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Abstract—Exploration versus exploitation in a sensor field with
a mobile agent is examined in the context of source coding.
The encoder is the low complexity data gathering agent. The
decoder is a high complexity fusion center. The encoder first
sends a coarse description of the random field, then transmits
a refined description of a region of interest, i.c., a subset of the
correlated sources in the first stage and so on. The main source
coding challenge is that the receiver wants to refine a subset of
the correlated sources that is unknown to the encoder a priori.
The conventional approach of scalable coding via conditional
codebook encoding (CCE) requires a codebook that is exponential
in size with respect to the number of sources and also the number
of refinement stages. This paper studies an alternative approach,
using random binning (RB), in lieu of CCE. The universality of
RB plays a key role, as the encoder does not know a priori which
sources the decoder wants to refine. It is shown that RB does
not introduce any loss and can effectively replace CCE while
providing significant storage reduction in terms of the number
of codewords stored. Achievable rate regions are derived for the
single and the multi-terminal encoding settings.

I. INTRODUCTION

In this paper, we study the fundamental limits of scalable
coding (SC) when exploration-exploitation (E-E) tradeoff is
in effect. E-E tradeoff is a common challenge in data gath-
ering over sensor networks. The problem can be described
as follows. Suppose there is a central receiver with high
computing power, that is tasked with identifying a target in
a random field, or reconstructing a part of a random field.
An autonomous, low power agent gathers data sampled over
this random field with two general objectives: first to gather
data from a space as large as possible (exploration); and
to approach the target by traveling in the direction of the
gradient of the field (exploitation). After gathering data from
already deployed sensors, the encoder coarsely compresses
(quantizes at high distortion) the data corresponding to the
entire field and transmits them to the central receiver. The
receiver then analyses the coarse data and determines the
samples that it is interested in to reconstruct at a higher
resolution and transmits this information; i.e., the subset of
samples and associated rates, over a feedback channel to the
agent. The agent compresses again and sends a refinement
to the central decoder, which then again analyses the subset
and so on. This information exchange occurs K times. How
should the encoder compress the data at each stage? The
difficulty of the problem lies in the fact that the encoder does
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not know a priori which samples will be requested by the
central receiver. Hence, a conventional, “conditional codebook
encoding” (CCE) approach of successive coding requires a
codebook for each source for each possible combination of
codewords from all sources to condition upon. From a storage
complexity point of view, this approach is infeasible.

To state the problem more formally, consider a set of
correlated memoryless sources X = [X 1, Xo,... X 1] where
X ;’s are memoryless sources generating independent, identi-
cally distributed random variables according to some known
joint probability distribution px, . x, (-). Assume there are K
stages in the communication scenario. At stage k, we want to
describe a subset Sy, C [1,... L] of sources, denoted as X s,
by the additional Ry, bits per sample sent at this stage. Given a
single letter vector distortion ! measure d(-,-), we would like
reconstruct X, ,k € [1 : K] with distortions D1,..., Dg.
What is the necessary and sufficient set of (Ry...Rk) to
achieve distortions (D1,... Dg) over (S1,...Sk)?

We note that this problem is equivalent to compressing X
with distortion measures which are functions of the subsets
of interest at each stage’, dj, k € [l K]. From this
perspective, it is tempting to conclude that conventional SC
addresses our problem adequately. However, the challenge -
from this perspective- is that distortion measures d; . ..dy are
not known prior to compression as assumed in conventional
SC. Specifically, while compressing at stage ¢, the subset that
will be of interest in the later stages, and hence distortion
measures di(-, ) is not known for k > i.

In this paper, we first show that a classical result of scalable
coding, [2], [3], obtained by the CCE method, can also be
obtained by random binning (RB). Building on this basic
result, we develop our main results on source coding in E-
E tradeoff. In the second part of the paper, we extend our
results to distributed coding, by using a single binning scheme
that takes successive refinement and distributed coding into
account. To the best of our knowledge, this paper is the first

Note that there is a vector distortion measure known to prior to compres-
sion of all stages, that operates on a subset which is unknown a priori. Hence,
given the subset, we assume the distortion measure is known.

