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Abstract—Randomized (dithered) quantization is a method
capable of achieving white reconstruction error independent of
the source. Dithered quantizers have traditionally been considered
within their natural setting of uniform quantization. In this paper
we extend conventional dithered quantization to nonuniform
quantization, via a subterfage: dithering is performed in the com-
panded domain. Closed form necessary conditions for optimality
of the compressor and expander mappings are derived for both
fixed and variable rate randomized quantization. Numerically,
mappings are optimized by iteratively imposing these necessary
conditions. The framework is extended to include an explicit
constraint that deterministic or randomized quantizers yield re-
construction error that is uncorrelated with the source. Surprising
theoretical results show direct and simple connection between the
optimal constrained quantizers and their unconstrained counter-
parts. Numerical results for the Gaussian source provide strong
evidence that the proposed constrained randomized quantizer
outperforms the conventional dithered quantizer, as well as the
constrained deterministic quantizer. Moreover, the proposed con-
strained quantizer renders the reconstruction error nearly white.
In the second part of the paper, we investigate whether uncor-
related reconstruction error requires random coding to achieve
asymptotic optimality. We show that for a Gaussian source, the
optimal vector quantizer of asymptotically high dimension whose
quantization error is uncorrelated with the source, is indeed
random. Thus, random encoding in this setting of rate-distortion
theory, is not merely a tool to characterize performance bounds,
but a required property of quantizers that approach such bounds.

Index Terms—Source coding, dithered quantization, subtractive
dithering, compander, quantizer design, analog mappings.

I. INTRODUCTION

D ITHERED quantization is a randomized quantization
method introduced in [1]. A central motivation for

dithered quantization is its ability to yield quantization error
that is independent of the source, which can be achieved if
certain conditions, determined by Schuchman, are met [2].
The conventional dithered quantization framework involves

a uniform quantizer, with step size , and a dither signal uni-
formly distributed over , matched to the quantizer in-
terval as shown in Fig. 1. The dither signal is added before
quantization. In subtractive dithering, the same dither signal is
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Fig. 1. The basic structure of dithered quantization.

subtracted from the quantized value at the decoder side, while
in non-subtractive dithering decoder does not have access to
the dither signal. Subtractive dithering renders the quantization
error independent of the source. We consider only subtractive
dithering in this paper, while noting that the basic ideas are also
applicable to non-substractive dithering.
Both subtractive and non-subtractive dithering play key roles

in real world applications. Dithering is routinely used in audio
and video applications where audio-visual properties are para-
mount, e.g., non-subtractive dithering is often one of the last
stages of audio production for storage on compact disc [3]. No-
tably, Vanderkooy and Lipshitz, [4] studied various noise types
which differ in their effect when used as dither signals and sug-
gested optimal dither levels for audio. In [5] non-subtractive
dither is studied in detail from a theoretical point of view. Li
et al. [6] considered distribution preserving dithered quantiza-
tion to improve the perceptual quality of mean square optimal
quantizers in audio and video coding. The randomized quantizer
in their model, outputs a signal with the same distribution as the
source. Saldi et.al., very recently generalized this problem by
requiring that the output of the quantizer have a prescribed dis-
tribution [7].
On the more theoretical side, randomized (dithered) quan-

tizers have been studied in the past due to important properties
that differentiate them from deterministic quantizers, and were
employed to characterize rate-distortion bounds for universal
compression [8], [9]. The continued (theoretical) interest in
dithered quantizers is due to their statistical properties. Zamir
and Feder provide extensive studies of the properties of dithered
quantizers [10], [11]. The results of these studies, specifically
the fact that the dithered lattice quantizer at asymptotically
high dimension realizes the Gaussian test channel, have led to
the wide use of entropy coded dithered lattice quantization as a
“structured method” to achieve fundamental bounds obtained
via random (unstructured) coding arguments [12], see e.g.,
[13]–[15] for a sample of such applications and [16] for an
overview.
Beyond its theoretical significance, randomized quantization

is of significant practical interest. A main application area of
dithered quantizers is the analysis of quantization in complex
systems, due its simplicity in modeling quantization errors.
For instance, Goyal recently investigated the performance of a
collection of subtractively-dithered uniform scalar quantizers
with the same step size, used in parallel as a model for the ran-
domly varying uniform conventional quantizers [17]. Dithered
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quantizers have been found to be useful in analog-digital
converters in general, particularly in delta-sigma modulators
[18]–[20] where statistics of the quantization error is an im-
portant consideration. Another example pertains to distributed
averaging algorithms (consensus) [21] which recently gained
revived interest [22], [23]. In [24], it was shown that quantized
consensus is significantly different than the original (unquan-
tized) problem and the effect of quantization is arbitrary and
hard to analyze. To alleviate the quantization problem, it is
widely accepted practice to use dithered quantization due to its
statistical advantages, see e.g., [25], [26]. Many filter/system
optimization problems in practical compression settings, such
as the “rate-distortion optimal filterbank design” problem
[27], or low rate filter optimization for DPCM compression of
Gaussian auto-regressive processes [28], assume quantization
noise that is independent of (or uncorrrelated with) the source.
Although this assumption is satisfied at asymptotically high
rates [29], such systems are mostly useful for very low rate ap-
plications. For example, in [28], it is stated that the assumptions
made in the paper are not satisfied by deterministic quantizers,
and that dithered quantizers satisfy the assumptions exactly.
However, conventional (uniform) dithered quantization suffers
from suboptimal compression performance. Hence, a quantizer
that mostly satisfies the assumptions, but at minimal cost in
performance degradation, would have considerable impact on
many such applications.
In this paper, we consider a generalization to enable effective

