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Abstract—Source estimation from several noisy observations,
each of which are corrupted with additive independent noise is
arguably among the most fundamental problems in estimation
theory. Estimating multiple independent sources, corrupted by
identical noise realization is important in various communication
applications. It is well-known for both cases that when all sources
and noises are Gaussian, linear estimator minimizes the mean
square estimation error. This paper analyzes the conditions
for linearity of optimal estimation in these two settings, for
general source and noise distributions and distortion measures.
Specifically, we show that these settings depart from the single
source-single channel setting in that Gaussianity of all system
components is necessary to render the Lp optimal estimator
linear at a given signal-to-noise ratio (SNR). Moreover, we show
for both settings that at asymptotically high SNR, for Gaussian
sources the optimal estimator converges to linear, irrespective
of the distribution of the noises; similarly, at low SNR, it
is asymptotically linear for Gaussian noises regardless of the
sources.

Index Terms—Optimal estimation, linear estimation

I. INTRODUCTION

The linearity of regression/estimation is an important and
well studied problem [1], [2], [3], [4] at the core of estimation
theory. It is well known that the set of distributions for
which optimal regression (i.e., estimation) is linear at all
signal-to-noise ratio (SNR) values, is characterized by the
stable family1, which includes the Gaussian distribution as
its only finite variance member. However, limited effort has
been directed at finding more general conditions under which
optimal estimators are linear, for a given particular SNR level.

In our prior work [6], we addressed the problem of linearity
of optimal estimation of a single source from a single noisy
observation, from now on referred as single source-single
noise (SSSN) setting, depicted in Fig1. In particular, we
derived the necessary and sufficient condition for linearity of
optimal estimation with respect to the Lp distortion metric, at
a given SNR. There are several implications of this study, one
of which states that there is an infinite number of source-noise
pairs that guarantee linearity of optimal estimation at a given
SNR. One trivial example is identically distributed source and
noise, regardless of the distribution, where the Lp optimal
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1A distribution is called stable if for independent identically distributed
X1, X2, X; for any constants a, b; the random variable aX1 + bX2 has the
same distribution as cX + d for some constants c and d [5].

estimator is shown to be linear. This simple fact contradicts
the popular belief that “only” the Gaussian source-noise pair
makes the optimal estimator linear. Another important result
from our prior studies is that as at asymptotically high SNR,
the optimal estimator is linear for a Gaussian source, regardless
of the noise distribution; and dually, for a Gaussian noise, at
low SNR the optimal estimator converges to linear, irrespective
of the source. We then extended the scope to derive source-
channel matching conditions for the vector setting, where
source and noise are vectors of the same dimension [7], [6];
in particular, we derived a necessary and sufficient condition
for MSE optimality of linear estimator in the vectors setting.

In this paper, we consider two important settings that
may formally be regarded as extreme special cases of the
vector problem2. The first one is the “single source-multiple
measurements” (SSMM) setting where a source is estimated
by multiple observations, which are corrupted with additive in-
dependent noise. This setting is not only the most basic estima-
tion problem in the experimental sciences but also represents
a common operation in most signal processing applications,
such as denoising or compressed sensing. The second one,
the “multiple sources-single noise” (MSSN) setting, concerns
multiple independent sources which are corrupted by the same
noise. It is common in communication problems that involves
estimating sources that are transmitted over a shared medium,
such as sensor networks.

As our main results, we prove that the optimal estimator is
linear if and only if all source(s) and noise(s) are Gaussian,
for each of these practically relevant settings. This fact is in
sharp contrast with earlier results for the SSSN setting [6]:
there exists an infinite number of source-noise pairs that render
the optimal estimator linear in the SSSN setting. This sharp
contrast raises the question whether the other results derived
within the SSSN setting generalize to these important practical
settings. As we show in the paper, the results pertaining the
linearity of optimal estimation at SNR asymptotics remain
valid. Specifically, we prove for both settings that at asymptot-
ically high SNR, the optimal estimator for Gaussian source(s)
converges to linear, irrespective of the noise distribution; and
at asymptotically low SNR, the optimal estimator is linear for

2Note that the solution in [6] does not provide an explicit answer to these
important special cases, since it implicitly assumes that both source and noise
covariance matrices are invertible, while here, for both settings of interest,
one of these matrices is singular.
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Fig. 1. The “single source-single noise” setting

Gaussian noise(s), regardless of the source(s).
This paper is organized as follows. We present a review

of the SSSN setting in Section II, results within the SSMM
setting in Section III, the MSSN setting in Section IV, the
discussions in Section V.

