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Abstract— This paper extends the recent analysis of optimal

zero-delay jamming problem, specialized to scalar sources over

scalar additive noise channels, to vector spaces. Particularly,

we find the saddle point solution to the jamming problem in

“vector spaces”, within its most general, non-Gaussian setting;

the problem has been open even for the important special case

of Gaussian source and channel. Similar to the scalar setting,

linearity conditions for encoding and decoding mappings play

a pivotal role in jamming, in the sense that the optimal

jamming strategy is to effectively force both transmitter and

receiver to default to linear mappings, i.e., the jammer ensures,

whenever possible, that the transmitter and receiver cannot

benefit from non-linear strategies. The optimal strategy is then

“randomized” linear encoding for transmitter and generating

independent noise for the jamming. Moreover, the optimal

jammer allocates power according to the well-known “water-

filling” over the eigenvalues of the channel noise, and the

density of the jamming noise that render the optimal encoding

and decoding mappings linear, is determined by the power

constraints and the source density.

I. INTRODUCTION

We consider the problem of optimal jamming, by a
power constrained agent, over additive noise channel, in
vector spaces. This problem was solved in [1], [2] for
scalar Gaussian source and scalar channel. The saddle point
solution to this zero-sum game, derived for Gaussian source-
channel pair, involves randomized linear mapping for the
transmitter and generating independent, Gaussian noise as
the jammer output and a linear decoder. We recently extended
this work to non-Gaussian scalar sources and scalar channels
[3], and showed that the linearity of encoding and decoding
mappings is essential while Gaussianity of the jammer is
merely to satisfy the linearity conditions for the Gaussian
source and channel. In this paper, by leveraging the recent
results on conditions for linearity of optimal estimation and
communication mappings, [4], [5], we extend the “scalar”
analysis to vector sources and channels. The contributions
of this paper are:

• We derive the necessary and sufficient condition (called
the “vector matching condition”) on the jamming noise
density to ensure linearity of the optimal transmitter and
the receiver, within the vector setting. The condition is
much more involved than the scalar one, due to de-
pendencies among the source and channel components.
The jammer aims to render both encoder and decoder
linear mappings, while allocates jamming power over
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Fig. 1. The jamming problem.

the channel eigenvalues by the well known waterfilling
solution.

• We discover an analogy between zero-delay vector
jamming and vector rate-distortion and vector channel
capacity, in terms of power/rate/jamming power alloca-
tion as waterfilling.

This paper is organized as follows. In Section II, we
present the problem definition and preliminaries. In Section
III, we review the prior results related to jamming, estimation
and communication problems. In Section IV, we derive the
linearity result and then the main result on optimal jamming.
Finally, we discuss the future directions in Section V.

II. PROBLEM DEFINITION

Let R and R+ denote the respective sets of real numbers
and positive real numbers. Let E(·), P(·) and ∗ denote the
expectation, probability and convolution operators, respec-
tively. Let Bern(p) denote the Bernoulli random variable,
taking values in {−1, 1} with probability {p, 1 − p}. The
Gaussian density with mean µ and variance σ2 is denoted as
N (µ, σ2). Let f

�
(x) = df(x)

dx denote the first order derivative
of the function f(·). All logarithms in the paper are natural
logarithms and may in general be complex, and the integrals
are, in general, Lebesgue integrals. Let us define the set S
as the set of Borel measurable Rm → Rk mappings.

In general, lowercase letters (e.g., c) denote scalars, bold-
face lowercase (e.g., x) vectors, uppercase (e.g., C,X)
matrices and random variables. I denotes the identity ma-
trix. RX , and RXZ denote the auto-covariance of X and
cross covariance of X and Z respectively. AT denotes the
transpose of matrix A. (x)+ denotes the function max(0, x).
∇ denotes the gradient and ∇x denotes the partial gradient
with respect to x.

Throughout this paper, we assume that the source is an m-
dimensional vector with zero mean and covariance RX . The
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channel noise is additive k-dimensional Gaussian, of zero
mean and covariance RN . Covariance matrices RX and RN

allow the diagonalization

RX = QXΛXQT
X , and RN = QNΛNQT

N (1)

where QXQT
X = QNQT

N = I and ΛX and ΛN are diagonal
matrices, having ordered eigenvalues as entries, i.e., ΛX =
diag{λX} and ΛN = diag{λN} where λX and λX are
ordered (descending) eigenvalues and QT

X and QT
N are the

KLT matrices of the source and the channel, respectively.
We will make use of the following auxiliary lemma, see eg.
[6] for a proof.

