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Abstract— This paper considers the problem of minimum cost
communication of correlated sources over a network with multi-
ple sinks, which consists of distributed source coding followed by
routing. We introduce a new routing paradigm called dispersive
information routing (DIR), wherein the intermediate nodes are
allowed to split a packet and forward subsets of the received bits
on each of the forward paths. This paradigm opens up a rich
class of research problems, which focus on the interplay between
encoding and routing in a network. Unlike conventional routing
methods such as in [1], DIR ensures that each sink receives just
the information needed to reconstruct the sources it is required
to reproduce. We demonstrate using simple examples that the
proposed approach offers better asymptotic performance than
conventional routing techniques. We show that, under certain
assumptions on the cost function, the problem of finding the
minimum cost under DIR essentially reduces to characterizing
an achievable rate region for a new multiterminal information
theoretic setup. While it is possible to derive an achievable region
for this setup using prior results from general multiterminal
source coding [3], these techniques do not exploit the underlying
problem structure and thereby lead to suboptimal regions. In this
paper, we propose a new coding scheme, using principles from
multiple descriptions encoding [2], and show that it strictly
improves upon a corresponding variant of coding scheme in
[3]. We further show that the new coding scheme achieves the
complete rate region for certain special cases of the general setup
and thereby achieves the minimum communication cost under
this routing paradigm.

Index Terms— Distributed source coding, achievable region,
minimum cost routing, compression for networks.

I. INTRODUCTION

COMPRESSION of sources within a network has been
an important research area, notably with the recent
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Fig. 1. A general multi-source multi-sink sensor network. The circles denote
sources and stars denote sinks. The arrows denote allowed communication
links.

advancements in distributed compression of correlated sources
and network (routing) design. Encoding correlated sources in
a network, such as a sensor network with multiple nodes and
sinks as shown in Fig. 1, has conventionally been approached
from two different directions. The first approach is routing
the information from different sources in such a way as
to efficiently re-compress the data at intermediate nodes,
without recourse to distributed source coding (DSC) methods
[4], [5] (we refer to this approach as joint coding via ‘explicit
communication’). Such techniques tend to be wasteful at all
but the last hops of the communication path. The second
approach performs DSC followed by simple routing [1], [6].
Well designed DSC followed by optimal routing can provide
good performance gains. We will focus on the latter category.
Relevant background on DSC and route selection in a network
is given in the next section.

This paper focuses on minimum cost communication
of correlated sources over a network with multiple-sinks.
We introduce a new routing paradigm called Dispersive Infor-
mation Routing (DIR), wherein intermediate nodes are allowed
to “split a packet” and forward a subset of the received
bits on each of the forward paths. This paradigm opens
up a rich class of research problems which focus on the
interplay between encoding and routing in a network. What
makes it particularly interesting is the challenge in encoding
sources such that exactly the required information is routed
to each sink, to reconstruct the prescribed subset of sources.
We will show, using simple examples that asymptotically,
DIR achieves a lower cost over conventional routing methods,

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



5434 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 9, SEPTEMBER 2014

wherein the sinks usually receive more information than they
need. We then show that, when the cost function is linear
in the transmit rates, the problem of finding the minimum
communication cost under DIR is equivalent to the problem
of establishing the set of achievable rates for a general class
of problems in multi-terminal source coding, which have
not been studied earlier. In this paper, we formulate this
problem and the associated rate region. An achievable region
for this new setup can be derived based on results due to Han
and Kobayashi for general source networks in [3]. However,
this natural extension enforces conditional independence of
transmitted messages, which fails to exploit the underlying
problem structure and hence leads to sub-optimal achievable
regions. In this paper, we introduce a new (random) coding
technique using principles from multiple descriptions encoding
and Han and Kobayashi decoding, which leads to a new and
strictly improved achievable rate region for this problem. We
show that this achievable rate region is complete under certain
special scenarios.

The rest of the paper is organized as follows. In Section II,
we review prior work related to distributed source coding
and network routing. Before stating the problem formally, in
Section III, we provide a simple example to demonstrate the
basic principles underlying DIR. We also demonstrate the sub-
optimality of conventional routing methods using this simple
example. In Section IV, we formally state the DIR problem
and provide an achievable rate region. Next, in Section VII,
we show that this achievable rate region is complete for some
special cases of the setup and finally in Section VIII, we prove
strict improvement in achievable rates.

II. PRIOR WORK

Multi-terminal source coding has one of its early roots in
the seminal work of Slepian and Wolf [7]. They showed, in
the context of lossless coding, that side-information available
only at the decoder can nevertheless be fully exploited as if
it were available to the encoder, in the sense that there is no
asymptotic performance loss. Extensive work followed con-
sidering different network scenarios and obtaining achievable
rate regions for them. Cover extended Slepian and Wolf’s
results to ergodic sources in [8]. Wyner extended Slepian
and Wolf’s results in [9], to a setup involving two encoders
and one decoder, called the decoder side information setup,
wherein the goal of the decoder is to reconstruct only one of
the sources losslessly. Han and Kobayashi [3] extended the
Slepian-Wolf and Wyner’s results to general multi-terminal
source coding scenarios. For a multi-sink network, with each
sink reconstructing a prespecified subset of the sources, they
characterized an achievable rate region for lossless recon-
struction of the required sources at each sink. Csiszár and
Körner [10] provided an alternative characterization of the
achievable rate region for the same setup by relating the region
to the solution of a class of problems called the “entropy
characterization problems”.

One of the first lossy coding extensions was derived by
Wyner and Ziv in [11], that characterizes the complete rate-
distortion region in the presence of decoder side information.

Gray and Wyner considered a related network scenario in [12]
involving three encoders and two decoders and derived the
complete rate-distortion region for this setup. Berger and Tung
extended Wyner-Ziv’s coding scheme to the distributed lossy
source coding setup and derived an achievable rate-distortion
region in [13]. Recently, Wagner et.al derived a new coding
scheme in [14] based on common components and showed
that it strictly improves upon the Berger-Tung region. There
has been extensive work on a related problem in multi-terminal
source coding, called the ‘multiple descriptions’ (MD) prob-
lem, (see [2], [15], [16]) wherein the encoder sends multiple
packets into the network and it is assumed that a subset of
packets are lost during the course. The objective of the decoder
is to reconstruct the source, upto a distortion constraint, based
on the received packets. We note that, although we consider
only lossless networks in this paper, the new coding scheme
we derive is closely related to the MD problem and derives
certain basic principles from MD encoding schemes.

There has also been a considerable amount of work on
joint compression-routing for networks. A survey of routing
techniques for sensor networks is given in [17]. It was shown
in [4] that the problem of finding the optimum route for
compression using explicit communication is an NP-complete
problem. Pattem et.al compared different joint compression-
routing schemes for a correlated sensor grid in [18] and also
proposed an approximate, practical, static source clustering
scheme to achieve compression efficiency. Much of the above
work is related to compression using explicit communication,
without recourse to distributed source coding techniques.
Cristescu et al. [1] considered joint optimization of Slepian-
Wolf coding and a routing mechanism, we call ‘broadcasting’,1

wherein each source broadcasts its information to all sinks
that intend to reconstruct it. Such a routing mechanism is
motivated from the extensive literature on optimal routing
for independent sources [19]. The general optimality of that
approach for networks with a single sink was proven in [6].
We demonstrated its sub-optimality for the multi-sink scenario,
recently in [45]. This paper takes a step further towards finding
the best joint compression-routing mechanism for a multi-sink
network.

We note the existence of a volume of work on minimum
cost network coding for correlated sources, see [20], [21].
But the routing mechanism we introduce in this paper does
not require possibly complex network coders at intermediate
nodes, and can be realized using simple conventional routers.
Throughout the paper, we assume that a ‘conventional router’
is a router that has the standard capabilities of replicating
and/or forwarding a packet. However, the proposed approach,
in principle, can be thought of as an extreme special case of
network coding, and we will briefly discuss their relations in
Section III-D. The approach does have potential implications
on network coding in general, but these are beyond the scope
of this paper.

1Note that we loosely use the term ‘broadcasting’ instead of ‘multicasting’
to stress the fact that all the information transmitted by any source is routed
to every sink that reconstructs the source. Also, our approach to routing is in
some aspects, a variant of multicasting.
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Fig. 2. Example with no helpers - Conventional Routing: Observe that the
rates on the branches connecting the collector to the two sinks is same as that
from E0 to the collector.

III. DISPERSIVE INFORMATION

ROUTING-MOTIVATING EXAMPLE

A. Basic Notation

We begin by introducing the basic notation. In what follows,
2S denotes the set of all subsets (power set) of any set
S and |S| denotes the set cardinality. Note that |2S | = 2|S|.
Sc denotes the set complement (the universal set will be
specified when there is ambiguity) and φ denotes the null
set. For two sets S1 and S2, we denote the set difference
by S1 − S2 = {s : s ∈ S1, s /∈ S2}. Random variables
are denoted by upper case letters (for example X) and their
realizations are denoted by lower case letters (for example x).
We also use upper case letters to denote source nodes and
sinks and the ambiguity will be clarified wherever necessary.
A sequence of n independent and identically distributed (iid)
random variables and its realization are denoted by Xn and xn ,
respectively. For any set X , X n denotes the Cartesian power
of set X , i.e., X n = X ×X × · · · ×X , where A× B denotes
the Cartesian product of two sets A and B. The length n,
ε-typical set is denoted by T n

ε . We refer the readers to
Appendix A for a formal definition of a typical set, used
throughout this paper. X ↔ Y ↔ Z denotes that the three
random variables (X, Y, Z) form a Markov chain in that
order. Notation in [22] is used to denote standard information
theoretic quantities.

