiresNR bits to store and there are N2Rd such
prototypes leading to a total storage of N2R2Rd .

A first look at Table I suggests that the prototype based
bit-mapper approach entails a module storage which grows
as N2 in the number of sources and hence should entail a
very high overhead due to module storage. However, for typ-
ical values of these parameters, (i.e., N ∼ 10− 500 sources,
R ∼ 1−10 bits, Rq ∼ (R+2)−(R+4) bits and Rd/R ∼ 2−4)
the storage overhead of the proposed approach is not very
significant and the distortion gains obtained overhaul the
minimal loss due to excess storage3. However, in these typi-
cal ranges, the Bayesian network approach entails a storage
which is significantly higher than the other two methods and
hence leads to higher distortions at a fixed storage. Note
that, the values in Table I indicate the order of growth of
storage complexity and hence are accurate only upto a con-
stant. In all our simulations, we consider the exact storage
required and not the values derived from Table I.

7. RESULTS
To test the performance of the proposed approach, we

used 3 different datasets:
1) Synthetic dataset: A toy dataset consisting of 10

synthetic sources, randomly deployed on a square grid of di-
mensions 100 m× 100 m was generated according to a multi-
variate Gaussian distribution. All sources were assumed to
have zero mean and unit variance. The correlation was as-
sumed to fall exponentially with the distance. Specifically,

we assumed ρ = ρ
d/do
0 , ρ0 < 1. For all our simulations with

this dataset we set do = 100. The training set generated was
of length 10000 samples. All results presented are on a test

3Note that if N >> 500, then the optimal approach would
be to group ∼ 500 sources within each cluster and to per-
form decoding based on the proposed approach at affordable
complexities within each cluster, instead of directly grouping
at the allowed complexity

set, also of the same length, generated independently using
the same distribution.

2) Temperature sensor dataset : The first real data-
set we used was collected by the Intel Berkeley Research
Lab, CA 4. Data were collected from 54 sensors deployed in
the Intel Berkeley Research Lab between February 28 and
April 5, 2004. Each sensor measured temperature values
once every 31 s 5. We retained data from top 25 sensors that
collected highest number of samples. Times when subset of
these sensors failed to record data were dropped from the
analysis. The data were normalized to zero mean and unit
variance. Samples collected till March 18th, 2004 were used
to train the system and the remaining were used as the test
set.

3) Rainfall dataset : As a second real dataset, we used
the rainfall dataset used in[8] 6. This data-set consists of the
daily rainfall precipitation for the Pacific northwest region
over a period of 46 years. The measurement points formed
a regular grid of 50km x 50km regions over the entire re-
gion under study. The first 30 years of data were used for
training and the remaining to test the system. Note that
the inter-source correlations in such ‘large area’ datasets are
considerably lower. However, performance evaluation using
such diverse real world datasets is important to validate the
efficiency of the proposed setup.

We note that, all our results are in terms of the cross-
over probability of the effective BSC seen by each bit. We
denote the cross over probability (error probability) by Pe,
ie., P (1|0) = P (0|1) = Pe. Note that Pe is directly related

to the channel SNR (CSNR) as Pe = Q(
√
CSNR). In all

our simulations, we generated a training sequence of channel
errors of the same size as the training set. The average
distortion of the test set over 100 random (i.i.d.) channel
realizations is used as the performance metric.

7.1 Complexity-Distortion Trade-off
Fig. 4 shows the total storage (complexity) versus the dis-

tortion trade-off for all the three datasets. For these simu-
lations, the transmission rate was set to Ri = 1 bit. This
allows us to compare the performances with the minimum
distortion achievable using full complexity decoding. We
will present results at higher transmission rates in section
7.4. The decoding rate was varied from 1 to 5 bits to obtain
the distortion at different complexities. We plot the total
storage, which includes both codebook and module storage,
versus the distortion to obtain a trade-off curve. We show re-
sults obtained using all the three decoding methods - source
grouping where the grouping is done using source optimized
clustering approach described in [6], Bayesian network as de-
scribed in [20] and the prototype based bit-mapper approach
proposed in this paper. For fairness, we design the WZ-maps
for the given channel statistics for all the approaches. How-
ever, note that, in most prior work the channel statistics
were ignored while designing the WZ-maps [20]. We study
the gains due to this optimal design in the following section.
For comparison, we also include the performance obtained
for designs using greedy-iterative descent approach (opti-

