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Abstract. This paper presents new results on the game theoretical anal-
ysis of optimal communications strategies over a sensor network model.
Our model involves one single Gaussian source observed by many sen-
sors, subject to additive independent Gaussian observation noise. Sensors
communicate with the receiver over an additive Gaussian multiple access
channel. The aim of the receiver is to reconstruct the underlying source
with minimum mean squared error. The scenario of interest here is one
where some of the sensors act as adversary (jammer): they aim to maxi-
mize distortion. While our recent prior work solved the case where either
all or none of the sensors coordinate (use randomized strategies), the
focus of this work is the setting where only a subset of the transmitter
and/or jammer sensors can coordinate. We show that the solution cru-
cially depends on the ratio of the number of transmitter sensors that can
coordinate to the ones that cannot. If this ratio is larger than a fixed
threshold determined by the network settings (transmit and jamming
power, channel noise and sensor observation noise), then the problem is
a zero-sum game and admits a saddle point solution where transmitters
with coordination capabilities use randomized linear encoding while the
rest of the transmitter sensors is not used at all. Adversarial sensors that
can coordinate generate identical Gaussian noise while other adversaries
generate independent Gaussian noise. Otherwise (if that ratio is smaller
than the threshold), the problem becomes a Stackelberg game where the
leader (all transmitter sensors) uses fixed (non-randomized) linear encod-
ing while the follower (all adversarial sensors) uses fixed linear encoding
with the opposite sign.

Keywords: Game theory, sensor networks, source-channel coding,
coordination.

1 Introduction

Communications over sensors networks is an active research area offering a rich
set of problems of theoretical and practical significance, see e.g., [8] and the
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references therein. Game theoretic considerations, i.e., the presence of adversary
and its impact on the design of optimal communication strategies have been
studied for a long time [9,10]. In this paper, we extend our prior work on the game
theoretic analysis of Gaussian sensor networks, on a particular model introduced
in [7], by utilizing the results on the game theoretic analysis of the Gaussian test
channel in [3–6].

In this paper, we consider the sensor network model illustrated in Figure 1 and
explained in detail in Section 2. The first M sensors (i.e., the transmitters) and
the receiver constitute Player 1 (minimizer) and the remaining K sensors (i.e.,
the adversaries) constitute Player 2 (maximizer). This zero-sum game does not
admit a saddle-point in pure strategies (fixed encoding functions), but admits
one in mixed strategies (randomized functions).

Our prior work considered two extremal settings [2], depending on the “co-
ordination” capabilities of the sensors. Coordination here refers to the ability of
using randomized encoders, i.e., all transmitter sensors and the receiver; and also
the adversaries among themselves agree on some (pseudo)random sequence, de-
noted as {γ} (for transmitters and the receiver) and {θ} ( for adversaries) in the
paper. The main message of our prior work is that “coordination” plays a pivotal
role in the analysis and the implementation of optimal strategies for both the
transmitter and adversarial sensors. Depending on the coordination capabilities
of the the transmitters and the adversaries, we considered two extreme settings.
In the first setting, we considered the more general case of mixed strategies and
present the saddle-point solution in Theorem 1. In the second setting, encoding
functions of transmitters are limited to the fixed mappings. This setting can be
viewed as a Stackelberg game where Player 1 is the leader, restricted to pure
strategies, and Player 2 is the follower, who observes Player 1’s choice of pure
strategies and plays accordingly.

In this paper, we consider a more practical setting where only a given subset of
the transmitters and also the adversarial sensors can coordinate. Our main result
is: if the number of transmitter sensors that can coordinate is large enough com-
pared to ones that cannot, then the problem becomes a zero-sum game with a
saddle point, where the coordination capable transmitters use randomized linear
strategy and incapable transmitters are not used at all. Discarding these trans-
mitter sensors is rather surprising but the gain from coordination compansates
for this loss. Coordination is also important for the adversarial sensors. When
transmitters coordinate, adversaries must also coordinate to generate identical
realizations of Gaussian jamming noise. In contrast with transmitters, the ad-
versarial sensors which cannot coordinate is of use: they generate independent
copies of the identically distributed Gaussian jamming noise. Otherwise, i.e.,
the number of coordinating transmitters are not large enough, transmitters use
deterministic (pure strategies) linear encoding, i.e., gT (X) = αTX and optimal
adversarial strategy is also uncoded communications in the opposite direction of
the transmitters, i.e., gA(X) = αAX for some αT , αA ∈ R

+. For both settings,
uncoded communication is optimal and separate source and channel coding is
strictly suboptimal.
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This paper is organized as follows. In Section 2, we present the problem defini-
tion. We review prior work, particularly [2] in Section 3. In Section 4, we present
our main result and finally we provide conclusions in Section 5.

