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Abstract—The problem of scalable coding while exploiting the
decoder side information is considered. Prior work considered the
two important cases concerning the degraded side information
where source X and the side information variables (Y1, Y2) form
a Markov chain in the order of either X−Y1−Y2 or X−Y2−Y1.
While the encoding schemes for these settings differ considerably,
they are both based on the combination of conditional codebook
encoding, a standard tool in scalable coding, and random binning,
conventionally used in decoder side information problems. In
this paper, an encoding scheme is proposed solely on the basis of
random binning, which essentially performs scalable and Wyner-
Ziv coding simultaneously. Proposed scheme achieves the rate-
distortion regions of prior results. A practical advantage of the
unifying scheme is the fact that random binning can be realized
via practical tools such as nested lattice codes and channel codes.
Finally, motivated by the proposed encoding scheme, a network
interpretation of scalable coding is considered. An achievable
region is derived for this problem setting and the potential
benefits of networked scalable coding are shown.

I. INTRODUCTION

This paper considers the problem of scalable coding when
each decoder has different side information, correlated with
the source. The problem setting is depicted in Figure 1, where
decoder 1 receives the base layer at rate R1 and uses the side
information Y1 to reconstruct the source X with distortion
D1. Decoder 2 receives both the base layer (at rate R1) and
the refinement layer at rate R2; and with the help of Y2,
reconstructs the source X with distortion D2.

There are two settings of interest. The first one, analyzed
by Steinberg and Merhav in [1], pertains to a particular
ordered degradation of side information, i.e., X − Y2 − Y1
forms a Markov chain in this order. The achievable region for
this setting was characterized and conditions for successive
refinement were studied. The coding scheme is based on
conditional codebook encoding along with Wyner-Ziv binning.
We refer to this setting as successive refinement in the Wyner-
Ziv setting (SRWZ).

The second case of interest, where the first decoder has
better side information, i.e., X−Y1−Y2, was studied by Tian
and Diggavi in [2]. In the sequel, this setting will be referred
as side information scalable coding (SISC)1. In [2], the authors
derived an achievable region with an encoding scheme that is

1We use somewhat vague names SRWZ and SISC to be consistent with the
prior work [1], [2].

in sharp contrast to the scheme of [1], in the sense that the
main tool of the encoding scheme is nested binning.

These two problem settings can be considered as special
cases of scalable coding with side information, with no specific
stochastic ordering on the side information. This problem
is known to be difficult even without the scalable coding
requirement, and the full characterization of achievable regions
(without scalable coding) was found only under stochastic
ordering of side information, see the works by Heegard and
Berger [3] and independently by Kaspi [4].

In this paper, by leveraging the properties of the random
binning-conventionally used in distributed coding problems-
we propose a coding scheme for both settings of interest. Our
contributions are:

• We propose a unified coding scheme based on random
binning among three codebooks. We show that the ob-
tained achievable region includes any rate-distortion point
achievable by the prior schemes. Moreover, the Markov
chain conditions we obtain are less strict than those of
[2], suggesting room for possible improvement in the
SISC setting. We note again that SRWZ region in [1]
is complete for the associated setting, so the proposed
scheme achieves all possible points in the SRWZ setting.

• Beyond the classical scalable coding, we consider a
networked scalable setting motivated by the encoding
scheme derived in this paper and the Gray-Wyner network
[5]. We derive an achievable region for this setting and
show the benefits of such networked considerations.

We note in passing that the proposed encoding scheme is
based on random binning only and hence from a practical
point of view, it is realizable by Wyner-Ziv-like codes derived
from lattices or channel codes [6]–[9]. Our results are based on
the realization that scalable coding can be realized by random
binning without any loss. See also [10] for a detailed analysis
of other implications of this result.