4Available at http://db.csail.mit.edu/labdata/labdata.html
5Note that the sensors also measured humidity, pressure and
luminescence. However, we consider only the temperature
readings here
6Available for download at
http://www.jisao.washington.edu/data sets/widmann



Figure 4: Total storage Versus Distortion for 3 different datasets. (a) Synthetic dataset, Ri = 1∀i and Pe = 0.1 (b)
Temperature sensor dataset, Ri = 1, Pe = 0.1 (c) Rainfall dataset, Ri = 1, Pe = 0.2

mized over upto 25 random initializations) along with that
achieved using DA.

Fig. 4(a) shows the result obtained for the synthetic dataset
using ρ0 = 0.9 and Pe = 0.1. We see gains of over 2 dB in
distortion compared to the source grouping technique at a
fixed storage. Alternatively, the total storage can be re-
duced by 10X times while maintaining the same distortion.
We also see that the performance of the prototype based
bit-mapper approaches the optimal ‘full complexity’ decoder
significantly faster than the source grouping method. How-
ever, observe that, though the Bayesian network based de-
coder gains substantially over source grouping approach in
distortion at fixed decoding rates, the excess storage re-
quired to store the Bayesian network offsets these gains,
leading to much higher storage at fixed distortions. Note
that, in this case, the greedy approach also provides similar
performance as DA, as the probability of getting trapped in
local minima is low after 25 runs for smaller networks.

Figures 4(b) and 4(c) show the performance obtained for
the temperature sensor dataset and the rainfall dataset at
Pe of 0.1 and 0.2 respectively. As the temperature sensor
dataset has considerably higher correlations, we see gains
of over 2.5 dB in distortion at fixed storage over source
grouping approach. Due to lower correlations in the rainfall
dataset, we choose a higher Pe. Here, gains of about 1dB in
distortion are obtained. In general, higher correlations as-
sist the bit-mapper as it uses all the received bits to correct
errors, unlike the grouping approach which is forced to use
only the bits within each group. From 4(b), it also follows
that the overhead required to store the Bayesian network ag-
gravates at higher N and the performance degrades further,
making the Bayesian network approach impractical for very
large networks7. Also, for these datasets, observe that the
performance of the greedy-iterative descent method is con-
siderably poorer than that using DA. Hence, hereafter, we
only show results for DA, noting that the greedy approach
leads to poor designs for large networks.

In what follows, we compare the distortion performance
of the prototype based bit-mapper and the source grouping
approaches by varying the network and design parameters
at a fixed decoding rate. As the total storage is not re-
flected in these plots, we do not consider the performance of
the Bayesian network approach hereafter, noting that, the
storage required to achieve good distortion performance is
significantly higher.

7For the rainfall dataset, the storage required for the
Bayesian network approach was significantly larger and
hence we do not plot it along with the other curves

7.2 Pe Versus Distortion
In this section, we show the performance gains when Pe

is varied. We restrict Pe to be in the range 0 − 0.2 (i.e,
CSNR > -1.5 dB). For all the simulations, we have chosen
Ri = 1 and Rd = 3. Fig. 5(a) shows the distortion obtained
as a function of Pe for the synthetic dataset. For the source
grouping approach, we plot 2 curves. The first curve shows
the performance when the WZ-maps are optimized jointly
with the decoder for the given channel statistics. The sec-
ond curve shows the performance when the WZ-maps are
designed without the knowledge of channel statistics (in-
stead designed to minimize reconstruction distortion at zero
noise). However, after the design of the WZ-maps, the re-
construction codebooks are designed for the given channel
statistics. Clearly, optimal design of the WZ-maps for the
given channel provides about 0.5dB improvement in distor-
tion. Further, major improvements of over 2 dB, is due
to the error-resilience provided by the proposed decoder
structure. We see similar behavior even for the two real
world datasets in figures 5(b) and 5(c). The higher error-
correction capability of the nearest prototype structure is
further reflected as the gains improve when Pe increases
(CSNR decreases). Again observe that the gains in case
of the rainfall dataset are smaller due to lower correlations
in the dataset.