dithering of nonuniform quantizers. To the best of our knowl-
edge, this paper is the first attempt (other than our prelimi-
nary work in [30], [31]) to consider dithered quantization in a
nonuniform quantization framework. One immediate problem
with nonuniform dithered quantization is how to apply dithering
to unequal quantization intervals. In traditional dithered quanti-
zation, the dither signal is matched to the uniform quantization
interval while maintaining independence of the source, but it is
not clear how tomatch the generic dither to varying quantization
intervals. As a remedy to this problem, we propose dithering in
the companded domain. We derive the closed form necessary
conditions for optimality of the compressor and expander map-
pings for both fixed and variable rate randomized quantization.
We numerically optimize the mappings by iteratively imposing
these necessary conditions.
However, the resulting (unconstrained randomized) quantizer

does not render reconstruction error orthogonal to the source.
Therefore, we extend the framework to include an explicit such
constraint. Surprising theoretical results show direct and simple
connections between the optimally constrained random quan-
tizers and their unconstrained counterparts. We note in passing
that the nonuniform dithered quantizer subsumes the conven-
tional uniform dithered quantizer as an extreme special case.
For the variable rate case, the proposed nonuniform dithered

quantizer is expected to outperform the conventional dithered
quantizer, most significantly at low rates where the optimal
variable rate (entropy coded) quantizer is often far from uni-
form. We observe that a deterministic quantizer cannot render
the quantization noise independent of the source but can make
it uncorrelated with the source. We hence also present an
alternative deterministic quantizer that provides quantization
noise uncorrelated with the source. We derive the optimality
conditions of such constrained quantizers, for both fixed and

variable rate quantization, and compare their rate-distortion
performance to that of randomized quantizers.
Dithered quantization offers an interesting theoretical twist.

Randomized quantization is an instance of the random encoding
principle used to elegantly prove the achievability of coding
bounds in rate distortion theory [32]. However, to actually
achieve those bounds, a random encoding scheme is not neces-
sary, as they can be approached by a sequence of deterministic
quantizers of increasing block length. In the second part of
the paper, we investigate the settings under which randomized
quantization is asymptotically necessary. A trivial example
involves requiring source-independent quantization error. It
is obvious that the reconstruction (hence quantization error)
is a deterministic function of the source when the quantizer
is deterministic [29], while conventional dithered quantiza-
tion produces quantization error that is independent of the
source. Although a deterministic quantizer can never render
the quantization error independent of the source, it can produce
quantization error uncorrelated with the source. A natural
question is whether the rate distortion bound, subject to the
uncorrelated error constraint, can be achieved (asymptotically)
with a deterministic quantizer.
The paper is organized as follows: In Section III, we present

the proposed nonuniform randomized quantizers, along with its
extension to constrained randomized quantizer that renders the
quantization error orthogonal to the source. In Section IV, we
derive the necessary conditions of optimality for the determin-
istic quantizer that generates reconstruction error uncorrelated
with the source. In Section V, we study the asymptotic (in quan-
tizer dimension) results, and show that for a Gaussian source,
the optimal constrained quantizer must be randomized. Experi-
mental results that compare the proposed quantizers to the con-
ventional dithered quantizer are presented in Section VI.We dis-
cuss the results and summarize the contributions in Section VII.

II. REVIEW OF DITHERED QUANTIZATION

A. Notation and Preliminaries

Let and denote the respective sets of real numbers,
and positive real numbers. In general, lowercase letters (e.g.,
) denote scalars, boldface lowercase (e.g., ) vectors, upper-
case (e.g., ) matrices and random variables, and boldface
uppercase (e.g., ) random vectors. , and denote co-
variance of and cross covariance of and respectively1.

and denote the expectation and probability opera-
tors, respectively. denotes the gradient and denotes the
partial gradient with respect to . denotes the first order
derivative of the function , i.e., . All the loga-
rithms in the paper are natural logarithms and may in general be
complex. Integrals are, in general, Lebesgue integrals.
denotes the Gaussian density with mean and covariance ma-
trix , and denotes the uniform density over [a,b]. Let

denote the set of monotonically increasing, Borel measur-
able functions .

1We assume zero mean random variables. This assumption is not necessary,
but it considerably simplifies the notation. Therefore, it is kept throughout the
paper.
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The entropy of a discrete random vector taking
values in is

(1)

where logarithm is base 2 to measure it in bits. The differential
entropy of a continuous random vector with probability den-
sity function is

(2)

The divergence between two densities and , is given by

(3)

The divergence definition above can be extended to conditional
densities. For joint densities, and the conditional
divergence is defined as the divergence be-
tween the conditional distributions and averaged
over the density

(4)

The mutual information between two random variables
and with marginal densities and and a joint
density is given by

(5)

Zero-mean vectors and are said to be
uncorrelated if they are orthogonal:

(6)

where the right hand size is matrix of zeros.

