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Abstract—This paper focuses on a new framework for scal-
able coding of information based on principles derived from
common information of two dependent random variables. In
the conventional successive refinement setting, the encoder gen-
erates two layers of information called the base layer and the
enhancement layer. The first decoder, which receives only the base
layer, produces a coarse reconstruction of the source, whereas
the second decoder, which receives both the layers, uses the
enhancement layer to refine the information further leading to
a finer reconstruction. It is popularly known that asymptotic
rate-distortion optimality at both the decoders is possible if
and only if the source-distortion pair is successively refinable.
However when the source is not successively refinable under
the given distortion metric, it is impossible to achieve rate-
distortion optimality at both the layers simultaneously. For this
reason, most practical system designers resort to storing two
individual representations of the source leading to significant
overhead in transmission/storage costs. Inspired by the breadth
of applications, in this paper, we propose a new framework
for scalable coding wherein a subset of the bits sent to the
first decoder is not sent to the second decoder. That is, the
encoder generates one common bit stream which is routed to
both the decoders, but unlike the conventional successive refine-
ment setting, both the decoders receive an additional individual
bitstream. By relating the proposed framework with the problem
of common information of two dependent random variables, we
derive a single letter characterization for the minimum sum
rate achievable for the proposed setting when the two decoders
are constrained to receive information at their respective rate-
distortion functions. We show using a simple example that the
proposed framework provides a strictly better asymptotic sum
rate as opposed to the conventional scalable coding setup when
the source-distortion pair is not successively refinable.

Index Terms—Successive refinement, Common information,
Rate-Distortion

I. INTRODUCTION

From the view point of rate-distortion (RD) theory, scalable
coding has been addressed in the context of successive re-
finement of information [1], [2]. The problem was originally
formulated by Equitz and Cover in [1] as a special case of
the more general problem of multiple descriptions [3] and has
since been extensively studied by many information theorists
[1], [4], [5], [6]. In the conventional successive refinement
framework, the encoder generates two layers of information
called the base layer (at rate R12) and the enhancement layer
(at rate R2, see Fig. 1a). The base layer provides a coarse
reconstruction of the source (at rate R12, achieving distortion
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D1), while the enhancement layer is used to ‘refine’ the recon-
struction beyond the base layer (at a net enhancement rate of
R2 + R12, achieving distortion D2 < D1). It is interesting to
observe the inherent conflict between maintaining optimality
at the two layers. On the one hand the system could be
designed to maintain RD optimality at the base layer, i.e.,
R12 = R(D1) (where R(·) denotes the RD function) and then
seek the minimum R2 that achieves D2. On the other hand
the system could be designed to maintain optimality at the
enhancement layer, i.e., R2+R12 = R(D2) and minimize R12

to achieve D1. Rimoldi [2] derived the complete achievable
RD region for this setup and Equitz and Cover [1] estab-
lished the conditions for a source-distortion pair to achieve
asymptotic RD optimality at both the layers simultaneously.
Such source-distortion pairs are called successively refinable
in the literature. Specifically, they showed that, any source
is successively refinable for a given distortion measure at
distortions D1 and D2 (D2 < D1) if and only if there exists a
conditional probability distribution P (X̂1, X̂2|X)) satisfying
E
{
d(X, X̂1)

}
≤ D1, E

{
d(X, X̂2)

}
≤ D2, such that:

I(X, X̂1) = R(D1), I(X, X̂2) = R(D2) (1)

X ↔ X̂2 ↔ X̂1 (2)

where X ↔ Y ↔ Z denotes that X,Y, Z form a Markov
chain in that order. They also showed that Gaussian and
Laplacian sources are asymptotically successively refinable
under mean squared and absolute error distortion metrics
respectively.

