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Abstract—In this paper, we study the zero-delay source-
channel coding problem, and specifically the problem of obtaining
the vector transformations that optimally map between the m-
dimensional source space and the k-dimensional channel space,
under a given transmission power constraint and for the mean
square error distortion. We first study the functional properties
of this problem and show that the objective is concave in the
source and noise densities and convex in the density of the input
to the channel. We then present the necessary conditions for
optimality of the encoder and decoder mappings. A well known
result in information theory pertains to the linearity of optimal
encoding and decoding mappings in the scalar Gaussian source
and channel setting, at all channel signal-to-noise ratios (CSNRs).
In this paper, we study this result more generally, beyond the
Gaussian source and channel, and derive the necessary and
sufficient condition for linearity of optimal mappings, given a
noise (or source) distribution, and a specified power constraint.
We also prove that the Gaussian source-channel pair is unique
in the sense that it is the only source-channel pair for which
the optimal mappings are linear at more than one CSNR value.
Moreover, we show the asymptotic linearity of optimal mappings
for low CSNR if the channel is Gaussian regardless of the
source and, at the other extreme, for high CSNR if the source is
Gaussian, regardless of the channel.

I. INTRODUCTION

The zero delay source-channel coding problem has recently
gained revived interest [1]–[5]. In this paper, we study the
functional properties of this problem and the conditions for
linearity of the optimal mappings, building on our prior work
[6], [7].

II. PROBLEM DEFINITION

We consider the general communication system with the
block diagram as shown in Figure 1. Let Skm denote the set
of Borel measurable, square integrable functions {f : Rm →
Rk}. An m-dimensional zero mean1 vector source X ∈ Rm is
mapped into a k-dimensional vector Y ∈ Rk by the function
g ∈ Skm, and transmitted over an additive noise channel. The
received vector Ŷ = Y + Z is mapped by the decoder to
the estimate X̂ via the function h ∈ Smk . The zero mean
noise Z is assumed to be independent of the source X .
The m-fold source density is denoted fX(·) and the k-fold
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1The zero mean assumption is not necessary, but it considerably simplies
the notation. Therefore, it is made throughout the paper.

⊕X ∈ Rm Y ∈ Rk Ŷ ∈ Rk X̂ ∈ Rm
Encoder

g : Rm → Rk
Decoder

h : Rk → Rm

Z ∈ Rk

Fig. 1. A general block-based point-to-point communication system

noise density is fZ(·) with characteristic functions FX(ω) and
FZ(ω), respectively.

The objective is to minimize, over the choice of encoder
g ∈ Skm and decoder h ∈ Smk , the distortion

D(g,h) = E{||X − X̂||2}, (1)

subject to the average power constraint,

P (g) = E{||g(X)||2} ≤ PT , (2)

where PT is the specified transmission power level. Bandwidth
compression-expansion is determined by the setting of the
source and channel dimensions, k/m. To impose the power
constraint, we construct the Lagrangian cost functional:

J(g,h) = D(g,h) + λP (g) (3)

to minimize over the mappings g(·) and h(·).
III. FUNCTIONAL PROPERTIES OF ZERO-DELAY

SOURCE-CHANNEL CODING PROBLEM

In this section, we study the functional properties of the
optimal zero-delay source-channel coding problem. These
properties are not only important in their own right, but also, as
we will show in the following sections, enable the derivation of
several subsequent results. Let us restate the Lagrangian cost
(3), as J(X,Z, g,h) which makes explicit its dependence on
the source and channel noise X ∼ fX(·) and Z ∼ fZ(·)
beside the deterministic mappings g(·) and h(·) as:

J(X,Z, g,h) = E
{
||X−h(g(X)+Z)||2

}
+λE

{
||g(X)||2

}
(4)

The minimum achievable cost is

Jm(X,Z) , inf
g,h

J(X,Z, g,h) (5)

Similarly, conditioned on another random variable U ,
Jm(X,Z|U) denotes the overall cost when U is available
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to both encoder and decoder. We define Jr as the value of
overall cost as a function of g(·), when h(·) has already been
optimized for g(·):

Jr(X,Z, g) , inf
h
J(X,Z, g,h) (6)

A. Concavity of Jm in fX(·) and fZ(·)
In this section, we show the concavity of the minimum

cost, Jm in the source density fX(·) and in the channel noise
density fZ(·). Similar results were derived for minimum mean
squared error estimation in the scalar setting, in [8], where no
encoder is present in the problem formulation. We start with
the following lemma.

Lemma 1: Conditioning cannot increase the overall cost,
i.e., Jm(X,Z) ≥ Jm(X,Z|U) for any U .