B. Illustrative Example - No Helpers Case

We first begin with a very simple example to motivate
the new routing paradigm. Consider the network shown
in Fig. 2. There are three source nodes, E0, E1 and E2
and two sinks S1 and S2. The three source nodes observe
correlated memoryless sequences Xn

0 , Xn
1 and Xn

2 , respectively.
Sink S1 reconstructs the pair (Xn

0 , Xn
1 ), while S2 reconstructs

(Xn
0 , Xn

2 ). E0 communicates with the two sinks through an
intermediate node (called the ‘collector’) which is functionally
a simple router. The edge weights on each path in the network
are as shown in the figure. The cost of communication through
an edge, e, is a function of the bit rate flowing through it,
denoted by Re and the corresponding edge weight, denoted by
We, which in this paper, we will assume to be a simple product
C(Re, We) = ReWe. We further assume that the total cost
is the sum of individual communication cost over each edge.

The objective is to find the minimum total communication cost
for lossless transmission of sources to the respective sinks.

We first consider the communication cost when broadcast
routing is employed [1] wherein the router forwards all the
bits received from E0 to both the decoders. In other words,
routers in a network are not allowed to “split” a packet and
forward a portion of the received information on the forward
paths. Hence the branches connecting the collector to the two
sinks carry the same rates as the branch connecting E0 to the
collector. We denote the rate at which X0, X1 and X2 are
encoded by R0, R1 and R2, respectively.

Using results in [1], it can be shown that the minimum
communication cost under broadcast routing is given by the
solution to the following linear programming formulation:

Cbr = min{(W0 + W1 + W2)R0 + W11 R1 + W22 R2} (1)

under the constraints:

R0 ≥ max(H (X0|X1), H (X0|X2))

R1 ≥ H (X1|X0)

R2 ≥ H (X2|X0)

R1 + R0 ≥ H (X0, X1)

R2 + R0 ≥ H (X0, X2) (2)

To gain intuition into dispersive information routing, we
will later consider a special case of the above network when
the branch weights are such that W11, W22 � W0, W1, W2.
Let us specialize the above equations for this case. The
constraint W11, W22 � W0, W1, W2, implies that X1 and X2
should be encoded at rates R1 = H (X1) and R2 = H (X2),
respectively. Therefore the scenario effectively captures the
case when X1 and X2 are available as side information at
the respective decoders. It follows from (1) and (2) that for
achieving minimum communication cost, R0 is:

R∗
0 = max {H (X0|X1), H (X0|X2)} (3)

and therefore the minimum communication cost is given by:

C∗
br = (W0 + W1 + W2)R∗

0 + W11 H (X1) + W22 H (X2) (4)

Is this the best we can do? The collector has to transmit enough
information to sink S1 for it to decode X0 and therefore the
rate is at least H (X0|X1). Similarly the rate on the branch
connecting the collector to S2 is at least H (X0|X2). But if
H (X0|X1) �= H (X0|X2), there is excess rate on one of the
branches.

Let us now relax this restriction and allow the collector node
to “split” the packet and route different subsets of the received
bits on the forward paths. We could equivalently think of the
source E0 transmitting 3 smaller packets to the collector; the
first packet has a rate R0,12 bits and is destined to both sinks.
Two other packets have rates R0,1 and R0,2 and are destined
to sinks S1 and S2, respectively. Technically, in this case, the
collector is again a simple conventional router.

We refer to such a routing mechanism, where each interme-
diate node transmits a subset of the received bits on each of the
forward paths, as “Dispersive Information Routing” (DIR).
Note that DIR does not require possibly complex coders at
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Fig. 3. Example - DIR. Note that the notion of ‘packet splitting’ is equivalent
to the sources transmitting multiple smaller packets.

Fig. 4. Venn Diagram based intuition: Amount of information routed using
DIR when operating at point P1. Observe that each of the sinks receive
information at the respective minimum rates. Green represents R0,12, Blue
represents R0,1 and Red represents R0,2.

intermediate nodes, and can always be realized using conven-
tional routers (which have standard capabilities of replication
and/or forwarding), with each source transmitting multiple
packets into the network intended to different subsets of
sinks. Hereafter, we interchangeably use the ideas of “packet
splitting” at intermediate nodes and conventional routing of
smaller packets, noting the equivalence in achievable rates and
costs. This scenario is depicted in Fig. 3 with the modified cost
each packet encounters.

Two obvious questions arise - Does DIR achieve a lower
communication cost compared to conventional routing? If so,
what is the minimum communication cost under DIR?

We first aim to find the minimum cost using DIR under the
special case of W11, W22 � W0, W1, W2 (i.e., R1 = H (X1)
and R2 = H (X2)). To establish the minimum communication
cost, we need to first establish the complete rate region for
the rate tuple {R0,1, R0,12, R0,2}, for lossless reconstruction
of Xn

0 at both the decoders and then find the point in the
achievable rate region that minimizes the total communication
cost, determined using the modified weights shown in Fig. 3.

Before deriving the ultimate solution, it is instructive to
consider one operating point, P1 � {R0,1, R0,12, R0,2} =
{I (X1; X0|X2), H (X0|X1, X2), I (X2; X0|X1)} and provide
the coding scheme that achieves it. Extension to other “inter-
esting points” and to the whole achievable region follows in
similar lines. This particular rate point is considered first due
to its intuitive appeal as shown in a Venn diagram (Fig. 4).

The complete achievable rate region for this setup can be
derived based on a modified version of Slepian and Wolf’s
random binning technique (see [23]). Every typical sequence

of Xn
0 is assigned 3 independent bin indices, using uniform

pmfs over [1 : 2nR0,1 ], [1 : 2nR0,12 ] and [1 : 2nR0,2 ],
respectively. All the sequences with the same first index,
m0,1, form a bin B0,1(m0,1). Similarly bins B0,2(m0,2) and
B0,12(m0,12) are formed for all indices m0,2 and m0,12, respec-
tively. Upon observing a sequence xn

0 ∈ T n
ε with indices

m0,1, m0,2 and m0,12, the encoder transmits index m0,1 to
decoder 1 alone, index m0,2 to decoder 2 alone and index
m0,12 to both the decoders. The first decoder receives indices
m0,1 and m0,12. It tries to find a typical sequence x̂ n

0 ∈
B0,1(m0,1) ∩ B0,12(m0,12) which is jointly typical with the
decoded information sequence xn

1 . As the indices are assigned
independent of each other, every typical sequence has uniform
pmf of being assigned to the index pair {m0,1, m0,12} over
[1 : 2n(R0,1+R0,{1,2})]. Therefore, having received indices m0,1
and m0,12, using arguments similar to Slepian-Wolf [7] and
Cover [8], the probability of decoding error asymptotically
approaches zero if:

R0,1 + R0,12 ≥ H (X0|X1) (5)

Similarly, probability of decoding error approaches zero at the
second decoder if:

R0,2 + R0,12 ≥ H (X0|X2) (6)

The above achievable region can easily be shown to satisfy the
converse and hence is the complete achievable rate region for
this problem. This technique of assigning multiple independent
bin indices to each sequence has appeared in several related
prior work in the past [23]–[27]. In the context of source-
channel coding over broadcast channels, Tuncel derived the
above rate region in [23], and called the coding scheme
as ‘nested binning’. The same region was also obtained by
Timo et.al in [28] in the context of deriving the rate-distortion
region for the Gray-Wyner network [12] with side information.
We term such a binning approach as ‘Power Binning’ in this
paper, as for a more general network involving multiple sinks,
an independent index is assigned to each (non-trivial) subset
of the decoders - the power set. It is worthwhile to note that
the same rate region can also be obtained by applying results
of Han and Kobayashi [3], assuming 3 independent encoders
at E0, albeit with a more complicated coding scheme involving
multiple auxiliary random variables.

The minimum cost operating point is the point that satisfies
equations (5) and (6) and minimizes the cost function:

C∗
DI R−S I = min{(W0 + W1)R0,1 + (W0 + W2)R0,2

+ (W0 + W1 + W2)R0,12} (7)

The solution to the above formulation is:

P2 =
{

{0, h1, h2 − h1} h2 ≥ h1

{h1 − h2, h2, 0} Otherwise

where h1 = H (X0|X1) and h2 = H (X0|X2). Both
these points achieve lower total communication cost
compared to broadcast routing, C∗

conv in (4), for any
W0, W1, W2 	 W11, W22, if H (X0|X1) �= H (X0|X2).

The above coding scheme can be easily extended to the
case of arbitrary edge weights. Then, the rate region for the
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tuple {R1, R2, R0,1, R0,12, R0,2} and the cost function to be
minimized are given by:

C∗
DI R = min{W11 R1 + W22 R2 + (W0 + W1)R0,1

+(W0+W2)R0,2+(W0+W1+W2)R0,12} (8)

under the constraints:

R1 ≥ H (X1|X0)

R0,1 + R0,12 ≥ H (X0|X1)

R1 + R0,1 + R0,12 ≥ H (X0, X1)

R2 ≥ H (X2|X0)

R0,2 + R0,12 ≥ H (X0|X2)

R2 + R0,2 + R0,12 ≥ H (X0, X2) (9)

If R1 = H (X1) and R2 = H (X2), (9) specializes to
(5) and (6). Also, it can easily be shown that the total commu-
nication cost obtained as a solution to the above formulation
is lower than that for conventional routing if W0, W1, W2 > 0.
This example clearly demonstrates the gains of DIR over
broadcast routing to communicate correlated sources over a
network.