II. REVIEW OF PRIOR RESULTS

A. Preliminaries and Notation

Without loss of generality, we assume that source X and
noise Z are zero mean random variables distributed according
to fX(·) and fZ(·), with the respective characteristic functions
FX(ω) and FZ(ω). The SNR is γ =

σ2
x

σ2
z

, where σ2
x = E{X2}

and σ2
z = E{Z2}. In any results involving the Lp norm,

all random variables are assumed to have finite pth order
moments, e.g., in the case of MSE we assume finite variances,
σ2
x <∞, σ2

z <∞. f ′(·) denotes the derivative of the function
f with respect to its argument. All logarithms in the paper are
natural and may in general be complex. An estimator h(·) is
a function of the observations, Y1, Y2, ..YL, and is said to be
optimal if it minimizes the cost functional

E {[X − h(Y1, Y2.., YL)]p} (1)

where p is even3 and natural, i.e., p = 2ρ, ρ ∈ N.

B. Single Source-Single Noise Setting

Consider the problem of estimating source X given observa-
tion Y = X+Z, where X and Z are independent, as shown in
Fig. 1. In [6], we derived the necessary and sufficient condition
for linearity of optimal estimation. We reproduce this result
here in the following theorem.

Theorem ([6]). Consider the problem setting depicted in
Fig.1. Given SNR level γ, noise Z with characteristic function
FZ(ω), there exists a source X for which the MSE optimal
estimator is linear if and only if the following is satisfied:

FX(ω) = F γZ(ω) (2)

This result has several important implications, see [6] for
details. Two of these results, however, are of particular interest
here.

Result 1: There are infinitely many source and noise pairs
that yield optimality of linear estimation. For example, as
long as X is identically distributed with Z, regardless of that
distribution, the optimal estimator is linear, i.e., h(Y ) = Y/2.

3The restriction to even p enables considerable simplification of the results,
hence providing much insight and clear intuitive interpretation of the solution.

This result surprisingly remains valid for also Lp norm (see
Theorem 3 in [6]).

Result 2: In the low SNR limit γ → 0, the MSE optimal
estimator is asymptotically linear if the noise is Gaussian,
regardless of the source distribution. Similarly, as γ →∞, the
MSE optimal estimator is asymptotically linear if the source
is Gaussian, regardless of the noise. (see Theorem 5 in [6]).

III. SINGLE SOURCE- MULTIPLE MEASUREMENTS
SETTING

In this section, we analyze the single source-multiple mea-
surement (SSMM) setting depicted in Fig. 2. Here, a single
source X is estimated from the observations (measurements),
Yi = X+Zi, i = 1, 2, ..., L where Zi’s are independent noise
variables. γi =

σ2
X

σ2
Zi

denote the SNR for the ith observation.
Let us first review the optimal linear estimation for this setting.

A. Gaussian Source-Noise Case

If X ∼ N (0, σ2
X) and Zi ∼ N (0, σ2

Zi
), the MSE optimal

estimator is known to be linear.

h(Y1, ..., YL) = k1Y1 + k2Y2, ..., kLYL (3)

where ki = γi

1+
L∑

j=1
γj

which follows from standard linear

estimation results.The following auxiliary lemma will be used
to derive the consequent results.

Lemma 1. A necessary condition for a function h(Y1, ..., YL)
to be the Lp norm optimal estimator is:

E{[X − h(Y1, ..., YL)]p−1η(Y1, ..., YL)} = 0 (4)

for any η(Y1, ..., YL).

The proof follows from the proof of Lemma 1 in [6].
It follows from Lemma 1 that linear estimator, (3), is also
optimal for Lp norm when X ∼ N (0, σ2

X) and Zi ∼
N (0, σ2

Zi
) since this estimator renders the estimation error,

X − h(Y1, ..., YL) independent of the observations Y1, ..., YL,
hence automatically satisfying (4).

B. Main Result

Next, we focus on the question: Are there any source and
noise densities such that the optimal estimation is linear, other
than the all Gaussian setting. The following theorem answers
this question.

Theorem 1. The MSE optimal estimator is h(Y1, ..., YL) =
k1Y1 + k2Y2, ..., kLYL, for some k1, .., kL ∈ R if and only if
source X and Z1, .., ZL are Gaussian. Moreover, if FX(ω)
and FZ1

(ω), .., FZL
(ω) are constrained to be analytic, then

this result also holds for the Lp norm.