However, when a source-distortion pair is not successively
refinable, it is impossible to maintain asymptotic optimality at
both the layers simultaneously in the scalable coding frame-
work. Inevitably, one of the two layers is forced to carry excess
information than necessary to achieve the distortion at that
layer. Unfortunately, in several practical applications, source-
distortion pairs are not successively refinable, see eg. [7], [6],
[8], and due to this inherent and significant shortcoming of the
scalable coding framework, most practical system designers
or content provides resort to maintaining two independent
copies of the source, one at rate R(D1) and the other at
R(D2), without recourse to scalable coding. We see that,
even in this over-simplified scenario with just two layers of
information, the implication of such an approach is the need
to (almost) double the data center resources. Next, consider
broadcast of a real-time multimedia event over a network
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Figure 1: (a) The conventional scalable coding framework : The encoder generates two bit streams. First one at rate R12 is
sent to both the decoders, while the second one at rate R2 is only sent to the second decoder. (b) Proposed scalable coding
framework: The encoder generates three bit streams. Two bit streams at rates R12 and R2 are sent similar to the conventional
scalable coding framework. However a third bit-stream at rate R1 is sent individually to the first decoder (c) Lossy Gray-Wyner
network

to multiple users with differing quality requirements. In this
scenario, transmitting independent representations of source
optimized at each quality imposes additional strain on the
network where many intermediate links must carry multiple
versions of the signal. We note that the inherent rate loss
in the current successive refinement framework can be upper
bounded by 1

2 bit/sample for any source under mean squared
error distortion metric as shown in [9]. This 1

2 bit in itself
represents a considerable loss at low bit rates, while several
practical applications use more complex distortion measures
for which this rate loss is significantly higher. For eg., in
audio compression, the most widely used distortion metric is
the weighted mean squared error and the inherent loss due to
scalable coding for audio compression has been demonstrated
in [7].

In this paper, we focus on a new encoding paradigm for
optimal joint layered coding at multiple quality levels. The
primary drawback of the conventional scalable coder is that
it enforces a rigid hierarchical structure on the bit-stream of
different layers. This structure is inspired by the classical
communication ‘broadcast’ scenario wherein the transmitter
simply broadcasts all the bits and receivers manage to de-
code a subset of the (more significant) bits, depending on
their channel conditions. The natural assumption underlying
this scalable coding framework is that a user with a better
channel must always decode all the base layer bits which
were necessary for the base layer reconstruction. However, it
is worthwhile to question this assumption in today’s network
scenario wherein an intermediate node forwards packets to
multiple receivers. This routing can be effectively leveraged
given modern communication protocols that allow entities to
exchange information about relevant network conditions. Thus,
as a fundamental shift in strategy, we propose to enable routing
to a high-end receiver only a subset of the bits that are sent
to the base receiver as shown in Fig. 1b. We will show that
this relaxation of the hierarchical structure provides enough
freedom for a well optimized design to achieve best attainable
quality at both the receivers, yet significantly reduces the total
transmission and storage rates.

Our objective in this paper is to establish an information the-
oretic characterization for the minimum transmit rate, denoted
by R∗sum(D1, D2), for the setup shown in Fig. 1b when the
two receivers are constrained to achieve their respective RD
functions. We formally state the new framework in section
II and provide an information theoretic characterization for
R∗sum(D1, D2) in section III. We then show using an example
that the proposed common layer framework provides a strict
reduction in total transmit rate compared to conventional scal-
able coding when the source-distortion pair is not successively
refinable. We will then see in section IV that this problem is
closely related to the concept of ‘common information’ (CI) of
two dependent random variables [10], [11], [12], [13] which
provides further insights on the workings of the proposed
framework.

II. PROPOSED FRAMEWORK

It is obvious that, when a source is not successively
refinable, the information required to achieve D1 is not a
proper subset of the information required to achieve D2, or
alternatively, part of the information sent to achieve D1, is not
useful in decoding at distortion D2. However, it is also obvious
that there is considerable overlap in information required
to achieve reconstructions at the two distortion levels, and
hence transmitting/storing two individual representations of
the source is clearly wasteful. This is precisely the theoretical
intuition which we exploit in the proposed framework, where
a part of the information that is sent to a receiver that
achieves D1 will not be sent to a receiver reconstructing at
lower distortion D2. Hence, the encoder generates 3 different
packets. One at rate R1, which is only sent to the receiver
reconstructing at D1 and a second packet at rate R2 is sent
only to the decoder reconstructing at D2. A third packet at rate
R12 is sent to both the decoders. The two decoders receive at
rates of R1 + R12 and R2 + R12, respectively. This setup
is shown schematically in Fig. 1b. Observe that conventional
scalable coding is obtained as a degenerate special case when
R1 is set to 0, and hence the proposed framework performs at
least as well as conventional scalable coding. However, when
the source-distortion pair is not successively refinable and
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scalable coding suffers inherent loss, this framework provides
an extra degree of freedom achieving RD optimality at both
the layers, yet exploiting the dependencies across the layers
to minimize the total transmission rate.