B. Dithered Quantization

A quantizer is defined by a set of reconstruction points and a
partition. The partition associated with a quantizer
is a collection of disjoint regions whose union covers . The
reconstruction points are typically chosen to mini-
mize a distortion measure. The vector quantizer is a mapping

that maps every vector into the re-
construction point that is associated with the cell containing
i.e.,

(7)

While our theoretical results are general, for a vector quantizer
of arbitrary dimensions, for presentation simplicity, we will pri-
marily focus on scalar quantization in the treatment of numerical
optimization of nonuniform dithered quantizer and for experi-
mental results. The nonuniform dithered quantization approach
is directly extendable to vector quantization by replacing the
companded domain uniform quantizer with a lattice quantizer,

although at the cost of significantly more challenging numerical
optimization.
The scalar uniform quantizer, with reconstructions

, is a mapping such that

(8)

In fixed rate quantization, the range parameter is determined
by the rate

(9)

while in variable rate quantization need not, in principle, be
finite and we will assume . In this case, uniform quanti-
zation is followed by lossless source encoding (entropy coder).
Let dither be a random variable, distributed uniformly on

the interval . Then, conventional dithered quan-
tizer approximates the source by

(10)

It can be shown that the reconstruction error of this quantizer
(denoted ) is independent of the source value , i.e.,

is independent of and
uniformly distributed over for all . Contrast
that with a deterministic quantizer, whose error is completely
determined by the source value [29].
We note that for this property to hold, the quantizer should

span the support of the source density i.e., there should be no
overload distortion. While this is often the case for variable rate
quantization, for fixed rate overload distortion is inevitable if
the source has unbounded support such as a Gaussian source.
For practical purposes though, it is common to assume that the
source has finite support and we also follow this assumption in
our analysis of fixed rate randomized quantization: the quanti-
zation error of conventional (uniform) dithered quantization is
assumed to be independent of the source.
The realization of the dither random variable is available

to both the encoder and the decoder. Thus, assuming an optimal
entropy coder, the rate of the variable rate quantizer tends to the
conditional entropy of the reconstruction given the dither, i.e.,

(11)

In [10], it was shown that the following holds:

(12)

III. NONUNIFORM DITHERED QUANTIZER

The main idea is to circumvent the main difficulty due to
unequal quantization intervals by performing uniform dithered
quantization in the companded domain (see Fig. 2). The source
is transformed through compressor before undergoing

dithered uniform quantization. At the decoder side, the dither
is subtracted to obtain . Since we perform uniform dithered
quantization in the companded domain, it is easy to show
that , where is uniformly distributed over

and independent of the source. The reconstruc-
tion is obtained by applying the expander . The
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Fig. 2. The proposed nonuniform dithered quantizer.

objective is to find the optimal compressor and expander map-
pings that minimize the expected distortion under
the rate constraint. The MSE distortion can be written as:

(13)

where is uniform over . Interestingly, this
problem bears some similarity to the joint source channel map-
ping problem where the optimal analog encoding and decoding
mappings are studied [33]. In our setting, the quantization error
is analogous to the channel noise and the rate constraint in vari-
able rate quantization plays a role similar to that of the power
constraint. Similar to [33], we develop an iterative procedure
that enforces the necessary conditions for optimality of the map-
pings. Note that the conventional (uniform) dithered quantizer
is a special case employing the trivial identity mappings, i.e.,

almost everywhere (a.e.) in .

A. Optimal Expander

The conditional expectation minimizes MSE
between the source and the estimate, hence

(14)

Plugging the expressions for expectation, we obtain

(15)

Applying Bayes’ rule

(16)

and noting that , the optimal ex-
pander can be written, in terms of known quantities, as

(17)

where is uniform density over , hence

(18)

where for fixed rate and
, while for variable rate

and .
Note: We restrict the discussion to regular quantizers

throughout this paper, hence , i.e., is monoton-
ically increasing.

B. Optimal Compressor

Unlike the expander, the optimal compressor cannot be
written in closed form. However, a necessary optimality con-
dition can be obtained by setting the functional derivative of
the cost to zero. Thus, a locally optimal compressor , for
a given expander , requires that the functional derivative
of the total cost, , along the direction of any admissible2

variation function vanishes [34], i.e.,

(19)

a.e. in , for all admissible perturbation functions .
1) Fixed Rate: For fixed rate, we have granular distortion,

denoted , and overload distortion, denoted . Note that
we must account for the overload distortion here, as this con-
strains from growing unboundedly in the iterations of the
proposed algorithm. Since the rate is fixed, the total cost only
measures the distortion, i.e., where and
are:

(20)

(21)

2) Variable Rate: The rate is obtained via (11) and (12),
which require the distribution of

(22)

where is the cumulative distribution function of . The
rate is then evaluated using (12) as

(23)

The total cost for variable rate quantization is
where is the Lagrangian parameter that is adjusted to obtain
the desired rate.

C. Design Algorithm

The basic idea is to iteratively alternate between the im-
position of individual necessary conditions for optimality,
and thereby successively decrease the total Lagrangian cost.
Iterations are performed until the algorithm reaches a stationary
point. Imposing optimality condition for the expander (18)
is straightforward, since the expander can be expressed as
closed form functional of known quantities, . The
compressor optimality condition (19) is not in closed form

2Admissibility here need not be overly restrictive since it is used to derive a
necessary condition. Hence, we only require that admissible functions be (Borel)
measurable, that integrals exist, and that we can change the order of integration
and differentiation.
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and we perform steepest descent search in the direction of the
functional derivative of the Lagrangian with respect to the
compressor mapping . By design, the Lagrangian cost
decreases monotonically as the algorithm proceeds iteratively.
The update for the compressor is stated generically as