C. Discussion

For a general network with N sources and M sinks employ-
ing DIR, all the packet splitting operations at the intermediate
nodes can be equivalently mapped to each source transmitting
2M − 1 packets into the network, where each packet is routed
to a subset of the sinks. It is important to note that the equiv-
alence in cost between the two notions of ‘packet splitting at
intermediate nodes’ and ‘sources transmitting multiple smaller
packets’ holds when the effective cost is a linear function of
the rates on each branch. Quite interestingly, under this linear
assumption, the problem of finding the minimum cost under
DIR reduces to characterizing the set of achievable rates for a
multi-terminal information theoretic setup. The minimum cost
then follows from a standard linear programming formulation.
In this paper, our objective is to characterize a new achievable
rate region for this multi-terminal setup, while noting that the
motivation for considering this new setup is its applicability
in the context of dispersive information routing. Note that,
for more complex cost functions, the problem of establishing
the optimum routes under DIR cannot be dealt independently
from deriving the achievable rate region. The optimum route
then depends on the actual operating rates and hence cannot
be solved independently. Nevertheless, the achievable rate
region for lossless reconstruction remains the same and results
derived in this paper can be extended to handle more complex
cost functions. The extensions are not obvious and hence are
beyond the scope of this paper.

It was shown in [1] that the two problems of DSC
(Slepian-Wolf compression) and optimum broadcast routing
are separable problems, i.e., the optimum routes can be found
without the knowledge of the achievable rates, and vice
versa, the rate region can be found without the knowledge
of the routes. However, we demonstrated in [45] that such
separability holds only under an important assumption - when
sinks only receive information from the source nodes they

intend to reconstruct.2 Such a scenario is called the ‘No
helpers’ case in the literature [10]. We also showed that the
extent of suboptimality due to separating DSC and broadcast
routing is substantial and potentially unbounded when helpers
are allowed to communicate. In general the optimum rate
region cannot be found without the knowledge of the network
costs for broadcast routing. However, for DIR with effective
cost being linear in the rates, the two problems of finding the
optimum rate region and finding the optimum routes from
the source nodes to the sinks can be separated and dealt
independently, without entailing any loss of optimality.3

In fact, as we will see in Section IV-A, the problem of finding
the optimum costs degenerates to the standard Steiner tree
minimization problem, that has been studied extensively [19].

In this paper, our focus is primarily on the associated
achievable rate region for the new multi-terminal information
theoretic setup that arises in the context of DIR. Although,
this new setup has not been explicitly considered in the past,
results pertaining to general multi-terminal source networks
due to Han and Kobayashi [3], can be extended to derive an
achievable region. This extension achieves the complete rate
region for networks with no helpers. However, for networks
with helpers, applicability of their result requires artificial
imposition of independence of certain transmitted messages at
each source, which is an unnecessary restriction. We present
a more general achievable rate region, which maintains the
dependencies between the messages at each encoder. For
the no-helpers setting, both the proposed coding scheme and
the extended Han and Kobayashi coding scheme degenerate
to the Power Binning approach described in section III-B.
However, we show that, even for simplest networks with
helpers, the proposed coding scheme can achieve a strictly
larger region compared to the extended Han and Kobayashi
scheme.

We note that several publications address the problem of
source-channel coding over multi-user networks with corre-
lated sources [23], [29], [30], and the underlying principles
therein are somewhat similar to that in dispersive information
routing. For example, in [23], Tuncel considers source-channel
coding over broadcast channels and the DIR setup shown in
Fig. 3 turns out to be a special case involving only deter-
ministic channels. Similarly, deterministic versions of certain
multi-user channels considered in [29] and [30] can be viewed
as special cases of the general DIR setup. However, in most
of these papers, it is assumed that all the decoders reconstruct
all the sources in the network, a setting involving no helpers,
for which power binning/nested binning achieves the complete
rate region.

The main contribution of this work is to derive a new
coding scheme for the general DIR setup with helpers. The
problem of establishing the complete rate region becomes
considerably harder when there are helpers, a scenario, that

2Observe that the example considered in Section III-B is a no-helpers
scenario.

3Note that even though DIR has the inherent advantage of separability,
finding the optimum operating point requires optimizing over an N × 2M

dimensional space and the effective complexity remains the same as that for
broadcast routing.
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is highly relevant to practical networks. We show that the
proposed coding scheme achieves the complete rate region
for certain special classes of networks with helpers. Some of
the results we derive in this paper can have potential appli-
cations in deriving new source-channel coding schemes for
networks with helpers. Particularly, the setup we will consider
in Section V can be viewed as a generalized Slepian-Wolf
problem over a deterministic interference channel. However,
these extensions are beyond the scope of this paper.

D. Relations to Network Coding

Following the seminal work by Ahlswede et.al [31], network
coding has evolved to be an important research area and has
proven to achieve improved network capacity/lower communi-
cation cost compared to conventional routing. In network cod-
ing, the intermediate nodes are allowed to send arbitrary func-
tions of the information contained in received packets, on each
of the forward paths. Although, the original focus of network
coding was for networks with independent sources, several
researchers have focused on minimum cost network coding
for correlated sources, see [20], [21]. It is interesting to note
that DIR is indeed an extreme special case of network coding,
in the sense that the packet splitting operation can be viewed as
a unique function applied to the received packets. It is hence
arguable whether it is worth finding a solution to the DIR
setup, as it is broadly subsumed in the network coding archi-
tecture. However, DIR has important theoretical and practical
implications which make this study particularly important.

First, from a practical standpoint, the composite packet
splitting operation at all intermediate nodes can equivalently be
achieved using sources transmitting multiple smaller packets
into the network and hence, DIR can always be achieved
using conventional routers, which only need the capability to
replicate and/or forward a packet. A generic network code, on
the other hand, would require more ‘intelligent’ intermediate
nodes that have the capability to compute functions of the
information contained in received packets.

Second, from a theoretical standpoint, the solution to the
DIR problem reduces to establishing a set of achievable rate
tuples for lossless reconstruction of a prescribed subset of
sources at each sink. This is a purely source coding setup and
can be addressed using conventional source coding techniques,
without recourse to inter-play between source coding and
network coding. Moreover, the complete rate region for several
special cases of the general DIR setup can be derived (as we
will see in Section VII) and hence the minimum cost under
DIR can be obtained, while the minimum cost using network
coding is quite difficult to establish, even for very simple
networks. We do note that DIR is strictly sub-optimal, in gen-
eral, compared to network coding. A simple counter-example
follows directly from the popular butterfly network considered
by Ahlswede et.al in their seminal work [31]. It is easy to show
that, for general source distributions, for the butterfly network,
DIR cannot achieve the minimum communication cost. It is
part of our future work to determine the set of networks for
which DIR achieves the minimum cost over all network codes.
Finally we note that, although DIR is strictly suboptimal in

general, it does have potential implications on network coding
in general, but these are beyond the scope of this paper.

IV. DISPERSIVE INFORMATION ROUTING-GENERAL

PROBLEM SETUP

Let a network be represented by an undirected connected
graph G = (V , E). Each edge e ∈ E is associated with
an edge weight, We. The communication cost is assumed to
be a simple product of the edge rate and edge weight, i.e.,
Ce = ReWe. The nodes V consist of N source nodes (denoted
by E1, E2 . . . EN ), M sinks (denoted by S1, S2 . . . SM ), and
|V |-N-M intermediate nodes. We define the sets � =
{1 . . . N} and � = {1 . . . M}. Source node Ei observes n
iid random variables Xn

i , each taking values over a finite
alphabet Xi . Sink Sj reconstructs (requests) a subset of the
sources specified by � j ⊆ �. Conversely, source node Ei

is reconstructed at a subset of sinks specified by �i ⊆ �.
Each of the intermediate nodes have the capability to split a
packet and forward subsets of the received bits on each of
the forward paths. For simplicity, we assume that the source
nodes only send packets into the network and the sink nodes
only receive packets from the network, i.e., the source and the
sinks nodes do not behave as routers. The objective is to find
the minimum communication cost achievable by dispersive
information routing for lossless reconstruction of the requested
sources at each sink when every source node can (possibly)
communicate with every sink.

A. Obtaining the Effective Costs
Under DIR each source transmits at most 2M − 1 packets

into the network, each meant for a different subset of sinks.
Note that, while �i is the subset of sinks reconstructing Xn

i ,
Ei may be transmitting packets to many other subsets of sinks.
Let the packet from source Ei to the subset of sinks K ⊆ �
be denoted by Pi,K and let it carry information at rate Ri,K .

The optimum route for packet Pi,K from the source to these
sinks is determined by a spanning tree optimization (minimum
Steiner tree) [19]. More specifically, for each packet Pi,K, the
optimum route is obtained by minimizing the cost over all trees
rooted at node i which span all sinks j ∈ K. The minimum
cost of transmitting packet Pi,K with Ri,K bits from source i
to the subset of sinks K, denoted by di (K) is:

di (K) = Ri,K min
Q∈Ei,K

∑
e∈Q

we (10)

where Ei,K denotes the set of all paths from source i to the
subset of sinks K. Note that the minimum Steiner tree problem
is NP - hard and requires approximate algorithms to solve
in practice. Also note that in theory, each encoder transmits
2M − 1 packets into the network. While in practice we might
be able to realize improvements over broadcast routing using
significantly fewer packets (see [32]).

B. An Achievable Rate Region

Our main objective in this paper is to find an achievable rate
region for the tuple (Ri,K ∀i ∈ �,K ⊆ �) to achieve lossless
reconstruction of sources specified by � j at sink Sj , ∀ j .
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The minimum communication cost then follows directly from
a simple linear programming formulation. In this section, we
formally introduce the notation and define the achievable rate
region for a general setup. We focus on the coding scheme in
subsequent sections.