Proof: The knowledge of U cannot increase the total cost,
since we can always ignore U and use the g(·),h(·) pair that is
optimal for Jm(X,Z) to achieve Jm(X,Z|U) = Jm(X,Z).

Using Lemma 1, we prove the following theorem, which states
the concavity of the minimum cost Jm(X,Z).

Theorem 1: Jm is concave in fX(·) and fZ(·).
Proof: Let X has the density fX = pfX1 + (1− p)fX2 ,

where fX1 and fX2 respectively denote the densities of random
variables X1 and X2. Then, X can be expressed, in terms of
a time sharing random variable U which takes values in the
alphabet {1, 2}, with P{U = 1} = p: X = XU . Then,

Jm(X,Z) ≥Jm(X,Z|U)
=pJm(X1,Z) + (1− p)Jm(X2,Z) (7)

which proves the concavity of Jm(X,Z) for fixed fZ . Similar
arguments on Z prove that Jm(X,Z) is also concave in fZ
for fixed fX .

B. Convexity of Jr in fY (·)
Here, we assume that the source and the channel are scalar,

i.e., m = k = 1, for simplicity, although our results can be
extended to higher matched dimensions, m = k,∀k ∈ N.
We show the convexity of Jr(X,Z, g) in the channel input
density fY (·) of Y = g(X). An important distinction to make
is that convexity in g(·) is not implied. A trivial example
to demonstrate non-convexity in g(·) is the scalar Gaussian
source and channel setting, where both Y =

√
PT
σ2
X
X and

Y = −
√

PT
σ2
X
X are optimal (when used in conjunction with

their respective optimal decoders). This example also leads
to the intuition that the cost functional may be “essentially”
convex (i.e., convex up to the sign of g(·)), although it is
clearly not convex in the strict sense. It turns out that this
intuition is correct: Jr(X,Z, g) is convex in fY (·).

Towards showing convexity, we first introduce the idea of
probabilistic (random) mappings, similar, in spirit, to the ran-
dom encoders used in the coding theorems [9]. We reformulate
the mapping problem by allowing random mappings, i.e., we
relax the mapping from a deterministic function to Y = g(X)
to a probabilistic transformation, expressed as fY |X(x, y).

Note that similar relaxation to stochastic settings have been
used in the literature, e.g. recently in [10]. We define this
“generalized” mapping problem as: minimize Jgen(X,Y, Z)
over the conditional density fY |X where the cost functional
Jgen is defined as

Jgen(X,Y, Z) , inf
h

E{(X − h(Y + Z))2}+ λE{Y 2}. (8)

We first need to show that this relaxation does not change the
solution space.

Lemma 2: Y ∼ fY (·) which minimizes (8) is a deter-
ministic function of the input Y = g(X), i.e., Jm(X,Z) =
inf
g
Jr(X,Z, g) = inf

fY |X
Jgen(X,Y, Z).

Proof: Let us first define an auxiliary function

G(X,Y, Z) , (X − h(Y + Z))2 + Y 2 (9)

Next, we observe that

inf
h

inf
fY |X

Jgen(X,Y, Z)

= inf
h

∫
fZ(z)

∫
fX(x) inf

fY |X

{∫
G(x, y, z)fY |X(x, y)dy

}
dxdz

(10)

The minimization in (10) can be done, for a fixed h(·), by
choosing the y that minimizes G(x, y, z) for each x. Hence,
for any fixed h(·), the minimizing fY |X is deterministic. Using
the optimal h(·) as the fixed h(·) in (10), we show that the
optimal Y ∼ fY (·) is a deterministic function: Y = g(X).

Next, we proceed to show that the generalized mapping
problem is convex in fY (·). To this aim, we show that Jgen
can be written in terms of a known metric in probability theory,
the Wasserstein metric [11] and use its functional properties.
The Wasserstein metric is a metric defined on the quadratic
Wasserstein space P2(R), defined for S,Q ∈ P2(R) as

W2(S,Q) = inf {||X − Y ||2 : X ∼ S, Y ∼ Q} (11)

where ||X−Y ||2 ,
√

E{(X − Y )2} and the infimum is over
the joint distribution of X and Y . The following properties of
this metric will be used to derive the subsequent results.

Lemma 3 ( [11]): W2(S,Q) satisfies the following proper-
ties:
1) The metric W2(S,Q) is lower semi-continuous in both S
and Q.
2) For a given S, W 2

2 (S,Q) is convex in Q.
Next, we present our main result in this section. In the

derivation of the subsequent results, we limit the space of
decoding functions to monotone increasing, without any loss
of generality (see e.g.. [8]).