The paper is organized as follows. In Section II, we present
the preliminaries and review the prior results. In Section III,
we present our encoding scheme and derive the achievable
regions associated with different settings. In Section IV, we
study the concept of networked scalability. Finally, we discuss
future directions in Section V.
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Fig. 1. Problem setup: the classical interpretation of scalable coding with
decoder side information. The case where X−Y2 −Y1 is denoted as SRWZ
setting while X − Y1 − Y2 is called the SISC setting.

II. PRELIMINARIES

A. Notation

Let {Xt}∞t=1, Xt ∈ X , be a discrete memoryless
source (DMS) with generic distribution PX(x). The vector
[X(1), X(2), ..., X(n)] is compactly denoted by xn. Let Z
denote the reproduction alphabet. We employ H(X) to denote
the entropy of a discrete random variable X , or differential
entropy if X is continuous. For an arbitrary set A, we use 2A

to denote the set of all subsets of A, i.e.,

2A , {S : S ⊆ A}.

Assume a single-letter, bounded, and additive distortion mea-
sure d : X × Y −→ [0,∞), i.e.,

d(xn, yn) =
1

n

n∑
t=1

d(xt, yt) . (1)

A scalable block code pair (f1, f2, g1, g2) consists of an
encoding function

f1 : Xn −→M1

f2 : Xn −→M2

and decoders

g1 : M1 × Y n
1 −→ Zn

g2 : M1 ×M2 × Y n
2 −→ Zn .

A quadruple (R1, R2, D1, D2) is called achievable if for every
δ > 0 and sufficiently large n, there exists a block code
(f1, f2, g1, g2) such that

1

n
log |M1| ≤ R1 + δ

1

n
log |M1||M2| ≤ R1 +R2 + δ

E{d(Xn, g1(f1(X
n), Y n

1 ))} ≤ D1 + δ

E{d(Xn, g2(f1(X
n), f2(X

n), Y n
2 ))} ≤ D2 + δ .

B. Scalable Coding in the Presence of Side Information

Steinberg and Merhav studied the case of degraded side
information in the order of X−Y2−Y1, i.e., the SRWZ setting.
They showed that the region formalized below is complete.
The encoding scheme is intuitive: generate a codebook C1 with
marginal distribution of U1 and then conditionally generate
a codebook C2 for each codeword un1 with the conditional
density P (U2|Un

1 = un1 ). Next, bin C1 so that the codeword
un1 can be decoded with the help of side information Y1. Next,
bin all the conditional codebooks C2 so that the codewords un1
and un2 can both be decoded at the decoder with the help of
the better side information Y2. The following theorem presents
the achievable region2 by this scheme.3

Theorem 1 ( [1]). RDSRWZ is the convex hull of quadruples
(R1, R2, D1, D2) for

R1 ≥ I(X;U1|Y1)
R1 +R2 ≥ I(X;U2|U1, Y2) + I(X;U1|Y1)

for a conditional distribution p(U1, U2|X) and deterministic
decoding functions g1, g2 which satisfy

Di ≥ E{di(X, gi(Ui, Yi))} i = 1, 2

and the Markov chain (U1, U2)−X − Y2 − Y1.

Tian and Diggavi studied the dual of this problem in the
sense that X −Y1−Y2 forms a Markov chain. In this setting,
they proposed two coding schemes depending on the levels of
distortion D1 and D2. However, both regions can be unified
with the help of an auxiliary random variable, as shown in [2].
This region is presented in the following:

Theorem 2 ( [2]). An achievable region for the SISC setting,
RDSISC is the convex hull of quadruples (R1, R2, D1, D2)
for

R1 ≥ I(X;U0, U1|Y1)
R1 +R2 ≥ I(X;U0, U2|Y2) + I(X;U1|Y1, U0)

for a conditional distribution p(U0, U1, U2|X) and determin-
istic decoding functions g1, g2 which satisfy

Di ≥ E{di(X, gi(Ui, Yi))} i = 1, 2

and the Markov chain (U0, U1, U2)−X − Y1 − Y2.