Lemma 1. Let λX and λN be two ordered vectors in Rm
+

with descending entries (λX(1) ≥ λX(2), . . . , λX(m)) and
Π denote any permutation of the indices {1, 2, . . . ,m}, then

min
Π

m�

i=1

λX(Π(i))λN (i) =
m�

i=1

λX(i)λN (m− i) (2)

and

max
Π

m�

i=1

λX((i))λN (Π(i)) =
m�

i=1

λX(i)λN (i) (3)

We consider the general communication system whose
block diagram is shown in Figure 1. Source X ∈ Rm is
mapped into Y ∈ Rk by function gT (·) ∈ S and transmitted
over an additive noise channel. The adversary receives the
same signal X and generates the jamming signal Z through
function gA(·) ∈ S which is added to the channel output,
and aims to compromise the transmission of the source. The
received signal U = Y +Z +N is mapped by the decoder
to an estimate X̂ via function h(·) ∈ S . The zero mean
noise N is assumed to be independent of the source X .
The source density is denoted fX(·) and the noise density
is fN (·) with characteristic functions FX(ω) and FN (ω),
respectively.

The overall cost, measured as the mean squared error
(MSE) between source X and its estimate at the decoder
X̂ , is a function of the transmitter, jammer and the receiver
mappings:

J(gT (·), gA(·),h(·)) = E{||X − X̂||2}. (4)

Transmitter gT (·) : Rm → Rk and receiver h(·) : Rm →
Rk seek to minimize this cost while the adversary (jammer)
seeks to maximize it by appropriate choice of gA(·) : Rm →
Rk. Power constraints must be satisfied by the transmitter

E{||gT (X)||2} ≤ PT , (5)

and jammer
E{||gA(X)||2} ≤ PA. (6)

The conflict of interest underlying this problem implies
that the optimal transmitter-receiver-adversarial policy is the
saddle point solution (g∗T (·), g∗A(·), h∗(·)) satisfying the set
of inequalities

J(g∗
T , gA,h

∗) ≤ J(g∗
T , g

∗
A,h

∗) ≤ J(gT , g
∗
A,h). (7)
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Fig. 2. The estimation problem.

III. PRIOR WORK

The jamming problem, in the form defined here, was stud-
ied in [1], [2], for ”scalar“ Gaussian sources and channels.
The problem of interest is intrinsically connected to the
fundamental problems of estimation theory and the theory
of zero-delay source-channel coding. In particular, conditions
for linearity of optimal estimation [4] and optimal mappings
in communications [5] are relevant to our problem here. We
start with the estimation problem.

A. Estimation Problem

Consider the setting in Figure 2. The estimator receives U ,
the noisy version of the source X and generates the estimate
X̂ by the function h : R → R such that MSE, E{(X−X̂)2}
is minimized. It is well known that, when a Gaussian source
is contaminated with Gaussian noise, a linear estimator
minimizes MSE. Recent work [4] analyzed, more generally,
the conditions for linearity of optimal estimators. Here, we
present the basic result pertaining to the jamming problem
considered here. Specifically, we present the necessary and
sufficient condition for source and channel distributions such
that the linear estimator h(U) = κ

κ+1U is optimal where
κ = σ2

X

σ2
Z

is the SNR.

Theorem 1 ( [4]). Given SNR level κ, and noise Z with
characteristic function FZ(ω), there exists a source X for
which the optimal estimator is linear if and only if

FX(ω) = Fκ
Z(ω). (8)

Given a valid characteristic function FZ(ω), and for some
κ ∈ R+, the function Fκ

Z(ω) may or may not be a valid
characteristic function, which determines the existence of a
matching source. For example, matching is guaranteed for
integer κ and it is also guaranteed for infinitely divisible Z.
More comprehensive discussion of the conditions on κ and
FZ(ω) for Fκ

Z(ω) to be a valid characteristic function can
be found in [4].