2 Problem Definition

In general, lowercase letters (e.g., x) denote scalars, boldface lowercase (e.g.,
x) vectors, uppercase (e.g., U,X) matrices and random variables, and boldface
uppercase (e.g., X) random vectors. E(·), P(·) and R denote the expectation and
probability operators, and the set of real numbers respectively. Bern(p) denotes
the Bernoulli random variable, taking values 1 with probability p and −1 with
1−p. Gaussian distribution with mean µ and covariance matrix R is denoted as
N (µ, R).

The sensor network model is illustrated in Figure 1. The underlying source
{S(i)} is a sequence of i.i.d. real valued Gaussian random variables with zero
mean and variance σ2

S . Sensor m ∈ [1 : M +K] observes a sequence {Um(i)}
defined as

Um(i) = S(i) +Wm(i), (1)

where {Wm(i)} is a sequence of i.i.d. Gaussian random variables with zero mean
and variance σ2

Wm
, independent of {S(i)}. Sensor m ∈ [1 : M +K] can apply

arbitrary Borel measurable function gNm : RN → R to the observation sequence
of length N , Um so as to generate sequence of channel inputs Xm(i) = gNm(Um)
under power constraint:

lim
N→∞

1

N

N∑

i=1

E{X2
m(i)} ≤ Pm (2)

The channel output is then given as

Y (i) = Z(i) +

M+K∑

j=1

Xj(i) (3)

where {Z(i)} is a sequence of i.i.d. Gaussian random variables of zero mean
and variance σ2

Z , independent of {S(i)} and {Wm(i)}. The receiver applies a
Borel measurable function hN : RN → R to the received sequence {Y (i)} to
minimize the cost, which is measured as mean squared error (MSE) between the
underlying source S and the estimate at the receiver Ŝ as

J(gNm(·), hN (·)) = lim
N→∞

1

N

N∑

i=1

E{(S(i)− Ŝ(i))2} (4)

for m = 1, 2, . . . ,M +K.
The transmitters gNm(·) for m ∈ [1 :M ] and the receiver hN (·) seek to minimize

the cost (4) while the adversaries aim to maximize (4) by properly choosing gNk (·)
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for k ∈ [M+1:M+K]. We focus on the symmetric sensor and symmetric source
where Pm = PT and σ2

Wm = σ2
WT , ∀m ∈ [1 :M ] and σ2

Wk
= σ2

WT
and Pk = PA,

∀k ∈ [M + 1:M+K].
A transmitter-receiver-adversarial policy (gN∗

m , gN∗
k , hN∗) constitutes a saddle-

point solution if it satisfies the pair of inequalities

J(gN∗
m , gNk , hN ) ≤ J(gN∗

m , gN∗
k , hN∗) ≤ J(gNm , gN∗

k , hN ) (5)
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Fig. 1. The sensor network model

3 Review of Prior Work

3.1 Full Coordination

First scenario is concerned with the setting where ”all” transmitter sensors have
the ability to coordinate, i.e., all transmitters and the receiver can agree on
an i.i.d. sequence of random variables {γ(i)} generated, for example, by a side
channel, the output of which is, however, not available to the adversarial sen-
sors1. The ability of coordination allows transmitters and the receiver to agree
on randomized encoding mappings. Surprisingly, in this setting, the adversarial
sensors also need to coordinate, i.e., agree on an i.i.d. random sequence, denoted
as {θ(i)}, to generate the optimal jamming strategy. The saddle point solution
of this problem is presented in the following theorem.