In what follows, we use the shorthand {Ui }S for
{Ui,K : K ∈ S} and {U�}S for {Ui,K : i ∈ �, K ∈ S}. Note
the difference between {Ui }S and Ui,S . {Ui }S is a set
of variables, whereas Ui,S is a single variable. For example,
{U1}(1,2,12) denotes the set of variables (U1,1, U1,2,
U1,12) and {U(1,2)}(1,2,12) represents the set (U1,1, U1,2,
U1,12, U2,1, U2,2, U2,12).

We first give a formal definition of a block code and an
associated rate region for DIR. We denote the set {1, 2 . . . L}
by IL for any positive integer L. We assume that the
source node Ei observes the random sequence Xn

i . An
(n, Pe, Li,K; ∀i ∈ �,K ∈ 2� − φ) DIR-code is defined
by the following mappings:

• Encoders:

f E
i : X n

i →
∏

K∈2�−φ

ILi,K i = 1, 2, . . . , N (11)

• Decoders:

f D
j :

∏
i∈�

∏
K∈2�: j∈K

ILi,K → {X n}� j j = 1, 2, . . . , M

(12)

Denoting f E
i (Xn

i ) = {Ti }2�−φ where 1 ≤ Ti,K ≤ Li,K , the
decoder estimates are given by:

{X̂n}� j = f D
j ({T�}(K∈2�: j∈K)) (13)

Note the correspondence between the encoder-decoder map-
pings and dispersive information routing. Observe that packet
Pi,K carries Ti,K at rate Li,K from source i to the subset of
sinks K. The probability of error is defined as the average
of the probabilities of reconstruction error at each of the
decoders, i.e.,:

Pe = 1

M

⎡
⎣∑

j∈�

P({Xn}� j �= {X̂n}� j )

⎤
⎦ (14)

A rate tuple {Ri,K; ∀i,K} is said to be achievable if for any
η > 0 and 0 < ε < 1, there exists a (n, Pe, Li,K; ∀i ∈ �,K ∈
2� − φ) code for n sufficiently large such that,

Ri,K ≤ 1

n
log Li,K + η (15)

with the probability of error less than ε, i.e.,

Pe < ε (16)

There is no single-letter characterization of the complete
region for this problem, but a non-computable characteri-
zation is possible using the results of Han and Kobayashi
in [3]. They also provide a single-letter partial achievable
rate region. However, applicability of their result requires
artificial imposition of independence of transmitted messages,
at each source. We will show in section VIII that the proposed
coding scheme, which maintains the dependencies across the

Fig. 5. The 2 Source - 2 Sink example. Each source acts as the principal
source for one sink and as a helper for the other.

transmitted messages, performs strictly better than the Han and
Kobayashi’s coding scheme for networks with helpers. Note
that the source coding setup which arises out of the DIR frame-
work is a special case of the general problem of distributed
multiple descriptions and therefore the principles underlying
the coding schemes for distributed source coding [3] and
multiple descriptions encoding [2] play crucial roles in deriv-
ing a coding mechanism for dispersive information routing.
It is interesting to observe that, unlike the general MD setting,
the DIR framework is non-trivial even in the lossless scenario
and deriving a complete rate region for lossless reconstruction
at all the sinks is a challenging problem.

C. Note on the Network Model

We note that the network model we consider in this paper
does not capture the interactive nature of a network, in the
sense that the sources are not allowed to receive packets and
sinks are not allowed to send feedback or forward packets
to neighboring nodes in the network. This drawback can be
overcome by allowing the source and sink nodes to also
have routing capabilities, or equivalently, by connecting each
source/sink node to a routing node through a zero weight link,
which is connected to all neighbors through links having the
same edge weights. Although, this approach generalizes the
model to some extent, the sinks would still be assumed to have
the same routing capabilities as all other nodes. The sink nodes
can, in principle, forward the decoded version of the source
sequence, if it turns out to be more beneficial than forwarding
received bits. Our model does not capture this aspect of
networks and hence is not completely general. However, we do
note that the problem gets significantly harder to solve if we
allow the sinks to forward decoded information on the forward
links and requires principles both from dispersive information
routing and compression using explicit communication, to
devise a solution. We therefore consider the simplified model
throughout this paper and address the more general setting as
part of our future work.

V. A SIMPLE NETWORK WITH HELPERS

We will begin with a simple network with helpers that
captures the essence of the new coding scheme and derive the
associated achievable region. However, we defer the formal
proofs for the general case to section IV-B. Consider the
network shown in Fig. 5. Two source nodes E1 and E2 observe
correlated memoryless sequences Xn

1 and Xn
2 , respectively.
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Two sinks S1 and S2 require lossless reconstructions of Xn
1

and Xn
2 , respectively. The source nodes can communicate with

the sinks only through a collector node. The edge weights
are as shown in the figure. Observe that each source, while
requested by one sink, acts as helper for the other.

Under dispersive information routing, each source trans-
mits a packet to every subset of sinks. In this example,
E1 sends 3 packets to the collector at rates (R1,1, R1,2, R1,12),
respectively. The collector forwards the first packet to S1, the
second to S2 and the third to both S1 and S2. Similarly, E2
sends 3 packets to the collector at rates (R2,1, R2,2, R2,12)
which are forwarded to the corresponding sinks. Our objec-
tive is to determine the set of achievable rate tuples
(R1,1, R1,2, R1,12, R2,1, R2,2, R2,12) that allows for lossless
reconstruction at the two sinks.

It is instructive to first consider a trivial outer-bound and
illustrate the sub-optimality of power binning. A trivial out-
erbound follows using standard cut-set bounding techniques
(see [33]), and is given by:

R1,1 + R1,12 ≥ H (X1|X2)

R2,2 + R2,12 ≥ H (X2|X1){
R1,1 + R1,12 + R1,2 + R2,1 + R2,12 + R2,2

}
≥ H (X2, X1)

(17)

The achievable region due to power binning can be easily
obtained using techniques similar to Section III-B. To state the
achievable region using power binning explicitly, we define the
following rate regions:

R1
1 :=

{
R1,1 + R1,12 ≥ H (X1)

}
R2

2 :=
{

R2,2 + R2,12 ≥ H (X2)
}

R12
1 :=

⎧⎪⎨
⎪⎩

R1,1 + R1,12 ≥ H (X1|X2)

R2,1 + R2,12 ≥ H (X2|X1)

R1,1 + R1,12 + R2,1 + R2,2 ≥ H (X1, X2)

R12
2 :=

⎧⎪⎨
⎪⎩

R2,2 + R2,12 ≥ H (X2|X1)

R1,2 + R1,12 ≥ H (X1|X2)

R2,2 + R2,12 + R1,2 + R1,12 ≥ H (X1, X2)

(18)

Note that conditions R1
1 allow for lossless decoding of

X1 at S1. Similarly, conditions R2
2 allow for lossless decoding

of X2 at S2. However, conditions R12
1 and R12

2 allow for
lossless decoding of both X1 and X2 at sinks S1 and S2,
respectively. The power binning region is now given by:

RP B = {R1
1 ∩ R12

1 } ∪ {R2
2 ∩ R12

2 } (19)

This is clearly not equal to the outerbound (17). The primary
difficulty with power binning is that, it allows for only one
of the two extreme situations. For example, at sink S1, on the
one hand, the information received from E2 can be used to
reconstruct xn

2 , and then the sequence xn
1 can be reconstructed

based on xn
2 and the bin indices received from E1. On the other

hand, the information received from E2 can be discarded and
the sequence xn

1 can be reconstructed only based on the bin
indices received from E1. The power binning scheme does not
allow the information from E2 to be useful at S1, unless it is

large enough to decode xn
2 . This sub-optimality with random

binning approach is quite well known in the literature and
is in fact the main motivation for the encoding schemes in
[3] and [9].

We now provide a new coding scheme and an associated
achievable region for the setup in Fig. 5, wherein the infor-
mation from the helpers is utilized without actually decoding
the helper’s source sequence. Suppose we are given random
variables (U1,12, U1,1, U1,2, U2,12, U2,1, U2,2) jointly distrib-
uted with (X1, X2) such that the following Markov chain
conditions hold:

(U1,12, U1,1) ↔ X1 ↔ X2 ↔ (U2,12, U2,1)

(U1,12, U1,2) ↔ X1 ↔ X2 ↔ (U2,12, U2,2) (20)

Then the following rates are achievable:

R1,12 ≥ I (X1; U1,12|U2,12)

R2,12 ≥ I (X2; U2,12|U1,12)

R1,12 + R2,12 ≥ I (X1, X2; U1,12, U2,12)

R1,1 ≥ H (X1|U1,12, U2,12, U2,1)

R2,1 ≥ I (X2; U2,1|U1,12, U2,12, U1,1)

R1,1 + R2,1 ≥ I (X1, X2; U1,1, U2,1|U1,12, U2,12)

+H (X1|U1,12, U2,12, U1,1, U2,1)

R2,2 ≥ H (X2|U1,12, U2,12, U1,2)

R1,2 ≥ I (X2; U1,2|U1,12, U2,12, U2,2)

R2,2 + R1,2 ≥ I (X1, X2; U2,2, U1,2|U1,12, U2,12)

+H (X2|U1,12, U2,12, U1,2, U2,2) (21)

The convex closure of these rates over all random variables,
jointly distributed with (X1, X2), satisfying the conditions
in (20), leads to an achievable region for the setup in Fig. 5.