(24)

where is the iteration index, is the directional deriva-
tive and is the step size. The precise expressions for for
fixed an variable rate are given in the Appendix along with their
derivations.
Note that there is no guarantee that an iterative descent al-

gorithm of this type will converge to the globally optimal so-
lution. The algorithm will converge to a local minimum and
hence, initial conditions are important in such greedy optimiza-
tions. A low complexity approach to mitigate the poor local
minima problem, is to embed within the solution the “noisy
channel relaxation” method of [35], [36]. We initialize the com-
pressor mapping with random initial conditions and run the al-
gorithm for a very low rate (large value for the Lagrangian pa-
rameter ). Then, we gradually increase the rate (decrease )
while tracking the minimum. Note that local minima problem
is more pronounced at multi-dimensional optimizations, which
hence requires more powerful non-convex optimization tools
such as deterministic annealing [37]. In our design and experi-
ments, we focus on scalar compressor and expander and we did
not observe significant local minima problems.

IV. RECONSTRUCTION ERROR UNCORRELATED
WITH THE SOURCE

In this section, we propose two quantization schemes (one
deterministic, one randomized) that satisfy the constraint that
reconstruction error be uncorrelated with the source.

A. Constrained Deterministic Quantizer

A deterministic quantizer cannot yield quantization noise in-
dependent of the source [29]. However, it is possible to render
the quantization noise uncorrelated with the source. An early
prior work along this line appeared in [38], where a uniform
quantizer is converted to a quantizer whose quantization noise
is uncorrelated with the source, by adjusting the reconstruction
points. In this section, we derive the optimal (nonuniform in
general) deterministic vector quantizer which is constrained to
give quantization error uncorrelated with the source.
Let denote the number of quantization cells. Let and
be the reconstruction points and and represent the

th quantization region, and the covariance of the re-
constructions, and the covariance of the reconstruction
error for the constrained (i.e., whose quantization error is uncor-
related with the source) and unconstrained MSE optimal quan-
tizer, respectively. Also, let and denote the probability of
falling into the th cell of these respective quantizers.
Theorem 1: and .
Proof: We start with the fixed rate analysis. The distortion

can be expressed as

(25)

and the “uncorrelatedness” constraint may be stated via the or-
thogonality principle

(26)

where the right hand side is matrix of zeros. Note further
that (26) can be written as:

(27)

where . The constrained problem of mini-

mizing subject to (27) is equivalent to the unconstrained min-
imization of Lagrangian

(28)

where denotes the multiplier
Lagrangianmatrix, and respectively denote the th
column of and the th element of . By setting ,
we obtain the condition:

(29)

Noting that

(30)

we obtain
(31)

or

(32)

Plugging (32) in (27), we obtain:

(33)

Plugging (33) in (32), we have
(34)

Note that is the MSE optimal reconstruction of an uncon-
strained quantizer that shares the same decision boundary with
the constrained one, . Next, we show that .
We note that the optimal boundaries of the optimal con-

strained quantizer must satisfy the following nearest neighbor
rule for :

(35)

Adding to both sides, we have

(36)
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Noting that and using (34), we rewrite
(36) as

(37)

which is the unconstrained nearest neighbor rule and hence

(38)

which implies that

(39)

Plugging (39) in (27), we obtain

(40)

and finally using (40), (34) and (39), we obtain

(41)

The proof for variable rate follows similar lines, with the only
modification that we now have to account for the rate term

. The uncorrelatedness constraint is identical to

the one in fixed rate, hence the overall Lagrangian cost can be
expressed as:

(42)

for some . By setting , noting that the term

does not depend on and hence, following the

same steps, we obtain (34). Towards showing (38), we again
consider the nearest neighbor rule, for variable rate case (see
e.g., [39]): if , then the following must hold for all

(43)

Again, following the same steps that led to (37), we show
that (43) is equivalent to the nearest neighbor rule of the optimal
unconstrained quantizer and hence (38) holds.
Remark 1: The second part of Theorem 1 holds more gener-

ally, not necessarily for the optimal quantizers. Given a quan-
tizer with reconstruction points chosen to minimize distor-
tion for some (not necessarily optimal) partition , the min-
imum distortion quantizer that renders reconstruction error or-
thogonal to the source and shares the same partition is ob-
tained by scaling the reconstruction points as .
This is due to the fact that the assumption that is the optimal
partition was not used in any of the steps in deriving (34), hence
(34) holds for any . Given that the partition is not changed,

, we obtain .
Corollary 1: The reconstruction error covariances of the op-

timal constrained and unconstrained quantizers satisfy the fol-
lowing:

(44)

Proof: Note that error is orthogonal to reconstructions

(45)

for the unconstrained optimal quantizer. Plugging (40) in (45),
we have

(46)

Reconstruction error of the optimal constrained quantizer is or-
thogonal to the source:

(47)

Invoking matrix inversion lemma, see e.g., [40], we obtain

(48)

Plugging (48) in (46), we obtain (44).

B. Constrained Randomized Quantizer

Due to the effect of companding, the nonuniform random-
ized quantizer we derived in Section III does not guarantee re-
construction error uncorrelated with the source even though it
builds on the (conventional) dithered quantizer whose quanti-
zation error is independent of the source. We therefore explic-
itly constrain the randomized quantizer to generate uncorrelated
reconstruction error, by adding a penalty term to the total cost
function. The Lagrangian parameter is set to ensure

.