Extension of the conditions to the vector case is nontrivial
due to the dependencies across components of the source and
noise. Formally, we consider the problem of estimating the
vector source X ∈ Rm given the observation Y = X +Z,
where X and Z ∈ Rm are independent, as shown in Figure
2. Let Q be the eigenmatrix of RXR−1

Z , and U = Q−1 and
let eigenvalues λ1, ..., λm be the elements of the diagonal
matrix Λ, i.e., the following holds:

RXR−1
Z = U−1ΛU (9)
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We are looking for the conditions on FX(ω) and FZ(ω)
such that h(Y ) = KY with K = RX(RX + RZ)−1

minimizes the estimation error E{||X − h(Y )||2}.
By following a similar approach to the scalar case, the

necessary and sufficient condition for linearity was derived
in [4], reproduced below:

Theorem 2 ( [4]). Let the characteristic functions of the
transformed source and noise (UX and UZ) be FUX(ω)
and FUZ(ω). The necessary and sufficient condition for
linearity of optimal estimation is:

∂ logFUX(ω)

∂ωi
= λi

∂ logFUZ(ω)

∂ωi
, 1 ≤ i ≤ m (10)

B. Communication Problem
In [5], a communication scenario whose block diagram

is shown in Figure 3 was studied. In this setting, a scalar
source X ∈ R is mapped into Y ∈ R by function g ∈ S ,
and transmitted over an additive noise channel. The channel
output U = Y + Z is mapped by the decoder to the
estimate X̂ via function h ∈ S . The zero mean noise Z
is assumed to be independent of the source X . The source
density is denoted fX(·) and the noise density is fZ(·) with
characteristic functions FX(ω) and FZ(ω), respectively.

The objective is to minimize, over the choice of encoder
g and decoder h, the distortion

D = E{(X − X̂)2}, (11)

subject to the average transmission power constraint,

E{g2(X)} ≤ PT . (12)

The necessary and sufficient condition for linearity for
both mappings is given by the following theorem.

Theorem 3 ( [5]). For a given power constraint PT , noise Z
with variance σ2

Z and characteristic function FZ(ω), source
X with variance σ2

X and characteristic function FX(ω), the
optimal encoder and decoder mappings are linear if and only
if

FX(αω) = Fκ
Z(ω) (13)

where κ = PT

σ2
Z

and α =
�

PT

σ2
X

.

Here, we first extend this result to vector spaces, in Section
III-b. Towards, deriving this extension, we need the optimal
encoding and decoding transforms for a general communi-
cation problem with source and channel noise covariances
RX and RN and total encoding power limit PT , here we

reproduce the classical result due to [7] (see also [8], [9] for
alternative derivations of this result.).

Theorem 4 ( [7]–[9]). The encoding transform that mini-
mizes the MSE distortion subject to the power constraint PT

is
C = QNΣQT

X (14)

where Σ is diagonal power allocation matrix. Moreover the
total distortion is

D =

�
w�
i=1

(
�
λX(i)λN (m− i)

�2

PT +
w�
i=1

λN (m− i)
+

m�

w+1

λX(i) (15)

where w is the number of active channels determined by the
power PT .

Remark 1. Distortion expression (15) has an interesting
interpretation of power allocation as “reverse water-filling”
over the source eigenvalues. As we will show in the next
section, the optimal jammer also performs power allocation
as water-filling over the channel eigenvalues.

Remark 2. Note that the ordering of the eigenvalues are
so that the largest source eigenvalue is multiplied with the
smallest of the and so on, which physically means that the
encoder uses the best channel for the smallest variance
source component, and so on. This is simply due to Lemma
1.

Assumption 1: In this paper, we assume the source and the
channel have matched dimensions, i.e., m = k (which means
bandwidth compression or expansion). This assumption is
essential in the sense that when m �= k the jammer cannot
ensure linearity of g(X) and h(Y ). A well known example
is when m = 2 and k = 1, the optimal mappings are highly
nonlinear, even in the case of Gaussian source and channel
(see eg. [5], [10]and there references there in for details).

Assumption 2: Throughout this paper, we assume that
PT is high enough, so that all the channels are active, (each
channel is allocated strictly positive power), i.e., w = m,
hence (15) can be rewritten as

J(λX ,λN ) =

�
m�
i=1

(
�

λX(i)λN (m− i)

�2

PT +
m�
i=1

λN (i)
(16)

This assumption is not necessary but significantly simplifies
the results.