III. AN ACHIEVABLE REGION FOR CONVENTIONAL
SCALABLE CODING WITH DECODER SIDE INFORMATION

In this section, we propose a unified scheme based on ran-
dom binning over three codebooks generated independently, as
shown in Figure 2. These codebooks, denoted as C0, C1, C2 are
generated respectively with the marginal distribution of three
auxiliary random variables U0, U1 and U2 at rates r0, r1, r2.
The codewords associated with C0, C1, C2 are denoted as un0 ,

2The original achievable region in [1] involves additional terms. However,
it was also shown in [1] that the two regions are equivalent.

3The cardinality conditions are not essential for our purposes and omitted
due to space constraints.
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Fig. 2. The overview of the encoding scheme.

un1 and un2 . After generating the codebooks, we bin the all
three codebooks so that there is only one typical tuple of
decodable codewords at respective decoders. Let r′0, r

′
1, r
′
2

denote the binning rates of the codebooks C0, C1, C2 respec-
tively. The bin indices associated with the codewords un0 , un1
are transmitted to decoder 1 and the bin index associated
with un2 is transmitted to decoder 2 as additional (refinement)
information. The bit-stream rates are given as:

R1 = r′0 + r′1 (2)
R2 = r′2 (3)

Although the mechanics of the coding scheme are identical
for both settings, the codebook rates and the associated binning
rates differ for each setting. The main difference is that for the
SRWZ setting, decoder 2 decodes all the received codewords,
i.e., the triple un0 , un1 and un2 , while for the SISC case, it
decodes only the codewords un0 and un1 . Hence, in the SRWZ
setting, we have to guarantee the joint typicality of the triple
(un0 , u

n
1 , u

n
2 ), with xn while in the SISC setting, we only

need to guarantee typicality of xn with the pairs (un0 , u
n
1 )

and (un0 , u
n
2 ). This implies different covering conditions for

the two settings. Moreover, in the SRWZ setting, we have to
guarantee the joint typicality of (un0 , u

n
1 ) with Y n

1 and also
(un0 , u

n
1 , u

n
2 ) with Y n

2 for successful joint typicality decoding.
The Markov lemma guarantees that if the Markov chains

(U0, U1)−X − Y1 (4)
(U0, U1, U2)−X − Y2 (5)

hold, these typicality conditions are satisfied. Note that (4)-(5)
along with X − Y2 − Y1 imply (U0, U1, U2)−X − Y2 − Y1.

For the SISC case, we need the joint typicality of un0 , u
n
1 with

Y n
1 and also un0 , u

n
2 with Y n

2 , which imply the Markov chains

(U0, U1)−X − Y1 − Y2 (6)
(U0, U2)−X − Y2 (7)

Note that (6)-(7) are guaranteed to hold if (but not only if) the
long Markov chain (U0, U1, U2) − X − Y1 − Y2 holds. This
observation suggests the possibility of obtaining a larger rate
region for the SISC setting.

A. SISC Setting
In the SISC setting, decoder 2 cannot decode the three

codewords but only two of them, un0 and un2 , while decoder 1
receives and decodes the tuple un0 , u

n
1 . For this setting, we do

not constrain the distributions to render the triple (un0 , u
n
1 , u

n
2 )

to be jointly typical for each typical source-word xn since
this triple is not decoded together in either of the decoders.
We have to satisfy the following:

ri ≥ I(X;Ui) i ∈ {0, 1, 2}
r0 + r1 ≥ I(X;U0, U1) + I(U0;U1)

r0 + r2 ≥ I(X;U0, U2) + I(U0;U2) . (8)

Note again that there is no sum rate condition since we do not
need the joint typicality of the triple (un0 , u

n
1 , u

n
2 ). Let us set

r0 = I(X;U0), r1 = I(X,U0;U1) and r2 = I(X,U0;U2),
satisfying (8). Next, we bin the codebooks with rates r′0, r′1,
and r′2. The joint decoding conditions yield

r0 − r′0 + r1 − r′1 ≤ I(U0;U1) + I(U0, U1;Y1) (9)
r0 − r′0 ≤ I(Y1, U1;U0) (10)
r1 − r′1 ≤ I(Y1, U0;U1) (11)

r0 − r′0 + r2 − r′2 ≤ I(U0;U2) + I(U0, U2;Y2) (12)
r0 − r′0 ≤ I(Y2, U2;U0) (13)
r2 − r′2 ≤ I(Y2, U0;U2) (14)