2The source dependent distortion measure, i.e., d(z,y) which depends not
only on x — y but also z, in our case, d;(z,y) depends on the samples that
are desired to reconstructed at higher resolution at stage i, see eg. [1] for
details.
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Fig. 1. Problem setting. At stage k encoder sends a refinement of sources in
the set Sy and decoder reconstructs X s, . The decoder sends the next stage
information over a noiseless feedback channel to the encoder.

treatment of “distributed scalable coding” from an information
theoretic perspective.

Distributed scalable coding problem is related to another
problem, namely scalable coding in the Wyner-Ziv setting,
due to the fact that the base layer reconstruction serves as side
information for both encoders (note that this reconstruction is
not available in either of the encoders) for the refinement layer.
Scalable coding in the Wyner-Ziv setting has been studied in
[4], [5]. Our approach of using solely RB also offers new
insights and results for this problem, see [6] for details.

II. PRELIMINARIES

We use the standard notations, definitions of the additive,
single letter distortion measure and the achievable rate regions
[7]1. We are interested in a set of memoryless correlated
sources { X1 (t)}524, ..., X (t)}+=1. A vector distortion mea-
sure d(-,-) operates on a subset S; at stage i. Distortion
measure is assumed to be separable in terms of the sources,
e, d(Xs,Ys) = f({di(X;,Y:)}),Vi € S. This is a mild
assumption that basically states total distortion over a set
depends only on the individual distortions of the source and its
reconstruction. This paper pertains to two problems in source
coding, namely scalable coding and distributed coding. Let us
briefly explain the achievable regions for these settings.

A. Scalable Coding

The set of scalably achievable rate distortion quadruples
(R1, Ro, D1, D3) is denoted here as Rsc. In [2], the achiev-
able region Rgc was characterized:

Theorem 1 ( [2], [3]). RDsc is the convex hull of quadruples
(R1, Ra, D1, D2) for
Ry > I(X; 1)
Ri+ Ry > I(X;Y1,Y2)

for a conditional distribution p(Y1,Y2|X) which satisfy

Dl Z E{d(Xa Yl)}

Dy > E{d(X,Y2)}
B. Distributed Coding

In distributed coding setting, two encoders observe two
discrete memoryless sources, X; and Xo, and describe these
sources to central receiver with a distortions D over X7, Xo.

£) onrd
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Fig. 2. RB scheme for 2-layer scalable coding

A triple RDpc £ (Ry, Ra, D) is called achievable in
distributed coding if with rates R;, Ro, distortion D is achiv-
able. Exact characterization of RDpc is unknown, while a
well known achievable region due to Berger and Tung, hence
denoted here as RDpr, is a result of an intuitive coding
scheme called ”quantize and bin”. Encoders first quantize their
observations X1 and X7 to auxiliary random variables Y"
and Y5* and utilize binning to losslessly encode Y; and Y5
by Slepian-Wolf encoding. The encoders have to ensure that
the received codewords Y]* and YJ' are jointly typical. One
way to guarantee this is to limit the set of Y7, Ys to satisfy
the Markov chain Y; — X; — Xo — Y5, which renders Y;* and
Y, jointly typical due to the Markov lemma, see eg. [8].

Theorem 2 ( [8], [9]). RD pr is the convex hull of quadruples
(Rl, RQ, D) for
Ry > I(X1;Y11]Y2)
Ry > I(X5;Y5|Y1)
Ry + Ry > I(X1,X2;Y1,Y2)

for a conditional distribution p(Y1, Y2|X1, Xo) which satisfy
D > E{d([X1, X2, g(Y1,Y2)}
and the Markov chain Y1 — X1 — X5 — Ya.

III. MAIN RESULTS
A. Scalable Coding

In this section, we show that using RB in lieu of CCE
does not introduce any loss in the conventional successive
coding problem. We use RDprp to denote the achievable
region obtained by this new coding scheme. The following
theorem formally states our result associated with this setting.