The complete set of RD tuples, consisting of all achievable
(R1, R2, R12, D1, D2) for the proposed framework, denoted
hereafter by RD, can be derived easily from the results of
Gray and Wyner [12]. We will return to this characterization in
the following section. Our primary objective in this paper is to
establish a single letter information theoretic characterization
for the minimum sum rate (total transmit rate at the encoder)
when both the decoders are constrained to achieve their
respective RD functions. Towards deriving this, we define the
quantity R∗(D1, D2) by,

R∗(D1, D2) = supR12 : (R1, R2, R12, D1, D2) ∈ RD,
R1 + R12 = R(D1), R2 + R12 = R(D2) (3)

Observe that the minimum sum rate when the decoders are
constrained to receive at their respective RD functions is equal
to R∗sum(D1, D2) = R(D1) + R(D2) − R∗(D1, D2). Note
that in the conventional scalable coding framework, if the
source is not successively refinable, the only way to achieve
RD optimality at both the layers is to store two individual
representations, in which case, R1 = R(D1), R2 = R(D2)
and R12 = 0. Hence if R∗(D1, D2) is strictly greater than
0, the proposed framework can achieve a sum rate strictly
lower than conventional scalable coding, yet achieving RD
optimality at both the decoders. Ofcourse, for a successively
refinable source-distortion pair, R∗(D1, D2) = R(D1).

III. MAIN RESULTS

A. Gray-Wyner Region

Gray and Wyner considered the network shown in Fig. 1c
where the encoder observes n iid versions of two correlated
random variables (X,Y ) and generates three bit streams which
are routed to the respective decoders as shown. The two
decoders reconstruct Xn and Y n within distortions D1 and D2

respectively based on some well defined single letter distortion
measures dX(·, ·) and dY (·, ·). An achievable rate-distortion
tuple is defined in the standard information theoretic sense.
The convex closure of all achievable rate-distortion tuples for
the setup shown in Fig. 1c is denoted here by RDGW .

Gray and Wyner [12] gave the complete characterization
for RDGW . Let (U, X̂, Ŷ ) be any random variables jointly
distributed with (X,Y ) and taking values over alphabets U , X̂
and Ŷ respectively for some arbitrary U and where X̂ and
Ŷ are the respective reconstruction alphabets. Let the joint
density, P (X,Y, U, X̂, Ŷ ), be such that E(dX(X, X̂)) ≤
D1 and E(dY (Y, Ŷ )) ≤ D2 hold. Then all RD tuples
(R12, R1, R2, D1, D2) satisfying the following conditions are
achievable:

R12 ≥ I(X,Y ;U)

R1 ≥ I(X; X̂|U), R2 ≥ I(Y ; Ŷ |U) (4)

The closure of the achievable RD tuples over all such joint
densities is the complete RD region for the Gray-Wyner net-
work. It is important to observe that the proposed framework
for successive refinement is in fact a special case of the
Gray-Wyner network with X = Y . Hence, it immediately
follows that the region RD defined in section II can be
characterized using Gray-Wyner’s result by setting X = Y and
dX(·, ·) = dY (·, ·) = d(·, ·). We next derive an information
theoretic characterization for R∗(D1, D2).

B. Characterization of R∗(D1, D2)

Recall the definition of R∗(D1, D2) defined in section
II. The following theorem provides an information theoretic
characterization.