Proof: Since the “if” part is trivial given the previous
discussion, we will only prove the “only if” part. We will
first focus on two source case, i.e., L = 2 and the distortion
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measure MSE. Let us write the expression for the optimal
estimator E{X|Y1, Y2} using the Bayes’ rule:

h(y1, y2) =

∫
xfX(x)fZ(y1 − x, y2 − x)dx∫
fX(x)fZ(y1 − x, y2 − x)dx

(5)

Using the fact that Z1 and Z2 are independent, we have
the following condition for linearity of optimal estimation by
setting h(y1, y2) = k1y1 + k2y2 in (5):

[k1y1 + k2y2]

∫
fX(x)fZ1

(y1 − x)fZ2
(y2−x)dx =∫

xfX(x)fZ1
(y1− x)fZ2

(y2−x)dx (6)

Taking the Fourier transform of both sides and via change of
variables u1 = y1 − x and u2 = y2 − x we obtain (7), which
can be expressed as

k1
F ′Z1

(ω1)

FZ1
(ω1)

+ k2
F ′Z2

(ω2)

FZ2
(ω2)

= (1− k1− k2)
F ′X(ω1 + ω2)

FX(ω1 + ω2)
(8)

Note that the left hand side involves arguments ω1 and ω2

while the right hand side argument is ω1+ω2. The only way for
this equality to hold for all ω1, ω2 and FZ1(ω), FZ2(ω), FX(ω)
be valid characteristic functions is that all terms of are linear
in terms of their arguments, i.e.,

F ′Z1
(ω1)

FZ1
(ω1)

= (logFZ1
(ω1))

′ =

αω1, α ∈ R and so on. This implies that FZ1
(ω) = βeαω

2
1

for some α, β ∈ R which is the characteristic function of a
Gaussian density. With the same reasoning, it follows that X
and Z2 also have to be Gaussian. It is straightforward to extend
the same arguments for L > 2.

Next, we extend the result to the Lp norm, albeit we now
require analyticity of FX ,FZ1

and FZ2
, which means that the

moments of X,Z1 and Z2 are finite (they have moments of
all orders) and moments fully characterize the distribution.
The extension to Lp requires a different approach, Lemma 1
plays a key role in the proof. Let us plug three perturbation
functions, η(Y1, Y2) = Y m1 , η(Y1, Y2) = Y m2 , and η(Y1, Y2) =
(Y1 + Y2)

m, m = 1, 2, ..M in the necessary condition of
Lemma 1, i.e. (4). Then, plugging Yi = X + Zi, i = 1, 2
for each of the equations, we obtain a relation between the
moments of X,Z1 and Z2 with moments of orders up to
M . We note that every equation introduces a new variable
E(Xm+p−1), for m = 1, ..,M , so each new equation is
independent of its predecessors. Next, we solve these equations
recursively, starting from m = 1. At each m, we have three
unknowns (E(Xm+p−1),E(Zm+p−1

1 ),E(Zm+p−1
2 )) that are

related “linearly”. Since the number of linearly independent
equations is equal to the number of unknowns for each m,
there must exist a unique solution. We know that the moment
sequences of the Gaussian source-channel pair satisfy these set
of equations since it ensures linearity of optimal estimation.
The moment sequence of a Gaussian satisfies Carleman’s
general criterion [8] and therefore it uniquely determines the
corresponding distribution, so the Gaussian source and noise
pair is the only solution to these set of equations.

0
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h(Y1, ..., YL)⊕

⊕
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X

Fig. 2. The “single source multiple measurements” setting

Remark 1. Note that Theorem 1 is in sharp contrast with the
analogous result obtained for the single observation setting,
i.e., Result 1. While there are infinitely many source-noise
pairs that yield linearity of optimal estimation in the single
observation setting, only Gaussian source and noises yield
optimality of linear estimation in the multiple observations
setting. The surprising nature of the result is captured by
the simple example of identically distributed variables X ∼
Z1 ∼ Z2 where the optimal estimator is not linear despite the
fact that X ∼ Z in SSSN setting yields linearity of optimal
estimation.

C. Asymptotic Optimality

Theorem 2. As γi → ∞,∀i, the MSE optimal estimator is
asymptotically linear if the source X is Gaussian, regardless
of the noise distribution. Similarly, in the limit γi → 0,∀i, the
MSE optimal estimator is asymptotically linear if the noises
Z1, .., ZL are Gaussian, regardless of the source.

Proof: We explicitly prove it for L = 2 case, and the
L > 2 case follows immediately. The proof for L = 2
applies the central limit theorem [5]. The central limit theorem
states that as γi → ∞, for any finite variance noise Zi, the
functions F γiZ (ω) pointwise converge to the Gaussian charac-
teristic functions. Similarly, as γi → 0 and for any FX(ω),
1−k1−k2

k1
→ ∞ and hence F

1−k1−k2
k1

X (ω1 + ω2) converges
pointwise to the Gaussian characteristic function and therefore
satisfies (8).