The encoding is divided into 3 stages.
Encoding: We first focus on the encoding at E1. In the

first stage, 2nR
′
1,12 codewords of U1,12, each of length n are

generated independently, with elements drawn according to
the marginal density P(U1,12). Conditioned on each of these

codewords, 2nR
′
1,1 and 2nR

′
1,2 codewords of U1,1 and U1,2 are

generated according to the conditional densities P(U1,1|U1,12)
and P(U1,2|U1,12), respectively. Codebooks for U2,12, U2,1
and U2,2 are generated at E2 in a similar fashion. On observing
a sequence xn

1 , E1 first tries to find a codeword tuple from the
codebooks of (U1,12, U1,1, U1,2) such that (xn

1 , un
1,12, un

1,1) ∈
T n

ε and (xn
1 , un

1,12, un
1,2) ∈ T n

ε . The probability of finding such
a codeword tuple approaches 1 if,

R
′
1,12 ≥ I (X1; U1,12)

R
′
1,1 ≥ I (X1; U1,1|U1,12)

R
′
1,2 ≥ I (X1; U1,2|U1,12) (22)

Let the codewords selected be denoted by (u1,12,u1,1,u1,2).
Similar constraints on (R

′
2,1, R

′
2,2, R

′
2,12) must be satisfied for

encoding at E2. Denote the codewords selected at E2 by
(u2,12, u2,1, u2,2). It follows from (20) and the ‘Conditional
Markov Lemma’ in [14] that (xn

1 , xn
2 , u1,12, u1,1, u2,12, u2,1) ∈

T n
ε and (xn

1 , xn
2 , u1,12, u1,2, u2,12, u2,2) ∈ T n

ε with high
probability.
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In the second stage of encoding, each encoder uniformly

divides the 2nR
′
i,S codewords of Ui,S into 2nR

′′
i,S bins ∀ i ∈

{1, 2}, S ∈ {1, 2, 12}. All the codewords which have the
same bin index m are said to fall in the bin Ci,S (m)

∀m ∈ (1 . . . 2nR
′′
i,S ). Note that the number of codewords

in bin Ci,S (m) is 2n(R
′
i,S−R

′′
i,S ). If E1 selects the codewords

(u1,12, u1,1, u1,2) in the first stage and if the bin indices
associated with (u1,12, u1,1, u1,2) are (m1,12, m1,1, m1,2), then
index m1,1 is routed to sink S1, m1,2 to sink S2 and
m1,12 to both the sinks S1 and S2. Similarly, bin indices
(m2,12, m2,1, m2,2) are routed from E2 to the corresponding
sinks.

The third stage of encoding, resembles the ‘Power Binning’
scheme described in Section III-B. Every typical sequence of
Xn

1 is assigned a random bin index uniformly chosen over

[1 : 2nR̃1,1 ]. All sequences with the same index, l1,1, form a
bin B1,1(l1,1) ∀l1,1 ∈ {1 . . . 2nR̃1,1}. Upon observing a sequence
Xn

1 ∈ T n
ε with bin index l1,1, in addition to m1,1 (from the

second stage of encoding), encoder E1 also routes index l1,1
to sink S1. Similarly bin index l2,2 is routed from E2 to S2
in addition to m2,2. These bin indices are used to reconstruct
Xn

1 and Xn
2 losslessly at the respective decoders. Note that, in

a general setup, if source i is to be reconstructed at a subset of
sinks �i , the source assigns 2|�i | −1 independently generated
indices, each being routed to a subset of �i . We also note that
U1,1 and U2,2 can be conveniently set to constants without
changing the overall rate region. However, we continue to use
them to avoid complex notation.

Decoding: We again focus on the first sink S1. It receives
the indices (m1,12, m1,1, m2,12, m2,1, l1,1). It first looks for a
pair of unique codewords from C1,12(m1,12) and C2,12(m2,12)
which are jointly typical. Obviously, there is at least one
pair, (u1,12, u2,12), which is jointly typical. The probability
that no other pair of codewords are jointly typical approaches
1 if:

(R
′
1,12 − R

′′
1,12) + (R

′
2,12 − R

′′
2,12) ≤ I (U1,12; U2,12) (23)

Noting that (R
′
1,12 − R

′′
1,12) ≥ 0 and (R

′
2,12 − R

′′
2,12) ≥ 0, and

applying the constraints on R
′
1,12 and R

′
2,12 from (22) we get

the following constraints for R
′′
1,12 and R

′′
2,12:

R
′′
1,12 ≥ I (X1; U1,12|U2,12)

R
′′
2,12 ≥ I (X2; U2,12|U1,12)

R
′′
1,12 + R

′′
2,12 ≥ I (X1, X2; U1,12, U2,12) (24)

The decoder at S1 next looks at the codebooks of U1,1 and U2,1
which were generated conditioned on u1,12 and u2,12, respec-
tively, to find a unique pair of codewords from C1,1(m1,1)
and C2,1(m2,1) which are jointly typical with (u1,12, u2,12).
We again have one pair, (u1,1, u2,1), which is jointly typical
with (u1,12, u2,12). It can be shown using arguments similar
to [3] that the probability of finding no other jointly typical
pair approaches 1 if:

(R
′
1,1 − R

′′
1,1) ≤ I (U1,1; U2,1, U2,12|U1,12)

(R
′
2,1 − R

′′
2,1) ≤ I (U2,1; U1,1, U1,12|U2,12)

{
(R

′
1,1− R

′′
1,1)+(R

′
2,1− R

′′
2,1)

}
≤ H (U1,1|U1,12)+H (U2,1|U2,12)

−H (U1,1, U2,1|U1,12, U2,12) (25)

On substituting the constraints for R
′
1,1 and R

′
1,2 from (22),

and using the Markov chain condition in (20) we get:

R
′′
1,1 ≥ I (X1; U1,1|U1,12, U2,12, U2,1)

R
′′
2,1 ≥ I (X2; U2,1|U1,12, U2,12, U1,1)

R
′′
1,1 + R

′′
2,1 ≥ I (X1, X2; U1,1, U2,1|U1,12, U2,12) (26)

After successfully decoding the codewords
(u1,12, u1,1, u2,12, u2,1), the decoder at S1 looks for a
unique sequence from B1,1(l1,1) which is jointly typical
with (u1,12, u1,1, u2,12, u2,1). We again have xn

1 satisfying
this property. It can be shown that the probability of
finding no other sequence which is jointly typical with
(u1,12, u1,1, u2,12, u2,1) approaches 1 if:

R̃1,1 ≥ H (X1|U1,12, U2,12, U1,1, U2,1) (27)

Similar conditions at sink S2 lead to the following constraints:

R
′′
2,2 ≥ I (X2; U2,2|U1,12, U2,12, U1,2)

R
′′
1,2 ≥ I (X2; U1,2|U1,12, U2,12, U2,2)

R
′′
2,2 + R

′′
1,2 ≥ I (X1, X2; U2,2, U1,2|U1,12, U2,12)

R̃2,2 ≥ H (X2|U1,12, U2,12, U1,2, U2,2) (28)

The first packet from E1, destined to only S1, carries indices
(m1,1, l1,1) at rate R1,1 = R

′′
1,1 + R̃1,1. The second and third

packets carry m1,2 and m1,12 at rates R1,2 = R
′′
1,2 and R1,12 =

R
′′
1,12, respectively and are routed to the corresponding

sinks. Similarly, 3 packets are transmitted from E2 carrying
indices {m2,1, m2,12, (m2,2, l2,2)} at rates (R2,1, R2,12, R2,2) =
(R

′′
2,1, R

′′
2,12, R

′′
2,2 + R̃2,2) to sinks {S1, S2, (S1, S2)}, respec-

tively. Constraints for (R1,1, R1,2, R1,12, R2,1, R2,2, R2,12) can
now be obtained by applying a standard Fourier-Motzkin
elimination procedure on (24), (26), (27) and (28), and
the achievable rate region simplifies to (21). The convex
closure of achievable rates over all such random variables
(U1,12, U1,1, U1,2, U2,12, U2,1, U2,2) gives the achievable rate
region for the 2 source - 2 sink DIR problem. Observe that
in the above illustration, we assumed that the decoding is
performed in a sequential manner, i.e., the codewords of
U1,12 are decoded first followed by the codewords of (U1,1)
and (U1,2), respectively. This was done only for the ease of
understanding. In Theorem 1, we derive the conditions on
rates for the decoders to find typical sequences from all the
codebooks jointly (at once). Note that conditions on the rates
for joint decoding is generally weaker (the region is larger)
than that for sequential decoding. We also note that it is yet
unknown if the above achievable rate region is complete or
if there is an alternate coding scheme that achieves the trivial
outerbound given by (17). Establishing the converse result for
this setup in part of our future work.

VI. ACHIEVABLE REGION FOR THE GENERAL SETUP

We extend the coding scheme described in section V
to derive an achievable rate region for the tuple
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(Ri,K ∀i ∈ �,K ∈ 2� − φ) using principles from
multiple descriptions encoding [2], [15], [16] and Han and
Kobayashi decoding [3], albeit with more complex notation.
Without loss of generality, we assume that every source
can send packets to every sink. For ease of understanding
the notation, we use an arbitrary network with 2 encoders
and 3 decoders as a running example throughout this
section and explain the notation and the coding scheme
for this example along with the general framework. Note
that, for any network with two encoders and three decoders,
� = {1, 2}, � = {1, 2, 3}. For this example, we set �1 = {1},
�2 = {1, 2} and �3 = {2}.