(49)

where in the case of variable rate and for
fixed rate. Let and be the compressor and expander
mappings of the unconstrained optimal randomized quantizer.
Let and denote the optimal mappings subject to the
constraint that the reconstruction error be uncorrelated with the
source. In the following, we present the relationship between the
optimal constrained and unconstrained randomized quantizers.
Theorem 2: For both fixed and variable rate,

(50)

a.e. in and .
Proof: We focus on fixed rate as the variable rate case fol-

lows directly from the fixed rate proof. The optimal expander
is no longer the standard conditional expectation, since

it is impacted by the constraint. Towards finding the optimal
, we apply the standard method in variational calculus

[34]: The following must hold

(51)

for any perturbation function . Plugging (49) in (51), and
evaluating the derivative, we have

(52)
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for all . The quantization error is denoted as
. Equality for all admissible variation functions,

, requires the expression in braces to vanish a.e.. This
gives the necessary condition for optimality as:

(53)

where is the optimal unconstrained expander when
is used as the compressor. Next, we find . We first note that

(54)

or

(55)

From orthogonality principle, we also have

(56)

Plugging (53) in (55) and (56), we obtain

(57)

Towards deriving the update rule for , we perturb the
overall cost in

(58)

which yields,

for all . Equality for all admissible variation functions,
, requires the expression in braces to vanish a.e., i.e.,

(59)

almost everywhere in . Plugging (53) in (59), we have

(60)

which is precisely the necessary condition to be satisfied by the
optimal unconstrained compressor, . Hence,

(61)

a.e in which yields and hence

(62)

a.e in .

Remark 2: Surprisingly, the optimally constrained com-
pressor mapping remains unchanged (from the unconstrained
optimal compressor) and the only modification to the expander
mapping is simple scaling. This result parallels Theorem 1
which shows the decision boundaries, determined by the com-
pressor do not change and all reconstructions are scaled
by the same adjustment factor.

V. ASYMPTOTIC ANALYSIS

A. Rate-Distortion Functions

To quantify theoretically how much a source3 can be com-
pressed under the independent/uncorrelated reconstruction error
constraint, we define two rate-distortion functions in which we
respectively constrain the reconstructions error to be i) uncorre-
lated with the source: , and ii) independent of the source:

.
Assume that we have source with density that pro-

duces the independent identically distributed (i.i.d.) sequence
denoted as . Similarly, let

be the reconstruction sequence, denoted as . Let
be the i.i.d. sequence of reconstruction errors with marginal

density . Let denote joint distribution of and
and denote the distortion measure between se-

quences and defined as

(63)

Let us recall the classical rate-distortion result in information
theory:
Rate-Distortion Theorem: (eg. [32]): Let be the

infimum of all achievable rates with average distortion
as . Then,

(64)

We next focus on our problem: let be the infimum of
all achievable rates with average distortion

(65)

subject to the constraint

(66)

Similarly, let be the infimum of all achievable rates
with average distortion subject to the
constraint is independent of for all , as . Then, we
have the following result characterizing the fundamental limits
of source compression under the constraints that reconstruction
error is uncorrelated with or independent of the source.
Theorem 3:

(67)

(68)

3The notation in this section is limited to scalar sources for simplicity, it is
trivial to extend the results to vector sources albeit with more complicated no-
tation.
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Proof: Consider the distortion measures

(69)

(70)

for some .
We next consider the rate-distortion functions (denoted

and ) associated with these distortion measures.
By replacing with and in (64), we obtain the following
expressions:

(71)

(72)

We note that the achievability and the converse proofs are
straightforward extensions of the standard achievability and the
converse proofs for regular rate distortion function.
We next consider the distortion measures and and

associated rate-distortion functions and when
. As implies

while for all .
Similarly, as implies

under the constraint that and
are asymptotically independent for all . Hence, as ,
the distortion measures under consideration satisfy the respec-
tive requirements of uncorrelatedness or independence, i.e.,

and .
Hence, (67) and (68) are indeed the information theoretic

characterization of the limits of encoding a source with uncor-
related and independent reconstruction error respectively.

B. Gaussian Vector Source With MSE Distortion

In this section, we examine a special case where the source is
vector Gaussian and the distortion measure is squared error. We
start with an auxiliary lemma without proof (see eg. [32] for the
proof).
Lemma 1 ([32]): Let and be random

vectors in with the same covariance matrix . If
then

(73)

where and denote the expectations with respect to
and respectively.
Let us present a key lemma regarding the mutual information

of two correlated random vectors constrained to have a fixed
cross covariance matrix.
Lemma 2: Let and be

jointly Gaussian random vectors in . Let and
have the same covariance matrix, and the same cross covari-
ance matrix with . Then,

(74)

with equality if and only if .
Proof: Consider .

Plugging the expressions, we obtain:

(75)

Noting that and
and plugging and

, we obtain:

(76)

(77)

Using Lemma 1 and the fact that the joint distribution
is Gaussian:

(78)

(79)

(80)

with equality if and only if .
Next, we present our main result on this topic:
Theorem 4: For a Gaussian vector source and MSE

distortion , the following holds:

(81)

Proof: Generally, , since independent
reconstruction error is also uncorrelated. Note that the uncor-
related error constraint dictates and the distortion
constraint is . Lemma 2 states that under these
constraints, for a Gaussian source, Gaussian reconstruction
error minimizes the mutual information between the source and
the reconstruction, i.e., achieves its minimum
when . Then, and are uncorrelated and
jointly Gaussian and are, thereby, also independent.
We next pose the question: Are there cases where the best

possible vector quantizer at asymptotically high dimension that
renders the reconstruction error uncorrelated with the source, is
necessarily a randomized one? The next corollary answers in
the affirmative, as is proved by the Gaussian case.
Corollary 2: For a Gaussian source, at asymptotically high

quantizer dimension, the quantizer that achieves minimum dis-
tortion subject to the uncorrelated error constraint is necessarily
a randomized one.