C. Gaussian Scalar Jamming Problem
The problem of transmitting independent and identically

distributed Gaussian random variables over a Gaussian chan-
nel in the presence of an additive jammer was considered in
[1], [2]. In [2] a game theoretic approach was developed and
it was shown that the problem admits a mixed saddle point
solution where the optimal transmitter and receiver employ
a “randomized” strategy. The randomization information can
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be sent over a side channel between transmitter and receiver
or it could be viewed as the information generated by the
third party and observed by both transmitter and receiver
1. Surprisingly, the optimal jamming strategy ignores the
input to the jammer and merely generates “Gaussian” noise,
independent of the source.

Theorem 5 ( [1], [2]). The optimal encoding function for
the transmitter is randomized linear mapping:

Y (i) = γ(i)αTX(i), (17)

where γ(i) is i.i.d. Bernoulli ( 12 ) over the alphabet {−1, 1}

γ(i) ∼ Bern(
1

2
) (18)

and αT =
�

PT

σ2
X

. The optimal jammer generates i.i.d.
Gaussian output Z(i)

Z(i) ∼ N (0, PA) (19)

where Z(i) is independent of the source X(i).

The proof of Theorem 5 relies on the well known fact
that for a Gaussian source over a Gaussian channel, zero-
delay linear mappings achieve the performance of the asymp-
totically high delay optimal source-channel communication
system [11]. This fact is unique to the Gaussian source-
channel pair, hence it might be tempting to conclude that
the saddle point solution in Theorem 5 can only be obtained
in the “all Gaussian” setting. Perhaps surprisingly, in [3], we
showed that there are infinitely many source-noise pairs that
yield a saddle point solution similar to Theorem 5. We also
proved that the linearity property of the optimal transmitter
and receiver at the saddle point solution still holds, while the
Gaussianity of the jammer output in the early special case
was merely a means to satisfy this linearity condition, and
does not hold in general. Here, we reproduce the main result
in [3] for the scalar, non-Gaussian jamming problem.

Theorem 6 ( [3]). For the jamming problem, the optimal
encoding function for the transmitter is randomized linear
mapping:

Y (i) = γ(i)αTX(i), (20)

where γ(i) is i.i.d. Bernoulli ( 12 ) over the alphabet {−1, 1}

γ(i) ∼ Bern(
1

2
) (21)

and αT =
�

PT

σ2
X

. The optimal jamming function is to
generate i.i.d. output Z(i) with characteristic function

FZ(ω) =
F β
X(αTω)

FN (ω)
(22)

where Z(i) is independent of the adversarial input X(i) and
β = PA+σ2

N
PT

.

1In practice, randomization can be achieved by (pseudo)random number
generators at the transmitter and receiver using the same seed.

IV. MAIN RESULTS

A. An Upper Bound on Distortion Based on Linear Map-
pings

In this section, we present a new lemma that is used to
upper bound the distortion of any zero-delay communication
system by that of the fixed, best linear encoder and decoder.
A scalar version of this lemma appeared in [3], here we
extend this result to vector spaces.

Lemma 2. Consider the problem setting in Figure 1. For any
given jammer Z, the distortion achievable by the transmitter-
receiver, D, is upper bounded by the distortion achieved by
linear encoder and decoder

Ju =

�
m�
i=1

�
λX(i)max(θ, λN (m− i))

�2

PT +
m�
i=1

max(θ, λN (i))
(23)

where θ satisfies the water-filling condition:
m�

i=1

(θ − λN (i))+ = PA. (24)

Note that this upper bound is determined by only second
order statistics, regardless of the normalized densities.

Proof: The proof is based on the fact that the transmitter
and receiver can always use the linear mappings that satisfy
the power constraints. The jammer will try to make all
effective noise eigenvalues identical since

min
Π

J(λX(Π),λN ) (25)

is maximized when λN is uniform (see eg. [12] for a proof
based on majorization). The effective channel eigenvalues
are upper bounded by the vector σ = λN +λZ where λZ is
the ascending ordered eigenvalues of the jammer noise Z. To
achieve this upper bound, the jammer sets RZ = QNΛZQT

N ,
i.e., the eigenvectors of the noise and the jammer must be
identical. If PA is not large enough, then the solution of
is known to be the “waterfilling solution”; intuitively the
jammer aims to make entries of σ as close to uniform as
possible.

Remark 3. Note that the optimal jammer performs water-
filling over the channel eigenvalues while the encoder al-
locates power according to reverse water-filling over the
source eigenvalues. This observation parallels the infor-
mation theoretical (asymptotically high delay) water-filling
duality, where the rate distortion optimal vector encoding
scheme allocates total rate by reverse water-filling over
source eigenvalues and vector channel capacity achieving
scheme allocates power over channel eigenvalues by water-
filling.