Before stating the achievable rate region in Theorem 1, we
define the following subsets of 2�:

IW = {K : K ∈ 2�, |K| = W }
IW+ = {K : K ∈ 2�, |K| > W } (29)

Let B be any subset of � with |B| ≤ W . We define the
following subsets of IW and IW+:

IW (B) = {K : K ∈ IW , B ⊆ K}
IW+(B) = {K : K ∈ IW+, B ⊆ K} (30)

We also define:

J (S) = {K : K ∈ 2�, |K
⋂

S| > 0} (31)

Note that J (�) = 2� − φ. To make the understand-
ing simpler, we explicitly state a few of these subsets
for the two encoder-three decoder running example: 2� =
{φ, 1, 2, 3, 12, 13, 23, 123}, I1 = {1, 2, 3}, I2 = {12, 13, 23},
I3 = {123}, I1+ = I2 ∪ I3 and I2+ = I3. Let B = {12},
then, I1(B) = φ, I2(B) = {12}, I3(B) = {123}, I1+(B) =
{12, 123}, I2+(B) = {123} and I3+(B) = φ. Let S = {1},
then J (S) = {1, 12, 13, 123}.

Let Q be any subset of 2� − φ. We say that Q ∈ Q∗ if it
satisfies the following property ∀K ∈ Q:

if K ∈ Q ⇒ I|K|+(K) ⊂ Q (32)

For example, one of the elements of Q∗ for the two encoder-
three decoder running example is J ({1}) = {1, 12, 13, 123}.

Let {U�}J (�) be any set of N(2M − 1) random variables
defined on arbitrary finite alphabets, jointly distributed with
{X}� satisfying the following: ∀ j ∈ �,

P({X}�, {U�}J ( j )) = P({X}�)
∏
i∈�

P({Ui }J ( j )|Xi ) (33)

The above Markov condition ensures that all the codewords
which reach a sink are jointly typical with {X}� j . For the
running example, this implies that the following Markov chain
conditions hold:

{U1}{123,12,13,1} ↔ X1 ↔ X2 ↔ {U2}{123,12,13,1}
{U1}{123,12,23,2} ↔ X1 ↔ X2 ↔ {U2}{123,12,23,2}
{U1}{123,13,23,3} ↔ X1 ↔ X2 ↔ {U2}{123,13,23,3} (34)

We next define α(i,Q) as:

α(i,Q) = −H
({Ui }Q|Xi

)
+

∑
K∈Q

H
(

Ui,K|{Ui }I|K|+(K)

)
(35)

∀i ∈ �,Q ⊆ J (�). We further define β(k,Q1,Q2, . . .QN )
∀k ∈ �, Q1,Q2, . . .QN ⊆ J (k) as:

β(k,Q1,Q2, . . .QN ) = H ({Ui}Qc
i
∀i |{Ui}Qi ∀i)

−
∑
i∈�

∑
K∈Qc

i

H (Ui,K|{Ui }I|K|+(K))

(36)

where Qc
i = J (k) − Qi and define γk(�) as:

γk(�) = H
({X}�|{X}�c, {U�}J (k)

)∀k ∈ �,� ⊆ �k (37)

where �c = �k − �.
Just to illustrate, for the two encoder-three decoder running

example, if i = 1, k = 1, Q = Q1 = {123, 12, 13},
Q2 = {123} and � = {1}, then:

α(i,Q) = −H
({U1}{123,12,13}|X1

) + H
(
Ui,12|Ui,123

)
+H

(
Ui,123

) + H
(
Ui,12|Ui,123

)
β(k,Q1,Q2) = −H (U1,1|{U1}{123,12,13}) − H (U2,12|U2,123)

−H (U2,13|U2,123) − H (U2,1|{U2){12,13,123})
+H

(
U1,1,{U2}{12,13,1}|{U1}{123,12,13}, U2,123

)
γk(�) = H

(
X1|{U{1,2}}{123,12,13,1}

)
(38)

We state our main result in the following Theorem.
Theorem 1: Achievable Rate Region for DIR :Let

{U�}2�−φ be any set of random variables satisfying
(33). Let (R

′
i,K ∀i ∈ �,K ∈ 2� − φ) be any set of auxiliary

rate tuples such that:∑
K∈Q

R
′
i,K ≥ α(i,Q) (39)

∀Q ∈ Q∗. Further, let (R
′′
i,K ∀i ∈ �,K ∈ 2� − φ) be any set

of rate tuples such that:∑
i∈�

∑
K∈Qc

i

R
′′
i,K ≥

∑
i∈�

∑
K∈Qc

i

R
′
i,K + β(k,Q1,Q2, . . .QN ) (40)

for each k ∈ �, ∀Q1,Q2, . . .QN ⊆ J (k) satisfying (32) such
that ∃i ∈ {1, . . . , N} : Qi �= J (k). Let (R̃i,K ∀i ∈ �,K ∈
2�k − φ) satisfy: ∑

i∈�

∑
K:k∈K

R̃i,K ≥ γk(�) (41)

∀k ∈ �,� ∈ 2�k −φ. Then, the achievable rate region for the
tuple (Ri,S ∀i ∈ �,S ∈ 2� − φ) contains all rates such that,

Ri,K ≥
{

R
′′
i,K + R̃i,K if K ⊆ 2�i − φ

R
′′
i,K if K � 2�i − φ

(42)

The convex closure of the achievable tuples over all such
N(2M − 1) random variables satisfying (33) is the achievable
rate region for DIR and is denoted by RDI R.

Remark 1: The converse to this achievability region does
not hold in general. A simple counter example follows from
the famous binary modulo two sum problem proposed by
Körner and Marton for the 2 helper setup in [34]. However,
in section VII we prove the converse for certain special cases.
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Remark 2: The coding scheme in Theorem 1 can be easily
specialized to ‘power binning’ by setting {U�}2�−φ to con-
stants. This effectively becomes the ‘no-helpers’ scenario as
setting {U�}2�−φ to constants implies that Ri,S = 0 ∀S /∈ 2�i .

Remark 3: If paths from certain source nodes to sink nodes
do not exist in the network, then several of the auxiliary
random variables in the above theorem can be set to constants,
without any loss of optimality. However, in general, it is not
obvious how to eliminate these auxiliary random variables
without compromising the rate region. We will be considering
this and related optimization problems on computability of the
rate region, as part of our future work.

Remark 4: Lastly, we note that deriving cardinality bounds
to the auxiliary random variables in the above theorem is not
straight-forward and application of standard Carathéodry the-
orem based arguments leads to indefinite cardinality bounds,
similar to the Marton’s achievable region for general broadcast
channels. Just to illustrate, for the two-encoder-three-decoder
running example, we obtain the following bounds on the
cardinalities of {U1}{123,12,13,23}:

|U1,123| ≤ |X1| + C123

|U1,12| ≤ |X1||U1,13||U1,23| + C12

|U1,13| ≤ |X1||U1,12||U1,23| + C13

|U1,23| ≤ |X1||U1,12||U1,13| + C23 (43)

where C123, C12, C13 and C23 are constants,4 independent of
|X1|. Observe that these bounds are indefinite, in the sense that
|U1,12|, |U1,23| and |U1,13| depend on each other. However, it
is possible to derive definite bounds for certain special cases
of the general DIR setup, as we will see in Section VII.
We further note that it may be possible to apply recent
results on cardinality bounding for Marton’s region, based on
perturbation techniques [35], to the DIR setup. However, the
details are quite involved and orthogonal to the rest of this
paper. Hence, we will consider deriving such bounds as part
of our future work.

Proof: We refer to Appendix A for formal definitions and
basic Lemmas associated with typicality.

Encoding: Suppose we are given {U�}2�−φ satisfying (33).
As in section V, the encoding at each node is divided into
3 stages:

1) Stage 1: We focus on the encoding at source
node Ei . The codebook generation is done following the
order of Ui,K, |K| = M, M − 1, M − 2 . . . , 1 as shown

in Fig. 6. First, 2nR
′
i,� independent codewords of Ui,�,

un
i,�( j) j ∈ {1 . . . 2nR

′
i,� }, are generated according to the

density
∏n

t=1 PUi,� (u(t)
i,�). Conditioned on each codeword

un
i,�( j), 2nR

′
i,K codewords of Ui,K : |K| = M − 1 are gener-

ated independent of each other according to the conditional
density

∏n
t=1 PUi,K |Ui,� (u(t)

i,K|u(t)
i,�). Similarly, ∀K : |K| <

M , 2nR
′
i,K codewords of Ui,K are independently generated

conditioned on each codeword tuple of {Ui }I|K|+(K) according

4Applying Carathéodry theorem, without accounting for several repetitions
in terms, leads to values of C123 = 87, C12 = C13 = C23 = 58.

Fig. 6. Illustrates the order of codebook generation at source i .

to
∏n

t=1 PUi,K |{Ui }I|K|+(K)(u
(t)
i,K|{ui }(t)I|K|+(K)). Note that to gen-

erate the codewords of Ui,K , we first need all the codebooks
of {Ui }I|K|+(K). On observing a sequence, xn

i , the encoder at
Ei attempts to find a set of codewords, one for each variable,
such that they are all jointly typical. If it fails to find such
a set, it declares an error. Codebooks are generated similarly
at all the source nodes. Note that all the random variables
Ui,i ∀i ∈ � can be set to constants without changing the rate
region of Theorem 1. However, we continue to use them to
avoid more complex notation.