Theorem 3. RDrgp = RDsc

Proof. The encoding scheme is based on RB among two in-
dependently generated codebooks are rates r; and r2, denoted
as C; and Co, whose codewords are randomly generated ac-
cording to the marginal probabilities py, and py, respectively.
We can find a (y7,y%) tuple jointly typical with any typical
z™ if the following are satisfied:

T1 Z I(X,Yl)
r2 = I(X;Y2)
7”1+7"2 Z I(X;Y1)+I(X,Y1;Y2> (1)
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Let us set Ry = r; = I(X;Y7) to mimic the rate distortion
optimal construction, i.e., there is no binning in C;. Then,
we have to set 7o = I(Ys; X,Y7) to satisfy (1). Since the
codebooks are generated independently, the probability of two
codewords randomly chosen from Y; and Y, to be jointly
typical under the joint distribution py, y, is approximately
2-7I(Y1:Y2) o guarantee that the decoder will find only
one jointly typical pair given the bin index, the number of
codewords in each bin must be approximately 27/(Y1:Y2),
Then, the number of bins in Cs (denoted as 7) is

nI(Y;X,Y,
v OBE L (xvaima)

271[(Y1;Y2) :
At the refinement layer, only bin index is sent we need a rate
of Ry = +log(y) = I(X;Y2|Y1) which is equal to the rate
of conventional SC. O

Let us see if this binning scheme provides any storage
benefits in itself. Let M rp and Moo g denote the total number
of codewords used in RB and CCE methods. Clearly,

MCCE _ 2nI(X;Y1) + QnI(X;Y1)2nI(X;Y2\Y1)

— 2nI(X;Y1) + QnI(X;Yl,Yg)

while

MRB — 2?7,7”1 _|_ 2717"2
— gnl(X;Y1) 4 gnI(X.Y1;Y2)

Since we can find cases where I(X,Y1;Ys) 2 I(X;Y1,Y5),
it is not clear if RB offers any significant storage benefit for
this simple setting. As we will show in the next sections, this
benefit is significant in the presence of E-E tradeoff.

Remark 1. This approach can be generalized to L-layer
scalable coding, without any performance loss.

Remark 2. Implications of this result is not limited to the
problem in this paper. Particularly, one of the practical impli-
cations is that we can use - for successive refinement purposes-
practical tools that realize RB such as lattice codes [10],
or Wyner-Ziv codes derived from channel codes [11], [12].
Another implication is on the theoretical study of successive
coding in network settings, such as the Wyner-Ziv setting, see

eg. [4], [5].

Remark 3. Theorem 3 play a key role in developing other
results. Particularly, the fact that this result holds for any
distortion measure dy paves the way to obtain intuitive, high
level proofs for the multi-source setting. Note that in multi-
source setting analyzed in the next section, our problem can
be interpreted as encoding the source scalably with different
distortion measures (that depend on the subset) for each layer.

B. Single Encoder- Multiple Source Setting

Let us consider the setting described earlier, namely E-
E source coding. The main challenge is that at stage 1,
encoder is not aware of the region of interests for later stages,
i.e., S for k > i. Hence, a conventional CCE approach

generates a codebook for each combination of possible S;’s
prior to compression. The achievable region is denoted here as
RDgsc. The number of codebooks required by this approach
is exponential in the number of encoding stages. The proposed
random coding scheme however, generates codebooks without
any conditioning.

Let us explain how the proposed RB scheme, depicted
in Figure 3, works. First, we create K codebooks for each
source with 271" codewords with the marginal probabilities
pyfk) independently, for ¢« € Zp,k € Zg. Let us call these
codebooks CZ-(k). Next, we create onoi”) non-overlapping bins
in Ci(k) respectively, each containing on(ri® —pi)
Vi, k.

At stage k, encoder picks a codeword tuple in the codebooks
Ys(,’:) that is jointly typical with the source and with the
codewords that are selected in the previous stages, for each
source. Next, the bin indices associated with these codewords
are sent to the decoder. The decoder searches for the unique
codeword tuple, which is jointly typical in itself and also with
the already decoded codewords from the previous stages in
each bins.