IV. MULTIPLE SOURCES-SINGLE NOISE SETTING

Consider a setting where there are multiple sources, all
at the same distance to an interferer, which effectively adds
noise to the sources as illustrated in Fig.3. Formally, we want
to estimate the independent sources X1, X2, ..., XL using the
observations Y1, .., YL where Yi = Xi + Z. In this section
SNR for ith channel is defined as γi =

σ2
Xi

σ2
Z

.

A. Gaussian Source-Noise Case

If Z ∼ N (0, σ2
Z) and Xi ∼ N (0, σ2

Xi
), the MSE optimal

estimator is linear, as in (3) where ki = 1− 1/γi

1+
L∑

j=1
1/γj

. Similar
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∫
[k1u1+k2u2 + (k1 + k2)x]fX(x)fZ1

(u1)fZ2
(u2) exp{−jω1u1 − jω2u2 − j(ω1 + ω2)x}dxdy1dy2

=

∫
xfX(x)fZ1

(u1)fZ2
(u2) exp{−jω1u1 − jω2u2 − j(ω1 + ω2)x}dxdy1dy2 (7)

to Section IIIA, we have

E{[Xi − h(Y1, ..., YL)]p−1η(Y1, ..., YL)} = 0 (9)

for any η(Y1, ..., YL) as a necessary condition for a function
h(Y1, ..., YL) to be the Lp norm optimal estimator.

B. Main Result

Theorem 3. The MSE optimal estimator is h(Y1, ..., YL) =
k1Y1 + k2Y2, ..., kLYL, for some k1, .., kL ∈ R if and only
if sources X1, ..., XL and noise Z are Gaussian. Moreover,
if FX1

(ω), ..., FXL
(ω) and FZ(ω) are constrained to be

analytic, then this result also holds for the Lp norm.

Proof: Similar to the proof of Theorem 1, we first focus
on two source case, i.e., L = 2 and MSE. The optimal
estimator for X1 is

h1(y1, y2) =

∫
xfX1|Y1,Y2

(x, y1, y2)dx (10)

Using the fact that X1 and X2 are independent and applying
the Bayes’ rule we obtain

h1(y1, y2) =

∫
(y1 − z)fZ(z)fX1(y1 − z)fX2(y2 − z)dz∫

fZ(z)fX1(y1 − z)fX2(y2 − z)dz
Following the same steps as in the proof Theorem 1, we have

(logF 1−k1
X1

(ω1))
′=(logFZ(ω1 + ω2))

′+(logF k2X2
(ω2))

′

(11)

We observe that (11) is satisfied only if FX1
, FX2

, FZ are the
characteristic functions of Gaussians, hence X1, X2, Z must
be Gaussian to ensure linearity of MSE optimal estimator.
Extension to the Lp norm follows from applying arguments
used in the Lp extension in the proof of Theorem 1, on (9).

Remark 2. An alternative proof of Theorem 3 can be derived
using the duality between the SSMM and the MSSN problems.
The linear estimator in the MSSN setting can be viewed as:
first estimate Z as Ẑ =

∑
kiYi and then, simply estimate

Xi from observations X̂i = Yi − Ẑ. This linear estimator
is optimal only if both of these estimation steps are optimal.
Estimating Z in the MSSN setting is identical to the the SSMM
problem with Z as the source and Xi as the noise variables.
We know from Theorem 1 that the first step is optimal only if
Xi and Z are Gaussian, hence linear estimator is optimal in
the MSSN setting only if all variables are Gaussian.

Theorem 4. In the limit γi → 0,∀i, the MSE optimal estima-
tor is asymptotically linear if the noise is Gaussian, regardless
of the source distributions. Similarly, as γi →∞,∀i, the MSE

0
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⊕

X1
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Z

Z

Z

X̂1

X̂2

X̂L

Fig. 3. The “multiple sources, single noise” setting

optimal estimator is asymptotically linear if the sources are
Gaussian, regardless of the noise.

The proof is left out for brevity.

V. CONCLUSION

In this paper, we considered two common estimation set-
tings: i) source estimation from multiple noisy measurements,
and ii) estimating multiple independent sources, all of which
are corrupted by the same noise realization. For both of
these settings, we showed that the optimal estimator is linear
if and only if sources and noises are Gaussian. This is in
sharp contrast with the single source-single measurement or
the associated vector settings, where there exist infinitely
many source-noise pairs that guarantee linearity of optimal
estimation. We also showed, for both settings, that at asymptot-
ically high SNR, the optimal estimator for Gaussian source(s)
converges to linear, irrespective of the noise distribution(s);
and at asymptotically low SNR, the optimal estimator is linear
for Gaussian noise(s), regardless of the source(s).

REFERENCES

[1] C. Rothschild and E. Mourier, “Sur les lois de probabilité à regression
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