For the two encoder-three decoder running example,

we focus on the encoding at source node E1. First, 2nR
′
1,123

independent codewords of U1,123 are generated according to
the density

∏n
t=1 PU1,123(u

(t)
1,�). These codewords are denoted

by un
1,123( j) j ∈ {1, . . . , 2nR

′
1,123}. Next, conditioned on each

codeword of U1,123, independent codewords of U1,12, U1,13
and U1,23 are generated according to the respective condi-
tional densities at rates R

′
1,12, R

′
1,13 and R

′
1,23, respectively.

Finally, codewords of U1,1, U1,2 and U1,3, at rates R
′
1,1, R

′
1,2

and R
′
1,3, a generated conditioned on each codeword tuple

of {U1}{123,12,13}, {U1}{123,12,23} and {U1}{123,13,23}, respec-
tively. On observing a sequence xn

1 , the encoder attempts
to find a set of codeword tuples from the codebooks of
{U1}{123,12,13,23,1,2,3}, such that they are all jointly typical.

2) Stage 2: In stage 2, the codewords in each codebook are

divided into uniform bins. Specifically, the 2nR
′
i,K codewords

in any codebook of Ui,K are subdivided into 2nR
′′
i,K bins,

with each bin containing 2n(R
′
i,K−R

′′
i,K) codewords. All the

codewords which have the same bin index m are said to fall in
the bin Ci,K(m) ∀m ∈ (1 . . . 2nR

′′
i,K ). If in stage 1, the encoder

succeeds in finding a jointly typical set of codewords, the bin
index of the codeword of Ui,K is sent as part of packet Pi,K.

3) Stage 3 Power Binning: In this stage, each typical
sequence of Xi is assigned 2|�i | − 1 indices, randomly gen-
erated using uniform pmfs over (1, . . . , 2R̃i,K ) ∀K ∈ 2�i − φ,
respectively. All the sequences of i which have the same bin
index l are said to fall in the bin Bi,K(l) ∀l ∈ (1 . . . 2nR̃i,K ).
On observing a sequence xn

i , if it is typical, the encoder
sends the corresponding bin indices in the packets Pi,K :
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K ∈ 2�i − φ, in addition to the bin indices in stage 2. If
it is not typical, the encoder declares an error. Note that all
packets from source node Ei to a subset of sinks K such that
K ⊆ 2�i − φ, carry two bin indices, one each from stages 2
and 3, respectively.

Just to illustrate, for the example setup considered, the
following bin indices are sent from encoder 1 to decoder 1: Bin
indices of {U1,123, U1,12, U1,13, U1,1} from the second stage of

encoding at rates {2R
′′
1,123, 2R

′′
1,12 , 2R

′′
1,13 , 2R

′′
1,1}, respectively and

two independently assigned bin indices from the third stage
of encoding at rates {2R̃1,1 , 2R̃1,12}, respectively. Similarly, the
following indices are sent from encoder 2 to decoder 2 : Bin
indices of {U2,123, U2,12, U2,23, U2,2} from the second stage of

encoding at rates {2R
′′
2,123 , 2R

′′
2,12 , 2R

′′
2,13 , 2R

′′
2,1 }, respectively and

two independently assigned bin indices from the third stage
of encoding at rates {2R̃2,2 , 2R̃2,23 }, respectively.

In Appendix B, we show that, if the rates R
′
i,K satisfy

(39), then the probability of encoding error asymptotically
approaches zero, i.e., we can, with probability approaching 1,
find a codeword tuple, one from each codebook such that all
the codewords are jointly typical if the rates satisfy (39). Let
the codewords, which are jointly typical with xn

i , be denoted
as u∗

i,K ∀K ∈ J (�) = 2� − φ. To ensure joint typicality
of ({x}n

�, {u∗
�}J (k)), we require a stronger version of the

“conditional Markov lemma” in [14]. We state and prove this
stronger version, called the “conditional Markov lemma for
mutual covering” in Appendix C. From this lemma, it follows
that

({x}n
�, {u∗

�}J (k)

) ∈ T n
ε

({X}n
�, {U∗

�}J (k)

)
with very high

probability given that the encoding at all the source nodes is
error free. Let the bin indices of u∗

i,K (assigned in stage 2) be
denoted by mi,K ∀K ∈ 2� − φ and let the bin indices of xn

i
(assigned in stage 3) be denoted by li,K∀K ∈ 2�i − φ.

Decoding: We focus on a particular sink Sk . Sink Sk receives
all the indices {m�}J (k) of stage 2 of encoding from all
source nodes. It also receives {l�k }J (k) of stage 3 of encoding
from source nodes �k . In the first stage of decoding, it begins
decoding u∗

i,J (k) ∀i ∈ � by looking for a unique jointly
typical codeword tuple from {Ci,J (k)(mi,J (k)); ∀i ∈ �}.
Clearly {u∗

�}J (k) satisfies this property. If the decoder finds
another such jointly typical codeword tuple in the received
bins, it declares an error. In Appendix B, we show that if
conditions (40) are satisfied by R

′′
i,K , then the probability that

the decoder finds another such jointly typical codeword tuple
approaches zero.

In the last stage of decoding, after having decoded all
{u∗

�}J (k), the decoder looks for unique source sequences from⋂{Bi,K(li,K) : i ∈ �k,K � k} which are jointly typical with
{u∗

�}J (k). Hence what remains is to find conditions on R̃i,K to
ensure lossless reconstruction of the respective sources at each
sink. Following similar steps as in [3] and [7], it is easy to
show that this probability can be made arbitrarily small if (41)
is satisfied ∀� ∈ 2�k −φ. We have shown that if the rates sat-
isfy the conditions in Theorem 1, the probability of decoding
error at each sink can be made arbitrarily small. Arbitrarily
small decoding error ensures that the decoder decodes the
correct sequence with very high probability. Hence, if the
rate constraints are satisfied, for any ε > 0, we can find

a sufficiently large n such that:

P(X̂n∑
j
�= Xn∑

j
) < ε (44)

For the running example, let us focus on sink 1. The decoder
at sink 1 receives the following bin indices from the second
stage of encoding at both the sources : {U1,2}{123,12,13,1}.
During the first stage of decoding, it attempts to recover
the codeword tuple {un{1,2}}{123,12,13,1}, from their respective
bin indices. The decoder can recover the codeword tuple if
there is no other tuple, that is jointly typical, within the bins.
It follows from Appendix B that, if the codebook and binning
rates satisfy certain conditions, the decoder can recover the
codeword indices with probability 1, as n → ∞. Ofcourse,
the task of the decoder is to recover the source sequence
xn

1 with vanishing probability of error. Hence, during the
second stage of decoding, the decoder attempts to find a
unique source sequence from the bin indices received from
the third stage of encoding, that is jointly typical with all the
recovered codewords. It is easy to show that if R̃1,1 and R̃1,12
satisfy (41), then the decoder succeeds in recovering the source
sequence with probability approaching 1, as n → ∞.

Recall that packets from source node Ei to sinks K ⊆ �i

carry both mi,K (at rate R
′′
i,K) and li,K (at rate R̃i,K). While

the other packets carry only mi,K (at rate R
′′
i,K). Hence, the

rates of each packet must satisfy the following constraints for
lossless decoding of the requested sources:

Ri,K ≥
{

R
′′
i,K + R̃i,K if K ⊆ 2�i − φ

R
′′
i,K if K � 2�i − φ

(45)

proving the theorem.
Remark 5 (Note on Joint Typicality of Codewords): In the

above theorem, we imposed joint typicality of all codewords,
{u∗

i }J (�), with xn
i . However, this is an unnecessary restriction.

The problem setup only requires joint typicality of codewords
within subsets {u∗

i }J (k), i.e., it is sufficient if {{u∗
i }J (k), xn

i } ∈
T n

ε , ∀k ∈ �, ∀i ∈ �. Imposing joint typicality only within
subsets can potentially lead to strictly larger achievable region
compared to that in the above theorem. Deriving such bounds
in a challenging and important problem of its own right and
is beyond the scope of this paper. It will be considered as part
of our future work. Nevertheless, we would like to point out
that, in Section V, for the setup shown in Fig. 5, we actually
imposed joint typicality only within the required subsets and
did not impose joint typicality across all codebooks. For this
setup however, it is easy to verify that both approaches lead
to the same achievable region and imposing subset wise joint
typicality does not provide any improvement. In fact, it is
possible to show that for any DIR setup with just two sinks,
imposing typicality only within subsets leads to the same
region as imposing joint typicality across all codewords. This
fact will be implicitly exploited in the converse theorem in
Section VII-B.

Remark 6: We note that the above coding scheme uti-
lizes conditional codebooks to exploit correlation between the
transmitted packets from a given source while using random
binning techniques to exploit the dependencies across sources.
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An alternative encoding scheme is to generate all the code-
books independently and to exploit all the dependencies only
using random binning (see [36]). However, it is possible to
show that the resulting rate region is generally subsumed in the
rate region derived in this paper. It may be possible for certain
scenarios that random binning over independently generated
codebooks achieves the same rate region as Theorem 1. Exten-
sions in this direction, including lossy compression are cur-
rently under investigation. Lastly, we note that this approach
of generating a combinatorial number of codewords has been
shown in precursor work to be useful in related applicational
contexts of multiple descriptions coding [2], [37]–[39] and
successive refinement with side information [40], [41].

VII. OUTERBOUNDS TO CERTAIN SPECIAL SCENARIOS

We note that the converse to the achievability region does
not hold in general. However, we can prove the converse for
two important special cases.