An interesting property of the proposed scheme is that the
bin size is chosen on the fly, depending on the prior subsets.
This is done by first enumerating all the codewords in the same
order at the encoder and the decoder. At stage k both encoder
and decoder can compute the bin size (or the number of bins
pz(-k)) that is needed for successful joint typicality decoding.
Encoder then puts the codewords to bins deterministically.*
Since the decoder has identical list of codewords, given the
bin size and bin index, it can identify the bin in which the
codeword lies.

Let us call the achievable region obtained by this scheme
RD RB-

codewords

Theorem 4. For a given S(l), LS RDpgrp is the convex
hull Of (Rl,RQ, AN .RK,Dl,DQ, ‘e DK)

k
SR > I(Xgo . KXo Y0 - Vi)
=1

k=1,2,...K
for a conditional distribution p(Ys(ll) e Yéf)|X ) and deter-
ministic decoding functions which satisfy

Dy, > E{d(Xs,,g5(Y3, ... YE)} k=12,...K

Proof. We sketch an intuitive high level proof here, technical
details can be found in [14]. Let us recall two results. First
one is due to Theorem 1 in [15], encoding correlated sources
X ... X via independent codebook generation and binning

3This property yields to use the same codeword for several prior codeword
combinations, in other words, we recycle the codewords, instead of generating
a new one for each possible subset combination as done in CCE scheme.

4Binning is deterministic, hence it is slightly different than the original
binning scheme used in the seminal paper [13] where bins are also generated
randomly. Note however that the codewords are generated randomly, therefore
deterministic binning performs essentially the same task as the classical
random binning, see [7] for details.
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Fig. 3. Overview of the proposed coding scheme for multiple source- single
encoder setting. For each stage, we generate L codebooks, one for each source.
There are L sources in total, K stages.

does not introduce any loss compared to joint encoding in the
classical rate distortion sense. The second result is due to The-
orem 3, RB does not introduce any loss in successive coding.
Using these two results in conjunction with the observation
made earlier- that is the problem at hand is a special case
of the SC problem with different distortion measures at each
stage, we obtain Theorem 5. O

Let us compare the storage requirements of both schemes
for the special case of L = 2, K = 1, and for simplicity
of computing the size of codebooks, we assume there is no
scalable coding.® Let again Mrp and Mccp denote the total
number of codewords used in RB and CCE methods. CCE
method generates four codebooks: two of sizes ond (Xl?Yl(l)),
onl (X2:%,”) to encode X; and X individually and two with
size 2M(X1.X21.Y3”) (5 encode them jointly. Note that we
have to generate two of the latter codebooks since we do not
know in which sources X; and X5 will be requested.

— oI (XYM | onI (Xai¥5M) 4 gy onI (X1 X2sY Yy

Mccr
For convenience in comparisons, let us assume
I(X1 X0 VYY) & 1(X 1 V) 4 1(X0 YY), ie., X1 and
X, are nearly independent, therefore T (Yl(l); Y2(1)) =e—0,
hence, Moog = 3 x 201 (XYi)) 3 5 onI(X0:v5")

Let us now compute the size of the two codebooks needed
in the proposed RB approach. The sum rate inequality in the
covering conditions provide an answer as we only need a find
a tuple which is jointly typical with x7,z%, then ry ~ ro =
I(Xy; Y1(1>)+e/2 will satisfy the covering equations. Plugging
these values

MRB — 2’!““1 + 2’!7,’)”2

_ on(I(XuY{V)+e/2) 4 on(I(Xa;Vy)+e/2)

SNote that there is no explicit scalable coding in the example, however the
sources X1 and X2 can be requested by the decoder successively, hence there
is some form on successive coding between X7 and Xo.

Hence, even without scalable coding and with only two
sources, for this simple example, RB requires around 1/3
storage compared to the conventional CCE approach. More
formally, it can be shown that the storage requirements of
CCE increases exponentially with the number of sources and
the number refinement stages, while RB approach increases
only linearly with these quantities.

IV. EXTENSION TO DISTRIBUTED SETTINGS
In this section, we study the setting where there are two
encoders. Depending on the set of sources encoders have
access to, we address the problem in two different settings.
A. Non-overlapping Sources

In this setting, the sources that different encoders have do
not overlap, i.e., say the encoder 1 has X 4 and the encoder 2
has Xz and AN B = 0.