Remark 4. Lemma 2 is the key result that connects the
recent results on “linearity” of optimal estimation and
communication mappings to the jamming problem. Lemma
2 implies that the optimal strategy for a jammer which can
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only control the density of the additive noise channel, is to
force the transmitter and receiver to use linear mappings.

B. Conditions for Linearity of Communication Mappings in
Vector Spaces

For source X ∈ Rm and channel Z ∈ Rm, we derive the
necessary and sufficient condition for simultaneous linearity
of optimal encoder and decoder. In [5], it was shown that
the communication problem is convex in the density of the
channel input for the scalar setting. It is easy to extend this
convexity result to matched dimensions, see Assumption 1.
Moreover, by simply extending the related scalar result in
[3], it is straightforward to show that the optimal decoder
is linear if and only if the optimal decoder is linear. Hence,
we will investigate the conditions for linearity of optimal
decoder given that the encoder is linear. Towards deriving our
results, we will make use of the following auxiliary lemma
from matrix analysis.

Lemma 3. Given a function f : Rn → R, matrix A ∈ Rn×m

and vector x ∈ Rm

∇xf(Ax) = AT∇f(Ax) (26)

See Appendix II. Next, we present the necessary and
sufficient condition for linearity of optimal decoder for a
given, optimal linear decoder.

Theorem 7. Let the characteristic functions of the trans-
formed source and noise (ΣQT

XX and QT
ZZ) be FΣQT

XX(ω)
and FQT

ZZ(ω). The necessary and sufficient condition for
linearity of optimal estimation is:

∂ logFΣQT
XX(ω)

∂ωi
= Si

∂ logFQT
ZZ(ω)

∂ωi
, 1 ≤ i ≤ m (27)

where S = ΣΛXΣΛ−1
Z .

C. Main Result
Our main result concerns the optimal strategy for the

transmitter, the adversary and the receiver in Figure 1 for
the transmission index i.

Theorem 8. For the jamming problem, the optimal encoding
function for the transmitter is:

Y (i) = γ(i)CX(i), (28)

where γ(i) is i.i.d. Bernoulli ( 12 ) over the alphabet {−1, 1}

γ(i) ∼ Bern(
1

2
) (29)

and C = QNΣQT
X . The optimal jamming function is

to generate i.i.d. output Z(i), independent of X(i), that
satisfies:

∂ logFΣQT
XX(ω)

∂ωi
= Si

∂ logFQT
N (N+Z)(ω)

∂ωi
, 1 ≤ i ≤ m

(30)
for S = ΣΛXΣΛ−1

Z and

RZ = QNλZQ
T
N (31)

where
λZ(i) = (θ − λN (i))+ (32)

and θ satisfies the water-filling condition:
m�

i=1

(θ − λN (i))+ = PA (33)

The optimal receiver is

h(U(i)) = RXCT (CRXCT +RN +RZ)
−1U(i), (34)

and total cost is

J =

�
m�
i=1

�
λX(i)max(θ, λN (m− i))

�2

PT +
m�
i=1

max(θ, λN (i))
(35)

Moreover, this saddle point solution is (almost surely)
unique.

Proof: The proof follows from verification of the saddle
point inequalities given in (7), following the approach in [13],
and is merely a simple extension of the scalar result in [3].
The essential idea of the proof is that the jammer renders the
channel noise to match the source in a way that the optimal
encoding and decoding mappings are linear. The condition
for such matching is given in Theorem 7. Moreover, RZ

shares the same eigenvectors as RN as explained in the proof
of Lemma 2.

V. DISCUSSION

In this paper, we studied the vector jamming problem.
Similar to scalar setting, linearity conditions for encoding
and decoding mappings play the key role in jamming, in the
sense that the optimal jamming strategy is to effectively force
both transmitter and receiver to default to linear mappings.
Hence, the optimal strategy is “randomized” linear encoding
for transmitter and generating independent noise for the
jamming. The eigenvalues of the optimal jamming noise
are allocated according to water-filling over the eigenval-
ues of the channel noise, and the density of the jamming
noise is matched to source and the channel to render the
mappings linear. We derived the matching condition to be
satisfied by the jammer and also the second order statistics
of the jamming noise. The power allocation solutions in the
zero-delay problems ( water-filling for jammer and reverse
water-filling for the transmitter) nicely parallels the resource
allocation strategies in asymptotically high delay (Shannon
type) problems, such as rate allocation in rate-distortion (re-
verse water-filling) and power allocation in channel capacity
(water-filling).