Proof: From Theorem 4, the reconstruction error for the
Gaussian source subject to the uncorrelated error constraint
is independent of the source. No deterministic quantizer can
render the quantization noise independent from the source by
definition; hence, the optimal quantizer is a randomized one.
Note that our results hold only asymptotically, and it is still

an open question whether or not they hold at finite dimensions.
The numerical results in the next section support the thesis that
randomized quantizers are better at finite dimensions.

VI. EXPERIMENTAL RESULTS

In this section, we numerically compare the proposed quan-
tizers to the conventional (uniform) dithered quantizer and to the
optimal quantizer, for a standard unit variance scalar Gaussian
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source. We implemented the proposed quantizers by numer-
ically calculating the derived integrals. For that purpose, we
sampled the distribution on a uniform grid. We also imposed
bounded support ( to 3) i.e., we numerically neglected the
tails of the Gaussian. In this paper, we proposed three new quan-
tizers:
Quantizer 1: Unconstrained randomized quantizer. This

quantizer does not render the reconstruction error uncorrelated
with the source.
Quantizer 2: Constrained randomized quantizer which ren-

ders the quantization error uncorrelated with the source.
Quantizer 3: Constrained deterministic quantizer which ren-

ders the quantization error uncorrelated with the source.
Figs. 3 and 4 demonstrate the performance comparisons

among quantizers for fixed and variable rates respectively.
Note that for both fixed and variable rate, the optimal random-
ized quantizer performs very close to the optimal quantizer.
However, it does not provide the statistical benefits of the other
quantizers.
Note that for fixed rate, conventional (uniform) dithered

quantization suffers significantly from the suboptimality of
having equal quantization intervals irrespective of the rate
region. However, at variable rate, the difference between the
proposed and conventional dithered quantizer diminishes at
high rates, while at low rates the difference is quite significant.
This is theoretically anticipated since at high rates, the optimal
variable rate quantizer is very close to uniform, hence there is
not much to gain from using a non-linear compressor-expander.
For both fixed and variable rate, the constrained randomized

quantizer outperforms its deterministic counterpart, while both
of them perform significantly better than the conventional
dithered quantizer. Both of the proposed quantizers render
quantization error uncorrelated with the source with low per-
formance degradation while the dithered uniform quantizer
renders error independent of the source but at significant dis-
tortion penalty.
An additional benefit of the proposed random quantizers per-

tains to the correlation of the reconstruction errors when cor-
related sources are quantized. The conventional dithered quan-
tizer renders quantization error independent of the source hence,
when two correlated sources are quantized with a dithered quan-
tizer, the reconstruction errors are uncorrelated. For determin-
istic quantizers (Quantizer 3 and the optimal quantizer), the
reconstruction error is a deterministic function of the source
hence, intuitively randomized quantizers are expected to have
lower reconstruction error correlation. Figs. 5 and 6 demonstrate
the correlation of the reconstruction error for different values
of source correlation for a bivariate Gaussian source for fixed
and variable rate quantization respectively. These numerical re-
sults illustrate this intuitive conclusion: randomization is signif-
icantly useful in decreasing the correlations of reconstruction er-
rors. Specifically, the constrained randomized quantizer (Quan-
tizer 2) yields extremely low error correlation, very close to that
of the conventional dithered quantization. This property is par-
ticularly useful in practical applications such as image-video
compression where white reconstruction error is preferred due
to audio-visual considerations, see eg. deblocking filters com-
monly used in video coding [41]. Also note that, the uncon-

Fig. 3. Performance comparison in terms of SNR versus rate for fixed rate
quantization.

Fig. 4. Performance comparison in terms of SNR versus rate for variable rate
quantization.

strained randomized quantizer (Quantizer 1) significantly de-
creases the error correlation compared to the optimal quantizer,
with negligible sacrifice in rate distortion performance. Hence,
this statistical benefit of randomization comes with no signifi-
cant penalty.
Numerical comparisons show that the proposed quantization

schemes can significantly impact the design of compression sys-
tems such as [27], [28] where quantization error is assumed
to be uncorrelated with the source. Note that the constrained
randomized quantization satisfies this assumption precisely and
significantly outperforms the conventional dithered quantiza-
tion, which has been presented in such prior work as the vi-
able option to satisfy these assumptions. In fact, as an alterna-
tive to the conventional dithered quantization that satisfies these
assumptions at considerable performance cost, we derived ad-
ditional quantization schemes that satisfy those assumptions:
constrained deterministic quantization and constrained nonuni-
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Fig. 5. Correlation of the reconstruction error versus source correlation for
fixed rate quantization at rate bits/sample.

Fig. 6. Correlation of the reconstruction error versus source correlation for
variable rate quantization at rate bits/sample.

form random quantization. We also derived an unconstrained
randomized quantizer, which performs almost as well as the
optimal (deterministic) quantizer, yet offers perceptual benefits
typical to dithered quantization.
While it is difficult to prove the strict superiority of these

new quantizers over the conventional dithered quantizer, we nu-
merically show it, for both fixed and variable rate quantizers,
in Figs. 3 and 4. The numerical results motivate a theoretical
proposition: the optimal vector quantizer that renders the recon-
struction error orthogonal to the source is necessarily random-
ized. While we proved this result at asymptotically high dimen-
sions, it remains a conjecture at finite dimensions, based on the
numerical results in this section.