Theorem 1. An information theoretic characterization for
R∗(D1, D2) is given by:

R∗(D1, D2) = sup I(X;U) (5)

where the supremum is over all conditional densities
P (U, X̂1, X̂2|X) such that, P (X̂1|X) and P (X̂2|X) achieve
RD-optimality at D1 and D2 respectively and for which the
following two Markov chains hold:

X ↔ X̂1 ↔ U, X ↔ X̂2 ↔ U (6)

Remark 1. Note that a source is successively refinable if and
only if R∗ = R(D1). From Theorem 1, it is easy to verify
that R∗ = R(D1) if an only if Equitz and Cover’s conditions
given by (2) are satisfied.

Proof: We begin by assuming that there exist unique
channels P (X̂1|X) and P (X̂2|X) that achieve RD optimality
at D1 and D2 respectively. The proof follows in very similar
lines to the case when there are multiple RD optimal channels.

We will first characterize the set of all points in RD
which lie on both the planes R12 + R1 = R(D1) and
R12+R2 = R(D2). Let us denote by R(D1, D2) the set of all
rate tuples that are achievable for given distortions (D1, D2),
i.e., R(D1, D2) = {(R12, R1, R2) : (R12, R1, R2, D1, D2) ∈
RD}. It follows from the Gray-Wyner theorem that for every
point (R12, R1, R2) in RD(D1, D2), we can find random
variables (U, X̂1, X̂2) satisfying E(d(X, X̂1)) ≤ D1 and
E(d(X, X̂2)) ≤ D2 such that:

R12 ≥ I(X;U)

R1 ≥ I(X; X̂1|U), R2 ≥ I(X; X̂2|U) (7)

We further require these points to satisfy R21 +R1 = R(D1)
and R12 +R2 = R(D2). Hence, we have the following series
of inequalities:

R(D1) = R12 + R1 ≥ I(X;U) + I(X; X̂1|U)

= I(X;U, X̂1) ≥ I(X; X̂1) ≥ R(D1) (8)

and similar chain of inequalities for R(D2). As the LHS and
the RHS of the above series of inequalities are the same, all
the inequalities must be equalities leading to:

I(X; X̂1) = R(D1) I(X; X̂2) = R(D2)

I(X;U, X̂1) = I(X; X̂1) I(X;U, X̂2) = I(X; X̂2) (9)
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i.e, every point which lies on both the planes R12 + R1 =
R(D1) and R12 + R2 = R(D2) and is part of R(D1, D2)
must be achieved by a joint density which satisfies (9). Clearly,
every joint density that satisfies (9) leads to an achievable
point in R(D1, D2) which satisfies both the constraints R12 +
R1 = R(D1) and R12 + R2 = R(D2). Hence, defining a
convex closure of all achievable points over all joint densities
satisfying (6) leads to every point in the intersection of R12 +
R1 = R(D1), R12 +R2 = R(D2) and R(D1, D2). Therefore
the supremum of R12 (recall the definition of R∗(D1, D2)) is
achieved by taking a supremum of I(X;U) over all densities
satisfying (6).

C. Example

In this section, we show that R∗(D1, D2) > 0 for the
counter-example considered by Equitz and Cover in [1], which
was used to prove that there exist source-distortion pairs
that are not successively refinable. The example is described
as follows. Consider a discrete source X over alphabet
X = {0, 1, 2} with PMF PX = [ 1−P2 , P, 1−P

2 ]. Let the
reconstruction alphabet be X̂ = {0, 1, 2} and the distortion
measure be defined by the absolute difference, i.e. |X − X̂|.
Let z = eR

′
(D). Then for P < 3− 2

√
2, it can be shown that

the RD curve has three regions, denoted by D1,D2,D3. In the
first and the third regions, i.e., ∀D ∈ D1,D3, the RD optimal
channel, P (X̂|X), has reconstruction alphabet of cardinality
three. However, when D ∈ D2 the cardinality of the optimal
reconstruction alphabet is just two. Equitz and Cover showed
that when we pick D2 ∈ D2 and D1 ∈ D3 (D2 < D1),
it is impossible to find a joint density P (X̂1, X̂2|X) with
X ↔ X̂2 ↔ X̂1 for which the PMFs P (X̂2|X) and
P (X̂1|X) achieve RD optimality at D1 and D2 respectively.
The expressions for P (X|X̂) in each of the three regions is
given in [1].