1 An alternative practical method to coordinate is to generate the identical pseudo-
random numbers at each sensor, based on pre-determined seed.
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Theorem 1 ( [2]). The optimal encoding function for the transmitters is ran-
domized uncoded transmission:

Xm(i) = γ(i)αTUm(i), M ≥ m ≥ 1 (6)

where γ(i) is i.i.d. Bernoulli (12) over the alphabet {−1, 1}

γ(i) ∼ Bern(
1

2
). (7)

The optimal jamming function (for adversarial sensors) is to generate i.i.d.
Gaussian output

Xk(i) = θ(i), M +K ≥ k ≥ M + 1 (8)

where
θ(i) ∼ N (0, PA), (9)

and is independent of the adversarial sensor input Uk(i). The optimal receiver
is the Bayesian estimator of S given Y , i.e.,

h(Y (i)) =
MαTσ

2
S

Mα2
Tσ

2
S +M2α2

Tσ
2
WT

+K2PA + σ2
Z

Y (i). (10)

Cost at this saddle point as a function of the number of transmitter and adver-
sarial sensors is:

JC(M,K) = σ2
S

M2α2
Tσ

2
WT

+K2PA + σ2
Z

Mα2
Tσ

2
S +M2α2

Tσ
2
WT

+K2PA + σ2
Z

(11)

where αT =
√

PT

σ2
S+σ2

WT

.

The proof follows from verification of the fact that the mappings in this the-
orem satisfy the saddle point criteria given in (5).

Remark 1. Coordination is essential for adversarial sensors in the case of coor-
dinating transmitters and receiver, in the sense that lack of adversarial coordi-
nation strictly decreases the overall cost.

3.2 No Coordination

In this section, we focus on the problem, where the transmitters do not have the
ability to secretly agree on a random variable, i.e., “coordination” to generate
their transmission function Xk. In this case, our analysis yields that the optimal
transmitter strategy, which is almost surely unique, is uncoded transmission
with linear mappings, while the adversarial optimal strategy for the (jamming)
sensors is uncoded, linear mappings with the opposite sign of the transmitter
functions. The following theorem presents our mail results associated with “no
coordination” setting. A rather surprising observation is that the adversarial
coordination is useless for this setting, i.e., even if the adversarial sensors can
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cooperate, the optimal mappings and hence the resulting cost at the saddle
point does not change. Note however that, as we will show later, coordination
capability of adversarial sensors is essential in the second extremal setting where
transmitters are allowed to coordinate their choices.

Theorem 2 ( [2]). The optimal encoding function for the transmitters is un-
coded transmission, i.e.,

Xm(i) = αTUm(i), M ≥ m ≥ 1 (12)

The optimal jamming function (for adversarial sensors) is uncoded transmis-
sion with the opposite sign of the transmitters, i.e.,

Xk(i) = αAUk(i), M +K ≥ k ≥ M + 1 (13)

The optimal decoding function is the Bayesian estimator of S given Y , i.e.,

h(Y (i))=

[
(MαT +KαA)σ

2
S

]
Y (i)

(MαT +KαA)σ2
S+M2α2

Tσ
2
WT

+K2α2
Aσ

2
WA

+σ2
Z

. (14)

Cost as a function of M and K is

JNC(M,K) = σ2
S

M2α2
Tσ

2
WT

+K2α2
Aσ

2
WA

+ σ2
Z

(MαT +KαA)σ2
S +M2α2

Tσ
2
WT

+K2α2
Aσ

2
WA

+ σ2
Z

(15)

where αT =
√

PT

σ2
S+σ2

WT

and αA = −
√

PA

σ2
S+σ2

WA

.

The proof of theorem, can be found in [2], involves detailed information the-
oretic analysis and is omitted here for brevity. This problem setting implies a
Stackelberg game where transmitters and the receiver play first as the Player 1,
as they select their encoding functions. Then, Player 2 (the adversarial sensors),
knowing the choice of Player 1, chooses its strategy.

Remark 2. Note that in this setting, the coordination capability for the adver-
saries do not help, in sharp contrast to the previous setting where, both trans-
mitters and adversaries coordinate.

4 Main Result

The focus of this paper is the setting between the two extreme scenarios of
coordination, namely full or no coordination. We assume that Mε transmitter
sensors can coordinate with the receiver while M(1− ε) of them cannot coordi-
nate. Similar to transmitters, only Kη of the adversarial sensors can coordinate
while K(1 − η) adversarial sensors cannot coordinate. Let us assume, without
loss of generality, that first Mε transmitters and Kη adversaries can coordinate.
Let us also define the quantity ε0 as the solution to:

JC(Mε0,
√
K2η2 +K(1− η)) = JNC(M,K) (16)

The following theorem captures our main result.
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Theorem 3. If ε > ε0, Mε capable transmitters use randomized linear encoding,
while remaining M(1− ε) transmitters are not used.