VII. DISCUSSION

In this paper, we proposed a nonuniform randomized quan-
tizer where dithering is performed in the companded domain to
circumvent the problem of matching the dither range to varying

quantization intervals. The optimal compressor and expander
mappings that minimize the mean square error are found via
a novel numerical method. Also, we discovered the connec-
tions between the optimal quantizer and the one whose recon-
struction error is constrained to be orthogonal to the source,
for both deterministic and randomized quantization. The pro-
posed constrained randomized quantization outperforms con-
ventional dithered quantization and also the constrained deter-
ministic quantizer proposed in this paper, while still satisfying
the requirement that the reconstruction error be uncorrelated
with the source. Moreover, the proposed randomized quantizers
significantly reduce the correlations across reconstruction errors
when correlated samples, i.e., sources with memory, are quan-
tized. The design complexity of proposed nonuniform dithered
scalar quantizers is not significantly different from that of the
optimal conventional quantizers.We also showed that at asymp-
totically high dimensions, theMSE optimal vector quantizer de-
signed for a vector Gaussian source, which renders the recon-
struction error uncorrelated with the source, must be a random-
ized quantizer. As future work, we will investigate the appli-
cability of this result to a broader class of problems (e.g., non-
Gaussian sources, finite dimensional vector quantizers, different
statistical constraints) where random encoding is not merely a
tool to derive rate-distortion bounds, but a necessary element in
practical systems approaching such bounds.

APPENDIX I
FUNCTIONAL DERIVATIVES

In this section, we derive for fixed and variable rate cases.
We repeatedly use the Leibniz rule, which is stated here for com-
pleteness.
Leibniz Rule: Let be a function whose

partial derivative with respect to , exists and is continuous ev-
erywhere in . Also assume that are functions
which are differentiable everywhere. Then,

(82)

Fixed Rate: Recall that . Applying Leibniz rule,
we get

(83)
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(92)

(93)

Let us now consider given in (21). Applying Leibniz rule:

(84)

Clearly, the last two terms in (83) are cancelled by (84). Hence,

which implies

Variable rate: First, we obtain the density of
where in and . In general,

(85)

where is the cumulative distribution function of . Since
is monotonically increasing and is independent of ,

we have

(86)

(87)

(88)

(89)

(90)

Next, we derive the update rule for the variable rate:

(91)

Plugging (90) and (23) in (91), we have [see (92)-(93), shown
at the top of the page]. By changing variables and manipulating
(93):

REFERENCES
[1] L. Roberts, “Picture coding using pseudo-random noise,” IEEE Trans.

Inf. Theory, vol. 8, no. 2, pp. 145–154, 1962.
[2] L. Schuchman, “Dither signals and their effect on quantization noise,”

IEEE Trans. Commun., vol. 12, no. 4, pp. 162–165, 1964.
[3] K. C. Pohlmann and K. C. Pohlman, Principles of Digital Audio.

New York, NY, USA: McGraw-Hill, 1995, vol. 4.
[4] J. Vanderkooy and S. P. Lipshitz, “Dither in digital audio,” J. Audio

Eng. Soc., vol. 35, no. 12, pp. 966–975, 1987.
[5] R. A. Wannamaker, S. P. Lipshitz, J. Vanderkooy, and J. N. Wright, “A

theory of nonsubtractive dither,” IEEE Trans. Signal Process., vol. 48,
no. 2, pp. 499–516, 2000.



3302 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 13, JULY 1, 2013

[6] M. Li, J. Klejsa, and W. B. Kleijn, “Distribution preserving quantiza-
tion with dithering and transformation,” IEEE Signal Process. Lett.,
vol. 17, no. 12, pp. 1014–1017, 2010.

[7] N. Saldi, T. Linder, and S. Yuksel, “Randomized quantization and op-
timal design with a marginal constraint,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), 2013.

[8] J. Ziv, “On universal quantization,” IEEE Trans. Inf. Theory, vol. 31,
no. 3, pp. 344–347, 1985.

[9] R. M. Gray and T. G. Stockham, Jr., “Dithered quantizers,” IEEE
Trans. Inf. Theory, vol. 39, no. 3, pp. 805–812, 1993.

[10] R. Zamir andM. Feder, “On universal quantization by randomized uni-
form/lattice quantizers,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pt. 2,
pp. 428–436, 1992.

[11] R. Zamir and M. Feder, “Information rates of pre/post-filtered dithered
quantizers,” IEEE Trans. Inf. Theory, vol. 42, no. 5, pp. 1340–1353,
1996.

[12] C. E. Shannon, “The mathematical theory of information,” Bell Syst.
Tech. J., vol. 27, no. 6, pp. 379–423, 1949.

[13] J. Ostergaard and R. Zamir, “Multiple-description coding by dithered
delta-sigma quantization,” IEEE Trans. Inf. Theory, vol. 55, no. 10, pp.
4661–4675, 2009.

[14] R. Zamir, Y. Kochman, and U. Erez, “Achieving the Gaussian rate-
distortion function by prediction,” IEEE Trans. Inf. Theory, vol. 54,
no. 7, pp. 3354–3364, 2008.