Theorem 2: Jr is convex in fY (·) and hence the solution to
the mapping problem is unique in fY (·).

Proof: We will first express Jm(X,Y ) as a minimization
over fY (·). Let us define V = h(Y + Z) for a fixed h(·).
Then, using Lemma 2, Jm(X,Y ) can be re-written as

Jm(X,Y ) = inf
h

inf
fV |X

E{(X − V )2}+ inf
fY |X

λE{Y 2}

= inf
h

inf
fV

{
W 2

2 (fX , fV )
}

+ λ inf
fY

E{Y 2}. (12)
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The first term in the right hand side of (12) is convex in fV
since, W 2

2 (fX , fV ) is convex in fV (due to Lemma 3-property
2) when fX is fixed, and the pointwise minimizer of a convex
function is convex. Since Y and V are related in a one-to-
one manner through V = h(Y + Z) and h(·) ∈ S+, this
term is convex also in fY . Since E{Y 2} is linear in fY (·),
we conclude that Jm is the infimum of a convex functional of
fY (·), where the infimum is taken over fY (·), which implies
the solution is unique in fY (·). Given that the solution is
unique, we can express Jm as

Jm(X,Z) = inf
fY
Jr(X,Z, g) (13)

almost everywhere (a.e.) in X and Z, where Y =
g(X). Hence, the functional we are interested in is indeed
Jr(X,Z, g) which is convex fY (·).

A practically important consequence of Theorem 2 is stated
in the following corollary.

Corollary 1: Jr is convex in g(·) where g(·) ∈ G+.
Proof: There is one-to-one mapping between Y and the

encoder g(·) as FX(X) = FY (g(X)) where FX and FY
denote the cumulative distribution functions of X and Y
respectively. It follows from Theorem 2 that for any fY1 and
fY2 and 1 ≥ α ≥ 0

αJr(fY1) + (1− α)Jr(fY2) ≥ Jr(αfY1 + (1− α)fY2) (14)

Since Jr(fY ) is achieved by a unique g(·) ∈ G+, we have

αJr(fg1) + (1− α)Jr(fg2) ≥ Jr(αfg1 + (1− α)fg2) (15)

which shows the convexity of Jr in g(·), where g(·) ∈ G+.
Remark 1: The optimal mappings, i.e., the mappings that

achieve the infimum in (8) exist. To see this, we use the semi-
lower continuity property of the W2(S,Q) in both S and Q as
given in Lemma 3. The set of Y is compact since E{Y 2} ≤
PT , hence the infimum in the problem definition is achievable.

C. Optimality Conditions

The necessary conditions for optimality, in the general
setting of m, k ∈ N, were derived in [6]. Here, we present
them in the following theorem.

Theorem 3 ( [6]): Given source and noise densities, a coding
scheme (g(·),h(·)) is optimal only if

g(x)=
1
λ

∫
h′(g(x)+z)[x−h(g(x)+z)]fZ(z)dz, (16)

h(ŷ) =
∫

x fX(x) fZ [ŷ − g(x)] dx∫
fX(x) fZ [ŷ − g(x)] dx

, (17)

where varying λ provides solutions at different levels of the
power constraint PT . In fact, λ is the slope of the distortion-
power curve: λ = − dD

dPT
.

The necessary conditions in Theorem 3 are not sufficient in
general, as is demonstrated by the following corollary.

Corollary 2: For Gaussian source and channel, the necessary
conditions of Theorem 3 are satisfied by linear mappings
g(x) = Kex and h(y) = Kdy for some Ke ∈ Rm×k,Kd ∈
Rk×m for any m, k ∈ N.

Proof: Linear mappings satisfy (16), regardless of the
source and channel densities. Optimal decoder is linear in the
Gaussian source and channel setting, hence the linear encoder-
decoder pair satisfies both of the necessary conditions.
Although linear mappings satisfy the necessary conditions of
optimality for the Gaussian case, they are known to be highly
suboptimal when dimensions of source and channel do not
match, i.e., m 6= k, see e.g. [12].

IV. ON LINEARITY OF OPTIMAL MAPPINGS

In this section, we address the problem of “linearity” of
optimal encoding and decoding mappings, where we focus on
the scalar setting, m = k = 1.

A. Gaussian Source and Channel
We briefly revisit the special case in which both X and Z

are Gaussian, X ∼ N (0, σ2
X) and Z ∼ N (0, σ2

Z). It is well
known that the optimal mappings are linear, i.e., g(X) = keX
and h(Y ) = kdY where ke and kd are given by

ke =

√
PT
σ2
X

, kd =
1
ke

(
PT

PT + σ2
Z

)
. (18)

B. On Simultaneous Linearity of Optimal Mappings
Here, we show, in two steps that optimality requires that

either both mappings be linear or that they both be nonlinear.
Lemma 4: The optimal encoder is linear a.e. if the optimal

decoder is linear.
Proof: Let us plug h(y) = kdy for some kd ∈ R in (16).