Xm(i) = γ(i)αTUm(i), Mε ≥ m ≥ 1 (17)

Xm(i) = 0 M ≥ m ≥ Mε (18)

where γ(i) is i.i.d. Bernoulli (12) over the alphabet {−1, 1}

γ(i) ∼ Bern(
1

2
). (19)

The optimal jamming policy (for the capable adversarial sensors) is to generate
the identical Gaussian noise

Xk(i) = θ(i), M +Kη ≥ k ≥ M + 1 (20)

while remaining adversaries will generate independent Gaussian noise

Xk(i) = θk(i), M +K ≥ k ≥ M + kη (21)

where
θk(i) ∼ θ(i) ∼ N (0, PA), ∀k (22)

are independent of the adversarial sensor input Uk(i).
If ε < ε0, then the optimal encoding function for all transmitters is determin-

istic linear encoding, i.e.,

Xm(i) = αTUm(i), M ≥ m ≥ 1 (23)

The optimal jamming function (for adversarial sensors) is uncoded transmis-
sion with the opposite sign of the transmitters, i.e.,

Xk(i) = αAUk(i), M +K ≥ k ≥ M + 1 (24)

where αT =
√

PT

σ2
S+σ2

WT

and αA = −
√

PA

σ2
S+σ2

WA

.

Proof. The transmitters have two choices: i) All transmitters will choose not
to use randomization. Then, the adversarial sensors do not need to use ran-
domization since the optimal strategy is deterministic, linear coding with the
opposite sign, as illustrated in Theorem 2. Hence, cost associate with this op-
tion is JNC(M,K). ii) Capable transmitters will use randomized encoding. This
choice implies that remaining transmitters do not send information as they
do not have access to randomization sequence {γ}, hence they are not used.
The adversarial sensors which can coordinate generate identical realization of
the Gaussian noise while, remaining adversaries generate independent realiza-
tions. The total effective noise adversarial power will be ((Kη)2 + (1− η)K)PA,
and the cost associated with this setting is JC(Mε,

√
K2η2 +K(1− η)). Hence,

the transmitter will choose between two options depending on their costs,
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JC(Mε,
√
K2η2 +K(1− η)) and JNC(M,K). Since, JC is a decreasing func-

tion in M and hence in ε, whenever ε > ε0, transmitters use randomization (and
hence so do the adversaries), otherwise problem setting becomes identical to ”no
coordination”. The rest of the proof simply follows from the proofs of Theorem
1 and 2 and is omitted here for brevity.

Remark 3. Note that in the first regime (ε > ε0), we have a zero-sum game with
saddle point. In the second regime (ε < ε0), we have a Stackelberg game where
all transmitters and receiver constitute the leader and adversaries constitute the
follower.

5 Conclusion

In this paper, we presented new results on the game theoretical analysis of opti-
mal communication strategies over a sensor network. Our recent prior [2] work
had solved two extreme coordination cases where either all or none of the sensors
coordinate. In this work, we focused on the setting where only a subset of the
transmitter and/or jammer sensors can coordinate. We showed that the solution
crucially depends on the number of transmitters and adversaries that can coor-
dinate. In one regime, then the problem is a zero-sum game and admits a saddle
point solution where transmitters with coordination capabilities use randomized
linear encoding while the remaining the transmitter sensors are not used at all.
Adversarial sensors that can coordinate generate identical Gaussian noise while
other adversaries generate independent Gaussian noise. In the other regime, the
problem becomes a Stackelberg game where the leader (all transmitter sensors)
uses fixed (non-randomized) linear encoding while the follower (all adversarial
sensors) uses fixed linear encoding with the opposite sign.

Our analysis has uncovered an interesting result regarding the mixed setting
considered in this paper. The optimal strategy for transmitters sensors can be
to discard the ones that cannot coordinate. Note that the coordination aspect
of the problem is entirely due to game-theoretic considerations, which are also
highlighted in this surprising result.

Several questions are currently under investigation, including extensions of the
analysis to vector sources and channels, the asymptotic (in the number of sensors
M and K) analysis of the results presented here; and extension of our analysis
to asymmetric and/or non-Gaussian settings. An initial attempt to extend the
results associated with the Gaussian test channel to non-Gaussian setting can
be fond in [1].
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