Theorem 5. For a given Ay,...Ax and By,...Bxregions
of interest for each stage, RDgrp is the convex hull of
(R\",Ry,...Ri,D1,Dy,...Dg), for k=1,2,.. . K:

k

ZR(T) > I(X(k) y(k)‘y(k‘))

i=1

ZR > 12 v 1)

k
ZR(Z) +R() > [( (k) X(k y(k 73} )

i=1
for a conditional distribution p(Yfl\1 .
ministic decoding functions which satisfy

Dy > E{di([Xa,, X5,), sV, VE)}

and the set of Markov chains
y( ) X(k) (k)
= X](l) e

YfK |X) and deter-

-y

—yv®  yE
=Y -

where Xj(k) (k) for j €

{A, B}.

Proof. We provide a sketch of the proof here, the techincal
details of the proof can be found in [14]. Essentially, compared
to the previous case, encoding stays the same, encoders first
generate K codebooks for each source, then bin with the bin
size determined the previous subsets. The Markov chains guar-
antee typicality of the received codewords the at the receiver,
due to the Markov lemma, as they do in Berger-Tung region.
One difference from single terminal setting is that, at stage
k, the reconstructions of the previous layers, ygk‘” are not
available at the first encoder (and vice versa), hence encoders
perform scalable coding with decoder side information. This
setting corresponds to degraded side information setting of
Steinberg and Merhav [4] and we show in a companion paper
that RB achieves the optimal performance for this setting.
Hence, the region is readily obtained by optimality of RB for
scalable coding with side information (see [6]), in conjunction

X, y](-k)
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with the application of “quantize and bin” for distributed
coding, see [14] for the details. O

Remark 4. Note that RDgrp is complete for the quadratic
Gaussian setting. The proof, omitted due to space con-
straints, follows from optimality of Berger-Tung region for the
quadratic Gaussian setting.

B. Overlapping Sources

In this setting, the sources that different encoders have
overlap: again, let the encoder 1 have X 4 and the encoder
2 have X5 and AN B = D # (. The difference between the
non-overlapping case is the Markov chains need to be satisfied,
i.e., the set of codewords guaranteed to be typical. Since
sources Xp are available in both encoders, we do not need to
invoke the Markov lemma to make these codewords associated
with these sources typical. Particularly, only the codewords
associated with the sets A — D and B — D have to be made
jointly typical via the Markov lemma, the jointly typical pairs
in D can be selected at both encoders as both the source-
words and the codebooks associated with D are available at
both encoders. Hence, for sources in D the problem simplifies
to single terminal scalable coding investigated in the previous
section. Similar observations were made in [16] for a simpler
setting (where there is no scalable coding or E-E tradeoff) to
encode sources which have a common part in the Gacs-Korner
common information [17] sense.

Theorem 6. For a given Ay,...Ax and By,...Bxregions
of interest for each stage, RDgrp is the convex hull of
(R\Y,Ry,...Ri,D1,Dy,...Dg), for k=1,2,.. . K:
£ ' k k k
ZRP 2 I(X,El—)zﬁ y./(42D|Xl(3—)D)
i=1
k
i k k k
ZRé) 2 I(Xz(s—)D5yl(3—)D|X,(4—)D)
i=1
k . .
DR+ B > (X, a0 0 v)
i=1
for a conditional distribution p(Yg, ...Y& |X) and determin-
istic decoding functions which satisfy

Dy > B{di([X 4., X5,), 9 VP, VI)}

and the set of Markov chains
k k k k
Vil =Xy = X0 — Vi

where Xj(k) = Xju) ...Xj(k), y}’” = Yj((ll)) . YJ((’,?) for j €

{4, B}.

V. DISCUSSIONS

In this paper, we studied scalable coding in the presence of
E-E tradeoff. The main idea is to perform scalable coding via
RB for both single terminal and distributed cases. It is shown
that RB does not introduce any loss compared to the CCE

approach and provides significant storage advantage when E-
E tradeoff is in effect.

Our future work includes the investigation of numerical
results for the quadratic Gaussian setting as well as extensions
of these ideas to source-channel coding and network settings.
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