Noting that h′(y) = kd a.e. in y, we have

λg(x) = kd

∫
(x− kdg(x)− kdz)fZ(z)dz (19)

a.e. in x. Evaluating the integral and noting that E{Z} = 0,
we have

λg(x) = kd(x− kdg(x)) (20)

a.e. and hence g(x) = kd
λ+k2

d
x , kex.

Lemma 5: The optimal decoder is linear a.e. if the optimal
encoder is linear.

Proof: Plugging g(x) = kex for some ke ∈ R in (16),
we obtain

λkex =
∫

(x− h(kex+ z))h′(kex+ z)fZ(z)dz (21)

a.e. in x. Since h(·) is a function R → R, Weierstrass
theorem [13] guarantees that we can uniformly approximate
h(·) arbitrarily closely by a polynomial

h(y) =
∞∑
r=0

αry
r (22)

a.e. in y. Plugging (22) in (21) and interchanging the summa-
tion and integration we obtain

− λkex+ x−
∞∑
i=0

iαi

∫
(kex+ z)i−1fZ(z)dz

=
∞∑
i=0

∞∑
j=0

iαiαj

∫
(kex+ z)i−1(kex+ z)jfZ(z)dz. (23)
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Note that the above equation must hold a.e. in x, hence the
coefficients of xr must be identical for all r. Opening up
the expressions (kex + z)i−1 and (kex + z)j via binomial
expansion, we have the following set of equations

∞∑
i=r+1

i

(
i− 1
r

)
αiE{Zi−1−r}

=
∞∑
i=0

∞∑
i,j=0

i−1∑
l=0

j−1∑
p=r−l+1

(
j

p

)(
i− 1
l

)
iαiαjE{Zi+j−1−p−l},

(24)

which must hold for all r ≥ 2. We note that every equation
introduces a new variable αr, so each new equation is linearly
independent of its predecessors. Next, we solve these equations
recursively, starting from r = 1. At each r, we have one
unknown (αr) which is related “linearly” to known constants.
Since the number of linearly independent equations is equal to
the number of unknowns for each r, there must exist a unique
solution. We know that αr = 0, for all r ≥ 2 is a solution to
(24), so it is the only solution.

Next, we summarize our main result pertaining to the
simultaneous linearity of optimal encoder and decoder.

Theorem 4: The optimal mappings are either both linear or
they are both nonlinear.

Proof: The proof follows from Lemma 4 and Lemma 5.

C. Conditions for Linearity of Optimal Mappings

In this section, we study conditions for linearity of optimal
encoder or decoder. Towards obtaining our main result, we
will use the following auxiliary lemma.

Lemma 6: The linear encoder and decoder in (18) satisfy the
first of the necessary conditions of optimality (16) regardless
of the source and channel densities.

Proof: The proof follows from substitution of (18) in (16).

The following theorem presents the necessary and sufficient
condition for linearity of optimal mappings.

Theorem 5: For a given power limit PT , noise Z with
variance σ2

Z and characteristic function FZ(ω), source X with
variance σ2

X and characteristic function FX(ω), mappings
g(X) = keX or h(Ŷ ) = kdŶ are optimal if and only if

FX(αω) = F γZ(ω), (25)

where γ = PT
σ2
Z

and α =
√

PT
σ2
X

.
Proof: Theorem 4 states that the optimal encoder is

linear if and only if the optimal decoder is linear. Hence, we
will only focus on the case where encoder and decoder are
simultaneously linear. The first necessary condition is satisfied
by Lemma 6, hence only the second necessary condition,
(17) remains to be verified. Plugging g(X) = keX and
h(Ŷ ) = kdŶ in (17), we have

kdŷ =
∫
x fX(x) fZ(ŷ − kex)dx∫
fX(x) fZ(ŷ − kex) dx

. (26)

Expanding (26), we obtain

kdŷ

∫
fX(x) fZ(ŷ − kex) dx =

∫
x fX(x) fZ (ŷ − kex) dx.