Now, it can be shown using the Markov chains (U0, U1)−
X−Y1−Y2 and (U0, U2)−X−Y2 that one can satisfy (9)-(14)
with the rate choices as below:

r′0 = I(X;U0|Y1) (15)
r′1 = I(X;U1|U0, Y1) (16)
r′2 = I(X;U0, U2|Y2)− I(X;U0|Y1) . (17)

Obviously, by (2) and (3), (15)-(17) imply that

R1 = I(X;U1, U0|Y1) (18)
R2 = I(X;U0, U2|Y2)− I(X;U0|Y1) (19)

is an achievable rate pair through our scheme. It then follows
through standard rate transfer arguments (see [1], [11], [12]
for details) and a comparison with Theorem 2 that we obtain
the region RD∗SISC presented in the following theorem:

Theorem 3. RD∗SISC is the convex hull of all rate-distortion
quadruples (R1, R2, D1, D2)

R1 ≥ I(X;U0, U1|Y1)
R1 +R2 ≥ I(X;U0, U2|Y2) + I(X;U1|Y1, U0)
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for a conditional distribution p(U0, U1, U2|X) and determin-
istic decoding functions g1, g2 which satisfy

Di ≥ E{di(X, gi(Ui, Yi))} i = 1, 2

and the Markov chains (U0, U1)−X−Y1−Y2 and (U0, U2)−
X − Y2.

Corollary 1. RDSISC ⊆ RD∗SISC

Proof. The rate and distortion expressions of RDSISC and
RD∗SISC are identical. The Markov chains (U0, U1) − X −
Y1−Y2 and (U0, U2)−X−Y2 are implied by (U0, U1, U2)−
X − Y1 − Y2.

Remark 1. Note the inclusion may very well be strict, i.e.,
there can be a point in RD∗SISC which is not included in
RDSISC . This is due to the fact that the long Markov chain
(U0, U1, U2)−X − Y1− Y2 is a stronger constraint than (6)-
(7) and reduces the set of distributions considered in defining
the region.

Remark 2. It is tempting to question whether the bin index
associated with un1 , not used in decoder 2 could be used to
enlarge the achievable region. Specifically, it might seem that
even if we cannot decode the codeword un1 , the index of the
bin in which un1 lies can be used to decrease the number
of relevant codewords of C0. However, the benefit vanishes
asymptotically in n, and it can be shown4 that all codewords
in C0 are jointly typical with at least one codeword in the
given bin, irrespective of the rate r0, hence the bin index is
useless.

B. SRWZ Setting
In the setting where X−Y2−Y1, decoder 2 can decode all

the received codewords, i.e. the triple un0 , un1 and un2 , while
decoder 1 receives and decodes the tuple un0 , u

n
1 . For this

setting, we have to make sure we can find a jointly typical
codeword triple un0 , un1 and un2 for each typical source-word
xn.

Clearly, there is no difference between U0 and U1 in this
coding scheme. Hence, we can set U0 to constant (i.e., set
r0 = 0) without any loss since we can always combine U0 and
U1 and call this union, the effective U1. The encoding scheme
then simplifies to generating two codebooks associated with
U1 and U2. We have to satisfy the following due to covering
conditions:

ri ≥ I(X;Ui) i ∈ {1, 2}
r1 + r2 ≥ I(X;U1, U2) + I(U1;U2) (20)

Let us set r1 = I(X;U1) and r2 = I(X;U2|U1) + I(U1;U2)
to satisfy (20). Next, we bin the codebooks with rates r′1 and
r′2. The decoding conditions yield

r1 − r′1 ≤ I(U1;Y1) (21)
r1 + r2 − r′1 − r′2 ≤ I(U1;U2) + I(U1, U2;Y2) (22)

r1 − r′1 ≤ I(Y2, U2;U1) (23)
r2 − r′2 ≤ I(Y2, U1;U2) . (24)

4The proof is omitted due to the space constraints.
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Fig. 3. Problem setup: Network interpretation of scalable coding.