7.3 Performance with Network Size
In this section we study how the gains vary with the size

of the network. As random deployment makes it hard to
compare, we consider a uniformly placed, linear grid of sen-
sors between two fixed points. We increase the number of
sensors from 6 to 90 while keeping the transmission and de-
coding rates fixed. We assume a correlation model which
falls off exponentially with the distance and assume Pe to
be 0.2 throughout. Fig. 6 compares the results obtained for
the source grouping approach and the proposed bit-mapper
approach. We see that the gains keep increasing with the
network size. This is because, as the number of sources
increase, the decoder receives several more correlated bits
which are efficiently used by the proposed approach to cor-
rect errors. On the other hand, the inefficiency of the the
source grouping method is directly evident as it uses only
bits within each cluster.

7.4 Performance as a Function of Other De-
sign Parameters

In the following, we show results only for the synthetic
dataset described in the beginning of this section. We vary
different design parameters and study the performance gains.



Figure 5: Pe versus Distortion for 3 different datasets. For all the plots, we have used Ri = 1 and Rd = 3 (a) Synthetic
dataset (b) Temperature sensor dataset (c) Rainfall dataset

Figure 6: Variation of reconstruction distortion with the
number of sources deployed on a linear grid placed uniformly
along a length of 10 Kilometers. Correlation model is as-
sumed to be 0.95dist(Km) , Ri = 1bit and Pe = 0.2

7.4.1 Correlation (ρo)
Fig. 7(a) shows the distortion as a function of ρo. The

plot shows the results for the source grouping method, the
proposed approach and the optimal full complexity design
which uses all the received bits. 3 dB improvement of the
proposed approach over the grouping method at very high
correlations provides further evidence of improved error re-
silience.

7.4.2 Transmitted Bits (Ri)
In this section, we compare the performances when the

transmission rates are increased. We consider 3 different
transmission rates, Ri = 1, 2 and 4. However, we fix the de-
coding rate at 4 bits. We see that the gains increase radically
to over 6dB, at higher transmission rates. This is primarily
because of two reasons. Firstly, as Ri increases, the decoder
has access to more correlated bits which can be used effi-
ciently for correcting more errors. Secondly, the decoder for
any source has the freedom of selectively giving importance
only to a subset of bits sent from a different source. How-
ever, the source grouping approach does not exploit either
of these advantages and hence suffers significantly more at
higher transmission rates. However, the problem with op-
erating at very high transmission rates is that the proposed
design complexity grows as (

∑N
i=1 Ri)

3 and hence it requires
sophisticated computing capabilities for efficient design.

7.4.3 Rate of Quantizers (Rq)
All results so far have focused on the decoder structure.

One might be curious to know the importance of the encoder
structure/WZ-maps. Figure 7(c) shows the decrease in dis-

tortion when the rates of Hi are increased from Rq = 1 to
4 bits, while keeping the transmission rate fixed at Ri = 1.
Note that Rq = 1 is equivalent to having no WZ-maps (i.e.,
each encoder is a simple scalar quantizer). Results show
over 2.5dB gains for the bit-mapper approach and about
1.5 dB improvement for the source grouping approach when
Rq is increased from 1 to 4 bits. Such improvements (see
also [20]) demonstrate the crucial role played by WZ-maps
in exploiting inter-source correlations. Also note that the
proposed structure for the decoder provides about 1dB im-
provement over source grouping method even when Rq = 1
(i.e., when there is no distributed encoding, for example see
[2]). This result is particularly useful in practical sensor
networks wherein the sensors employ standard scalar quan-
tization.