Taking the Fourier transform if both sides and via change of
variables u , ŷ − kex, we have∫ ∫

kd(u+ kex)fX(x)fZ(u) exp(−jω(u+ kex))dxdu

=
∫ ∫

xfX(x)fZ(u) exp(−jω(u+ kex))dxdu,

and rearranging the terms, we obtain(
1− kekd
kekd

)
FZ(ω)F ′X(keω) = FX(keω)F ′Z(ω). (27)

Noting that

γ =
kekd

1− kekd
=
PT
σ2
Z

, (28)

we have
F ′X(keω)
FX(keω)

= γ
F ′Z(ω)
FZ(ω)

, (29)

which implies

(logFX(keω))′ = (logF γZ(ω))′. (30)

The solution to this differential equation is

logFX(keω) = logF γZ(ω) + C, (31)

where C is constant. Noting that FX(0) = FZ(0) = 1, we
determine C = 0 and hence

FX(keω) = F γZ(ω). (32)

Since the solution is essentially unique, due to Corollary 1,
(32) is not only necessary but also sufficient.

D. Implications of the Matching Conditions

In this section, we explore some special cases obtained by
varying CNSR (i.e., γ).

Theorem 6: Given a source and noise of equal variance
identical to the power limit (σ2

X = σ2
Z = PT ), the optimal

mappings are linear if and only if fX(x) = fZ(x), a.e. and in
which case, the optimal encoder is g(X) = X and the optimal
decoder is h(Ŷ ) = 1

2 Ŷ .
Proof: It is straightforward to see from (25) that, at

γ = 1, the characteristic functions must be identical. Since
the characteristic function uniquely determines the distribution
[14], fX(x) = fZ(x), a.e.

Remark 2: Theorem 6 holds irrespective of the source
(or channel) density, which demonstrates the generality of
linearity of the optimal mappings beyond the well known
example of scalar Gaussian source and channel.
Next, we investigate the asymptotic behavior of optimal en-
coding and decoding functions at low and high CSNR. The
results of our asymptotic analysis are of practical importance
since they justify, under certain conditions, the use of linear
mappings without recourse to complexity arguments.
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Fig. 2. This figure shows the optimal encoder at various CSNR values when X ∼ N (0, 1) and Z is distributed uniformly on the interval [−1, 1].

Theorem 7: In the limit γ → 0, the optimal encoding and
decoding functions are asymptotically linear if the channel is
Gaussian, regardless of the source. Similarly, as γ → ∞, the
optimal mappings are asymptotically linear if the source is
Gaussian, regardless of the channel.

Proof: The proof follows from applying the central limit
theorem (CLT) [14] to the matching condition (25). CLT states
that as γ → ∞, for any finite variance noise Z, the charac-
teristic function of the matching source FX(ω) = F γZ(ω/ke)
converges to the Gaussian characteristic function. Hence, at
asymptotically high CSNR, any noise distribution is matched
by the Gaussian source. Similarly, as γ → 0 and for any
FX(ω), F

1
γ

X (keω) converges to the Gaussian characteristic
function, hence the optimal mappings are asymptotically lin-
ear.
Let us consider a numerical example that illustrates the find-
ings in Theorem 7. Consider a setting where X is Gaussian
X ∼ N (0, 1) and Z is uniform over [−1, 1]. We change γ
(CSNR) by varying allowed power PT , and observe how the
optimal mappings2 behave for different γ. Figure 2 demon-
strates that the optimal encoder mapping converges to linear
as CSNR increases, as anticipated by Theorem 7.

Let us next consider a setup with given source and noise
variables and a given power which may be scaled to vary the
CSNR, γ. Can the optimal mappings be linear at multiple val-
ues of γ (i.e., at different power)? This question is motivated
by the practical setting where γ is not known in advance or
may vary. Below, we show that the Gaussian source-Gaussian
noise is the only pair for which the optimal mappings are
linear at multiple CSNRs.

Theorem 8: The optimal encoding mapping is linear at two
different power levels P1 and P2 if and only if source and
noise are both Gaussian.

Proof: The proof follows from the proof of Theorem 4
in [7] with straightforward adaptation to this setting.

E. On the Existence of Matching Source and Channel

Given a valid characteristic function FZ(ω), and for some
γ ∈ R+, the function F γZ(ω) may or may not be a valid
characteristic function, which determines the existence of a

2We numerically calculated the mappings using the algorithm in [6].

matching source. For example, matching is guaranteed for
integer γ and it is also guaranteed for infinitely divisible Z.
Such matching conditions were studied detail in [7], to which
we refer for brevity.

V. CONCLUSION

In this paper, we studied the functional properties of the
zero-delay source channel coding problem and conditions for
linearly of optimal mappings. We showed the cost functional
is concave in the source and noise densities and convex in the
density of the input to the channel. We then derived the neces-
sary and sufficient condition for linearity of optimal mappings,
given noise and source distributions, and a power constraint.
The matching condition has several implications, one of which
is on the asymptotic linearity of optimal mappings.
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