Throughout this paper, we assumed that a matching jam-
ming noise, that forces the transmitter and receiver to use
linear mappings, can always be generated by the jammer.
The case for which this source-channel-jammer matching is
not possible was analyzed for scalar sources and channels in
our recent work [3]. Intuitively, the jammer approximates the
matching solution in some polynomials which are orthogonal
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under the measure of the channel output. The analysis for
vector settings can be carried out similarly, and is omitted
since it is orthogonal to the focus of the current paper.

APPENDIX I
DERIVATION OF THE MATCHING CONDITION

Let us rewrite the MSE optimal decoder, h(y) = E{X|y}
using Bayes’ rule and independence of X and Z:

h(y) =

�
xfX(x)fZ(y − Cx)dx�
fX(x)fZ(y − Cx)dx

(36)

Plugging h(y) = Ky in (36) we obtain,

Ky

�
fX(x)fZ(y − Cx)dx =

�
xfX(x)fZ(y − Cx)dx

(37)
Taking the Fourier transform of both sides

jK∇ω [FX(Cω)FZ(ω)] = jC−1[∇ωFX(Cω)]FZ(ω)
(38)

and rearranging terms, we get
�
C−1 −K

� 1

FX(Cω)
∇FX(Cω) = K

1

FZ(ω)
∇FZ(ω)

(39)
Using ∇ logFX(Cω) = 1

FX(Cω)∇FX(Cω),

∇ logFX(Cω) = (C−1 −K)−1K∇ logFZ(ω) (40)

Note that (see eg. [14])

K = RXCT (CRXCT +RZ)
−1 (41)

Let use define β � (C−1 −K)−1K then,

β = (C−1−RXCT (CRXCT +RZ)
−1)−1

×RXCT (CRXCT +RZ)
−1 (42)

It is easy to see that

β−1 = RZ(CRXCT )−1 (43)

and hence

β = (CRXCT )R−1
Z (44)

Plugging (14) in (45), we have

β = QZ(ΣΛXΣΛ−1
Z )QT

Z (45)

and hence

∇ logFX(Cω) = QZ(ΣΛXΣΛ−1
Z )QT

Z∇ logFZ(ω) (46)

defining S � (ΣΛXΣΛ−1
Z ), we have

QT
Z∇ω logFX(Cω) = SQT

Z∇ logFZ(ω) (47)

Let us define ω̃ � QT
Zω, hence ω = QZω̃. Plugging this

in (47), we have

QT
Z∇QZω̃ logFX(CQZω̃) = SQT

Z∇QZω̃ logFZ(QZω̃)
(48)

Using Lemma 3, we can rewrite (48) as

∇ω̃ logFX(CTQZω̃) = S∇ω̃ logFZ(QZω̃) (49)

noting that CTQZ = QXΣ and the characteristic functions
of the source and noise after transformation can be writ-
ten in terms of the known characteristic functions FX(ω)
and FZ(ω), specifically FΣQT

XX(ω) = FX(ΣQT
Xω) and

FQT
ZZ(ω) = FZ(QZω), we have

∇ω̃ logFΣQT
XX(ω̃) = S∇ω̃ logFQT

ZZ(ω̃) (50)

Using the fact that S is diagonal, we convert (50) to the set
of m scalar differential equations of (30).

Converse can be shown by retracing the steps in the
derivation of the necessity. Note that none of these steps,
(36)-(47), introduce any loss of generality, hence retracing
back from (47) to (36), we show that if (47) is satisfied, the
optimal decoder is linear given the encoder is linear.

APPENDIX II
PROOF OF LEMMA 3

By the chain rule we have,

∂f(Ax)

∂xi
=

n�

k=1

∂f(Ax)

∂[Ax]k

∂[Ax]k
∂[x]i

(51)

=
n�

k=1

∂f(Ax)

∂[Ax]k

∂([A]k
Tx)

∂[x]i
(52)

=
n�

k=1

∂f(Ax)

∂[Ax]k
[A]ki (53)

=
n�

k=1

∂kf(Ax)[A]ki (54)

= [A]i
T∇f(Ax) (55)

It follows from (55) that ∇xf(Ax) = AT∇f(Ax).
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