We will next show that we can always find a joint density
P (U, X̂1, X̂2|X) with I(X;U) > 0 such that X ↔ X̂1 ↔
U and X ↔ X̂2 ↔ U hold and for which the the PMFs
P (X̂2|X) and P (X̂1|X) are the RD optimal channels and
distortions D1 and D2 respectively where D2 ∈ D2 and D1 ∈
D3 (D2 < D1). Towards finding such a joint distribution, note
that it is sufficient for us to find conditional PMFs P (U |X̂1)
and P (U |X̂2) which satisfy the following conditions for some
distribution P (U |X):

P (U |X) =
∑
X̂1

P (U |X̂1)P (X̂1|X)

=
∑
X̂2

P (U |X̂2)P (X̂2|X) (10)

where P (X̂1|X) and P (X̂2|X) achieve optimality at D1 and
D2 respectively. Once we find such conditional PMFs, we can
always generate the density P (U, X̂1, X̂2|X) as follows:

P (U, X̂1, X̂2|X) = P (U |X)P (X̂1|X,U)P (X̂2|X,U) (11)

where P (X̂1|X,U) and P (X̂2|X,U) are the conditional den-
sities induced by the Markov chain structure in (10). Then

P (U, X̂1, X̂2|X) satisfies all the required conditions in Theo-
rem 1 and hence R∗(D1, D2) ≥ I(X;U) > 0. Let us pick U
to be a binary symmetric random variable taking values over
the alphabet {0, 2} with equal probability. Recall that X̂2 takes
values over just two reconstruction alphabets, while X̂1 takes
values over an alphabet of cardinality three. Let us choose
P (U |X̂1) and P (U |X̂2) as follows. The channel P (U |X̂2) is
a binary symmetric channel with cross over probability Q and
the transition probabilities P (U |X̂1) are given by:

P (U = 0|X̂1 = 0) = P (U = 2|X̂1 = 2) = 1

P (U = 0|X̂1 = 1) = P (U = 2|X̂1 = 1) = 1
2 (12)

Q is set to ensure that (10) is satisfied. Let us denote by
zi = eR

′(Di) i = {1, 2}. Then it is easy to verify that (12)
induces the following conditional distribution for P (X|U):

P (X|U) =

[
1−z1−P
1−z1 P Pz1

1−z1
Pz1
1−z1 P 1−z1−P

1−z1

]
(13)

Then by using (10), we have:

Q =
z1z

2
2 + Pz22 + Pz1 − z22

(1− z1)(1− P )(1− z22)
(14)

It is easy to check that for all D2 ∈ D2 and D1 ∈ D3,
we have 0 < Q < 1

2 and I(X;U) > 0. In fact, for this
example, it can also be shown that the above construction
achieves the maximum I(X;U) in Theorem 1. However, we
omit the details here due to space constraints.

IV. RELATIONS TO COMMON INFORMATION

A. Gács-Körner’s Common Information

Gács and Körner [11] defined CI of X and Y as the
maximum rate of the codeword that can be generated individ-
ually at two encoders observing Xn and Y n separately. Gács-
Körner’s original definition of CI was predated and naturally
unrelated to the Gray-Wyner network. However, an alternate
and insightful characterization of CGK(X,Y ) was given by
Ahlswede and Körner [10] in terms of RDGW as follows:

CGK(X,Y ) = supR12 : R̄ ∈ RGW (0, 0) (15)

subject to,

R12 + R1 = H(X), R12 + R2 = H(Y ) (16)

where R̄ = (R12, R1, R2) and RGW (D1, D2) denotes the
cross-section of RDGW at distortions (D1, D2). Although the
original definition of Gács-Körner’s CI does not have a direct
lossy interpretation, the alternate definition given by Ahlswede
and Körner in terms of the lossless Gray-Wyner region can
be extended to the lossy setting. The lossy generalization of
Gács-Körner’s CI at (D1, D2) is defined as:

CGK(X,Y ;D1, D2) = supR12 : R̄ ∈ RGW (D1, D2) (17)

subject to,

R12 + R1 = RX(D1), R12 + R2 = RY (D2) (18)
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where RX(·) and RY (·) denote the respective rate-
distortion functions. A single letter characterization for
CGK(X,Y ;D1, D2) was recently derived in [14]. It is very in-
teresting to observe that R∗(D1, D2) is obtained as an extreme
special case when we set X = Y in CGK(X,Y ;D1, D2). Es-
sentially, the maximum shared rate in the proposed framework
is a measure of the ‘amount of common information’ between
the bitstreams required to decode the source at distortions D1

and D2 respectively. What makes it particularly surprising is
the fact that, if X and Y are correlated, it can be shown
following the footsteps of Gács and Körner in lossless setting
that CGK(X,Y ;D1, D2) is typically very small ∀D1, D2 ≥ 0
and depends only on the zeros of the joint distribution of
(X,Y ). However, when X is set equal to Y , R∗(D1, D2) is
usually strictly greater than zero leading to important practical
implications in scalable coding.

B. Wyner’s Common Information

An alternate definition of CI was given by Wyner, which is
stated as the minimum rate on the shared branch of the lossless
Gray-Wyner network when the sum rate is constrained to be
the joint entropy, i.e.,

CW (X,Y ) = inf R12 : R̄ ∈ RGW (0, 0)

R12 + R1 + R2 = H(X,Y ) (19)

Wyner showed that CW (X,Y ) = inf I(X,Y ;U) where the
infimum is over all joint densities P (U |X,Y ) which satisfy
X ↔ U ↔ Y . It is of both theoretical and practical interest
to understand the potential implications of Wyner’s definition
in the successive refinement framework that we consider in
this paper. To clarify the underlying relations, we define a
lossy extension of Wyner’s CI analogous to the Gács-Körner’s
extension as follows:

CW (X,Y ;D1, D2) = inf R12 : R̄ ∈ RGW (D1, D2)

R12 + R1 + R2 = RX,Y (D1, D2) (20)

An information theoretic characterization of
CW (X,Y ;D1, D2) was also recently derived in [14].
We omit restating it here. However, what we are particularly
interested in here is to understand the physical interpretation
of this quantity when we set X = Y , i.e., for the setup shown
in Fig. 1b, we are interested in characterizing the minimum
shared rate when the sum rate is set to its minimum. Observe
that as X = Y , the minimum sum rate is, in fact, equal to
R(D2) (as D2 < D1). Hence the quantity CW (X,X;D1, D2)
corresponds to the minimum shared rate when the sum rate
is equal to R(D2). However, R(D2) is the minimum rate
at which the second decoder must receive information for
it to decode X at distortion D2. Therefore it follows that
R1 must be equal to zero and the framework degenerates to
the conventional scalable coding setting. Hence the quantity
CW (X,X;D1, D2) corresponds to the minimum rate for
the base layer when the enhancement layer is set to receive
information at the RD function in the context of conventional

successive refinement. It can be shown that:

CW (X,X;D1, D2) = inf I(X; X̂1) (21)

where the infimum is over all joint densities P (X̂1, X̂2|X)
such that P (X̂2|X) achieves RD optimality at D2 and
P (X̂1|X, X̂2) is such that the following conditions holds:

X ↔ X̂2 ↔ X̂1, E(d(X, X̂1)) ≤ D1 (22)

V. CONCLUSION

In this paper, inspired by the inherent drawback with the
conventional scalable coding framework, we introduced a new
encoding paradigm for successive refinement of information.
Unlike the conventional scalable coding framework, in the pro-
posed setting, a subset of the information sent to the base layer
decoder is not routed to the enhancement layer decoder. What
makes the proposed framework particularly interesting is the
fact that, unlike conventional scalable coding, in the context
of non-successively refinable sources both the decoders can
receive information at their respective RD functions and yet
the sum rate of transmission can be significantly lower than
the sum of the individual RD functions. We showed the close
relation of the proposed framework with the concept of CI of
two dependent random variables and derived an information
theoretic characterization for the minimum sum rate achievable
when the two decoders receive information at their respective
RD functions. We also demonstrated using an example, the
potential gains of the proposed paradigm when the source-
distortion pair is not successively refinable.
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