8. DISCUSSION

8.1 Extension to Handle Erasures
It is critical to develop robust distributed source coding

techniques for networks with bit/packet erasures - in fact,
erasures are seen more often in low powered sensor networks
than errors. In this section we briefly address this issue
and describe how the proposed technique can be easily ex-
tended to handle erasures. In the erasure setting, it is as-
sumed that a subset of the transmitted bits are lost due to
sensor/channel failures and the decoder reconstructs all the
sources based only on the received bits. The objective is to
design the encoders (at each source) and decoders (for each
bit erasure pattern) to minimize the average distortion at
the decoder. In the most general setting, the decoder has an
independent codebook for each possible erasure pattern and
an estimate for each source is made by looking at the corre-
sponding codebook when a subset of the bits are received.
Quite evidently, for optimal decoding, the total number of
codebooks grows exponentially with the number of sources
and transmission rates, let alone the exponential growth in
the number of estimates (codewords) within each codebook.
It is easy to verify that the total storage at the decoder (the
decoder complexity) for optimal decoding grows as O(3NR)
if Ri = R∀i.

In this paper, we describe one possible approach to extend
the classifier based decoding paradigm to handle erasures.
We note that there are several other possible methods to
extend it and their performance comparisons will be per-
formed as part of future work. Recall that, to build error
resilience, the decoder mapped the received index tuple to
one of the cloud centers based on a minimum distance cri-



Figure 7: All the three plots are for the Synthetic dataset generated for a random grid of sensors (a) Performance gains with
varying correlation coefficient (b) Performance gains as a function of Ri (c) Performance gains with the number of high rate
quantization levels

terion leading to the classification of the index tuples into
decoding spheres. The reconstructions were purely based on
the sphere to which the received index belongs. In the cur-
rent setting, however, a subset of the transmitted bits are
not received at the decoder. The received index tuples are
now mapped to one of the cloud centers only based on the
bits that are received. The closest cloud center is chosen
based on the Hamming distance between the received bits
and the corresponding bits in the cloud centers. In other
words, since the missing bits can be 0 or 1, we assume the
corresponding value to be 1/2 - a value that is equidistant
from 0 and 1. Subsequently, the distance (now the abso-
lute value of the difference) is computed between the cloud
centers and the received index tuple, with every missing bit
replaced by a 1/2, and the source reconstruction is decided
based on the nearest center. It is important to note that as
a result of the prior {0,1,1/2} subterfuge, the received in-
dex tuples are now mapped to one of the cloud centers only
based on the bits that were actually received.

The proposed approach essentially mimics an erasure code
at the decoder which attempts to recover the lost bits using
the correlation across the sources. Observe that the method
naturally provides better robustness to channel erasures as
it uses all the received bits to correct erasures, unlike the
source grouping method, which would have estimated the
sources only using the received bits within corresponding
subsets. The cloud centers and the reconstruction codebooks
can be designed using an approach similar to that described
in section 4 using a training sequence of source samples and
erasure patterns to minimize the expected reconstruction
distortion. Also note that, using the same principles, the
proposed technique can be easily applied to networks which
suffer from a combination of bit errors and erasures.

8.2 Handling Non-Stationary Statistics
In the proposed approach, the system parameters are de-

signed using a training sequence of source and channel sam-
ples before deployment. Essentially, this design assumes
that the source and channel statistics are stationary in time.
This assumption is of course not always valid, and the pur-
pose of this subsection is to briefly outline some options for
adapting the proposed approach to non-stationary settings,
so as to reap its benefits in such applications. One possible
approach to handle time varying statistics is to design the
system (collect raw training data) at regular intervals of time
and to adapt the system parameters to the new statistics.
This entails some additional overhead due to system training

and could lead to faster depletion of network resources if the
statistics are highly non-stationary. An alternate approach
approach is to store multiple sets of system parameters, de-
signed for different statistics, and to use a particular set of
parameters by estimating the current average statistic at the
sink. The possible implications of these directions on practi-
cal deployment of sensor networks will be evaluated as part
of our future work.

9. CONCLUSIONS
In this paper, we proposed a new coding approach to large

scale distributed compression which is robust to channel er-
rors/erasures. In the proposed approach, the set of possible
received index tuples is first classified into groups and then
a unique codeword is assigned for each group. This results
in low complexity, practically realizable decoders that are
scalable to large networks. The classification is achieved us-
ing a ‘nearest prototype classifier’ structure which assists in
achieving good error-resilience. We also presented a deter-
ministic annealing based global optimization algorithm for
design, which enhances the performance by avoiding multi-
ple poor local minima on the cost surface. Simulation results
show that the proposed scheme achieves significant gains as
compared to other state-of-the art techniques.
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