Similar to the SISC case, it can be shown using the Markov
chain (U1, U2) −X − Y2 − Y1 that one can satisfy (21)-(24)
with the rate choices as below:

r′1 = I(X;U1|Y1) (25)
r′2 = I(X;U2|U1, Y2) (26)

Since in this setting, R1 = r′1 and R2 = r′2, once again using
rate transfer arguments and comparing with Theorem 1 we
obtain the region RD∗SRWZ in the following theorem.

Theorem 4. RD∗SRWZ = RDSRWZ .

IV. A NEW INTERPRETATION OF NETWORKED SCALABLE
CODING

A major drawback of the conventional scalable coder is
that it enforces a rigid hierarchical structure on the bit-stream
of different layers. The natural assumption underlying this
scalable coding framework is that a user with a better channel
will always be able to decode all the base layer bits which
were necessary for the base layer reconstruction.

However, it is worthwhile to question this assumption in
today’s network scenario wherein an intermediate node for-
wards packets to multiple receivers (see [13] for the potential
benefits of such considerations in general networked source
coding problems). The SISC problem setting demonstrates the
validity of this proposition: the classical scalable compression
clearly requires the transmission of redundant information to
receivers. Specifically, in our encoding scheme the bin index
associated with un1 is transmitted to decoder 2 but un1 cannot
be decoded since the side information Y n

2 is too degraded
to identify a unique jointly typical codeword. This fact along
with a simple network model given in the seminal paper by
Gray and Wyner [5] motivates this problem setup:

Consider the network in Figure 3, where the encoder pro-
duces a bit-stream of rate R0 and an intermediate router trans-
mits the parts of this bit-stream to decoders 1 and 2 at rates R1

and R2 respectively. The decoder 1 has better side information
but its received rate is smaller than decoder 2, i.e., X−Y1−Y2
forms a Markov chain and R1 < R2. What is the set of
achievable rate-distortion quintuples (R0, R1, R2, D1, D2) ?

In the following, we present an achievable region, denoted
as RD∗NSC .
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Theorem 5. RD∗NSC is the convex hull of all rate-distortion
quintuples (R0, R1, R2, D1, D2)

R0 ≥ I(X;U0, U2|Y2) + I(X;U1|Y1, U0)

R1 ≥ I(X;U0, U1|Y1)
R2 ≥ I(X;U0, U2|Y2)

for a conditional distribution p(U0, U1, U2|X) and determin-
istic decoding functions g1, g2 which satisfy

Di ≥ E{di(X, gi(Ui, Yi))} i = 1, 2

and the Markov chains (U0, U1)−X−Y1 and (U0, U2)−X−
Y2.

Proof. The proof is based on the encoding scheme in Theorem
3, with the difference in the rate expressions R0 = r′0 + r′1 +
r′2,R1 = r′0 + r′1 and R0 = r′0 + r′2. Plugging these values
in covering and binning conditions given in (8) and (19), the
proof is obtained.

Remark 3. It is possible to show that this region is complete
for the important quadratic Gaussian case. The proof is based
on the optimality of the encoding scheme for SISC setting for
the quadratic Gaussian case and completeness of the lossy
Gray-Wyner region.5

V. DISCUSSIONS

The extended version of this paper, which includes the
techincal details of the proofs can be found in [12]. Our future
work includes the investigation of the converses for the regions
in Theorems 3 and 5 and a possible rate-distortion point that
shows RDSISC ⊂ RD∗SISC strictly (see Remark 1).
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