[15] U. Erez and R. Zamir, “Achieving on the AWGN
channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory,
vol. 50, no. 10, pp. 2293–2314, 2004.

[16] R. Zamir, “Lattices are everywhere,” in Proc. IEEE Inf. Theory Appl.
Workshop, 2009, pp. 392–421.

[17] V. K. Goyal, “Scalar quantization with random thresholds,” IEEE
Signal Process. Lett., vol. 18, no. 9, pp. 525–528, 2011.

[18] W. Chou and R. M. Gray, “Dithering and its effects on sigma-delta and
multistage sigma-delta modulation,” IEEE Trans. Inf. Theory, vol. 37,
no. 3, pp. 500–513, 1991.

[19] I. Galton, “Granular quantization noise in a class of delta-sigma mod-
ulators,” IEEE Trans. Inf. Theory, vol. 40, no. 3, pp. 848–859, 1994.

[20] S. Pamarti, J. Welz, and I. Galton, “Statistics of the quantization noise
in 1-bit dithered single-quantizer digital delta–sigma modulators,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 3, pp. 492–503,
2007.

[21] J. N. Tsitsiklis, “Problems in decentralized decision making and com-
putation,” LID, MIT, Cambridge, MA, USA, Tech. Rep., DTIC Docu-
ment, 1984.

[22] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,
2006.

[23] A. G. Dimakis et al., “Gossip algorithms for distributed signal pro-
cessing,” Proc. IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.

[24] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,” Auto-
matica, vol. 43, no. 7, pp. 1192–1203, 2007.

[25] T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributed average con-
sensus with dithered quantization,” IEEE Trans. Signal Process., vol.
56, no. 10, pp. 4905–4918, 2008.

[26] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in
sensor networks: Quantized data and random link failures,” IEEE
Trans. Signal Process., vol. 58, no. 3, pp. 1383–1400, 2010.

[27] M. K. Mihcak, P. Moulin, M. Anitescu, and K. Ramchandran, “Rate-
distortion-optimal subband coding without perfect-reconstruction con-
straints,” IEEE Trans. Signal Process., vol. 49, no. 3, pp. 542–557,
2001.

[28] O. G. Guleryuz and M. T. Orchard, “On the DPCM compression of
Gaussian autoregressive sequences,” IEEE Trans. Inf. Theory, vol. 47,
no. 3, pp. 945–956, 2001.

[29] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. New York, NY, USA: Springer, 1992.

[30] E. Akyol and K. Rose, “Nonuniform dithered quantization,” in Proc.
IEEE Data Compression Conf., 2009, p. 435.

[31] E. Akyol and K. Rose, “On constrained randomized quantization,” in
Proc. IEEE Data Compress. Conf., 2012, pp. 212–222.

[32] T.M. Cover and J. A. Thomas, Elements of Information Theory. New
York, NY, USA: Wiley, 1991.

[33] E. Akyol, K. Rose, and T. A. Ramstad, “Optimal mappings for joint
source channel coding,” in Proc. IEEE Inf. Theory Workshop, 2010.

[34] D. G. Luenberger, Optimization by Vector Space Methods. New
York, NY, USA: Wiley, 1969.

[35] S. Gadkari and K. Rose, “Robust vector quantizer design by noisy
channel relaxation,” IEEE Trans. Commun., vol. 47, no. 8, pp.
1113–1116, 1999.

[36] P. Knagenhjelm, “A recursive design method for robust vector quan-
tization,” in Proc. Int. Conf. Signal Process. Appl. Technol., 1992, pp.
948–954.

[37] K. Rose, “Deterministic annealing for clustering, compression, classi-
fication, regression, and related optimization problems,” Proc. IEEE,
vol. 86, no. 11, pp. 2210–2239, 1998.

[38] A. Hjorungnes, “Optimal bit and power constrained filter banks,”
Ph.D. dissertation, Norwegian Univ. of Sci. and Technol., Trondheim,
Norway, 2000.

[39] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-constrained
vector quantization,” IEEE Trans. Acoust, Speech, Signal Process., vol.
37, no. 1, pp. 31–42, 1989.

[40] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[41] P. List et al., “Adaptive deblocking filter,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 614–619, 2003.

Emrah Akyol (S’03–M’12) received the Ph.D.
degree in 2011 from the University of California at
Santa Barbara. From 2006 to 2007, he held positions
at Hewlett-Packard Laboratories and NTT Docomo
Laboratories, both in Palo Alto, CA, USA. Currently,
Dr. Akyol is a postdoctoral researcher at UC Santa
Barbara. His research focuses on networked source
coding, joint source-channel coding, and low-delay
communications with applications to optimization
and control of smart grids.

Kenneth Rose (S’85–M’91–SM’01–F’03) received
the Ph.D. degree in 1991 from the California Institute
of Technology. He then joined the Department of
Electrical and Computer Engineering, University of
California at Santa Barbara, where he is currently
a Professor. His main research activities are in the
areas of information theory and signal processing,
and include rate-distortion theory, source and
source-channel coding, audio and video coding and
networking, pattern recognition, and nonconvex op-
timization. He is interested in the relations between

information theory, estimation theory, and statistical physics, and their potential
impact on fundamental and practical problems in diverse disciplines.
Dr. Rose was co-recipient of the 1990 William R. Bennett Prize Paper Award

of the IEEE Communications Society, as well as the 2004 and 2007 IEEE Signal
Processing Society Best Paper Awards.