A. When There Are no Helpers

Theorem 2: When each sink is allowed to receive packets
only from sources it intends to reconstruct, the complete rate
region for dispersive information routing is given by: ∀ j ∈ �
and ∀S ∈ 2� j − φ:∑

i∈S

∑
K∈2�i −φ, K� j

Ri,K ≥ H
({X}S |{X}� j −S

)
(46)

It is achieved by ‘Power Binning’.
Proof: In the achievable rate region of Theorem 1, setting

Ui,S = � ∀i ∈ �,S ∈ 2� − φ, where � is a constant,
leads to the above rate region. The converse to this rate region
follows directly from the converse to the lossless source coding
theorem [22] (section 15.4.2). In fact, the above rate region is
the cut-set upper bound for the DIR setup. Fix some j ∈ �
and S ∈ 2� j − φ. To derive the upper bound, let us assume
that the sink j can observe all sources i ∈ {� j − S}, i.e., all
sources {� j − S} are available to sink j as side information.
The sink must reconstruct {X}S from all the packets it receives
from the remaining sources. From the lossless source coding
theorem, this is possible only if:∑

i∈S

∑
K∈2�i −φ, K� j

Ri,K ≥ H
({X}S |{X}� j −S

)
(47)

These conditions must be satisfied ∀ j ∈ � and ∀S ∈ 2� j −φ.
Hence, the converse follows.

B. A 2-Sink Network With a Single Helper

The converse can be proven in general for any 2 sink
network with a single helper. However, to avoid complex
notation, we just give a simple example of a 2 sink network
with a single helper and prove the converse to the rate region.
The proof of converse for a general 2 sink network with a
single helper follows in similar lines.

Consider the network shown in Fig. 7, with 3 source nodes
and 2 sinks. The three source nodes E1, E0, E2 observe
three correlated memoryless random sequences Xn

1 , Xn
0 , Xn

2 ,

Fig. 7. Example of a 2-sink, 1 Helper DIR.

respectively. The two sinks S1 and S2 respectively reconstruct
Xn

1 and Xn
2 losslessly. Note that E0 acts as a helper to both

the sinks. Our objective is to find the rate region for the
tuple (R1, R2, R0,1, R0,2, R0,{1,2}) for lossless reconstruction
of the respective sources. The following theorem establishes
the complete rate region.

Theorem 3: Let (U0, U1, U2) be random variables distrib-
uted over arbitrary finite sets U0 ×U1 ×U2, jointly distributed
with (X1, X0, X2) such that the following hold:

X1 ↔ X0 ↔ (U0, U1, U2)

X2 ↔ X0 ↔ (U0, U1, U2) (48)

Then any rate tuple satisfying the following constraints is
achievable for the 2-Sink 1-Helper DIR problem:

R0,12 ≥ I (X0; U0)

R0,1 ≥ I (X0; U1|U0)

R0,2 ≥ I (X0; U2|U0)

R1,1 ≥ H (X1|U0, U1)

R2,2 ≥ H (X2|U0, U2) (49)

The closure of the achievable rates over all such (U0, U1, U2)
is the complete rate region for this setup.

Remark 7: Bounds on cardinalities of (U0, U1, U2) follow
using standard techniques, based on Carathéodry theorem [42]
(see also [33] Appendix C):

|U0| ≤ |X0| + 4

|U1| ≤ |X0|(|X0| + 4) + 1

|U2| ≤ |X0|(|X0| + 4) + 1 (50)

Proof Achievability: Let (U0, U1, U2) be any random
variables satisfying (48). The following achievable rate region
is obtained by setting U0,12 = U0, U0,1 = U1, U0,12 = U2 and
all the remaining random variables to constants in the general
achievable rate region of Theorem 1:

R0,12 ≥ I (X0; U0)

R0,12 + R0,1 ≥ I (X0; U0) + I (X0; U1|U0)

R0,12 + R0,2 ≥ I (X0; U0) + I (X0; U2|U0)

R0,12 + R0,1 + R0,2 ≥ I (X0; U1, U2, U0) + I (U1; U2|U0)

R1,1 ≥ H (X1|U0, U1)

R2,2 ≥ H (X2|U0, U2) (51)
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We further restrict the joint density to satisfy the following
Markov condition in addition to (48):

U1 ↔ (X0, U0) ↔ U2 (52)

On using this Markov condition in (51), the sum rate constraint
on R0,12 + R0,1 + R0,2 becomes:

R0,12 + R0,1 + R0,2 ≥ I (X0; U0) + I (X0; U1|U0)

+I (X0; U2|U0) (53)

Observe that if a rate tuple satisfies (49), then it also satisfies
(51) and hence the region given by (49) is achievable for the
2-Sink 1-Helper problem shown in Fig. 7.

Converse: Recall the notation in the definition of an achiev-
able rate region in Section IV-B. The output of encoder 1
is denoted f E

1 (Xn
1 ) = T1 and the output of encoder 2 is

f E
2 (Xn

2 ) = T2. Remember that 0 ≤ T1 ≤ 2nR1 and 0 ≤
T2 ≤ 2nR2 . Similarly the encoder at E0 transmits 3 indices
denoted by (T0,1, T0,2, T0,12) which are routed to the respective
sinks. Sink S1 receives (T1, T0,1, T0,12) and reconstructs Xn

1
with vanishing probability of error. Similarly sink S2 receives
(T2, T0,2, T0,12) and reconstructs Xn

2 losslessly. We need to
prove that for any code with vanishing probability of error, the
rates must satisfy (49) for some (U0, U1, U2) satisfying (48).

We follow standard converse techniques to prove the above
claim. We begin with the following series of inequalities:

n R0,12 ≥ H (T0,12) ≥ I (Xn
0 ; T0,12)

=
n∑

i=1

I (Xi
0; T0,12|X1,i−1

0 )

= (a)
n∑

i=1

I (Xi
0; T0,12, X1,i−1

0 )

= (b)
n∑

i=1

I (Xi
0; Ui

0,12) (54)

where (a) follows from the memoryless property of the
sources and (b) follows by setting Ui

0,12 = (T0,12, X1,i−1
0 ).

Here Xi
0 denotes the i ’th realization of Xn

0 and X1,i−1
0 denotes

the first i − 1 realizations of Xn
0 . Next we have:

n R0,1 ≥ H (T0,1) ≥ H (T0,1|T0,12)

≥ I (Xn
0 ; T0,1|T0,12)

=
n∑

i=1

I (Xi
0; T0,1|T0,12, X1,i−1

0 )

=
n∑

i=1

I (Xi
0; Ui

0,1|Ui
0,12) (55)

Where Ui
0,1 = (T0,1) ∀i . Similarly, we can show that:

n R0,2 ≥
n∑

i=1

I (Xi
0; Ui

0,2|Ui
0,12) (56)

where Ui
0,2 = (T0,2) ∀i . Note that as (T0,1, T0,2, T0,12, X1,i−1

0 )

depends on (Xi
1, Xi

2) only through Xi
0, we have the following

two Markov chain conditions:

Xi
1 ↔ Xi

0 ↔ (Ui
0, Ui

1, Ui
2)

Xi
2 ↔ Xi

0 ↔ (Ui
0, Ui

1, Ui
2) (57)

Further, we need lossless reconstruction of Xn
1 at S1. The

following series of inequalities hold:

n R1 ≥ H (T1)

≥ H (T1|T0,12, T0,1)

= H (T1|T0,12, T0,1) + H (Xn
1 |T0,12, T0,1, T1)

−H (Xn
1 |T0,12, T0,1, T1)

≥ (a)H (Xn
1, T1|T0,12, T0,1) − nεn

= H (Xn
1 |T0,12, T0,1) − nεn

=
n∑

i=1

H (Xi
1|Xi−1

1 , T0,12, T0,1) − nεn

=
n∑

i=1

H (Xi
1|Ui

0,12, Ui
0,1) − nεn (58)

where (a) follows from Fano’s inequality, i.e.,
H (Xn

1 |T1, T0,1, T0,12) < nεn . Similarly, for lossless
reconstruction at S2, we have:

n R2 ≥
n∑

i=1

H (Xi
2|Ui

0,12, Ui
0,2) − nεn (59)

We next introduce a time sharing random variable Q ∼
Unif[1 : n], independent of (Xn

0 , Xn
1 , Xn

2 , Un
0,1, Un

0,2, Un
0,12),

so that we can rewrite (54), (55), (56), (58) and (59) as:

n R0,12 ≥ I (X Q
0 ; U Q

0,12|Q) = I (X Q
0 ; U Q

0,12, Q)

n R0,1 ≥ I (X Q
0 ; U Q

0,1|U Q
0,12, Q)

= I (X Q
0 ; U Q

0,1, Q|U Q
0,12, Q)

n R0,2 ≥ I (X Q
0 ; U Q

0,2|U Q
0,12, Q)

= I (X Q
0 ; U Q

0,2, Q|U Q
0,12, Q)

n R1 ≥ H (X Q
1 |U Q

0,12, U Q
0,1, Q)

n R2 ≥ H (X Q
2 |U Q

0,12, U Q
0,2, Q) (60)

Setting (U Q
0,12, Q) = U0,12, (U Q

0,1, Q) = U0,1, (U Q
0,2, Q) =

U0,2 and observing that (X Q
0 , X Q

1 , X Q
2 ) has the same density

as (X0, X1, X2) we get the rate region given in (49). �

VIII. STRICT IMPROVEMENT FOR

NETWORKS WITH HELPERS

In this section, we consider a variant of Han and
Kobayashi’s rate region for the DIR setup and show that
the rate region in Theorem 1 is strictly larger. Note that the
original characterization by Han and Kobayashi assumes that
each encoder transmits a single packet that is sent to a subset
of sinks. Application of Han and Kobayashi’s coding scheme
to the DIR setup requires artificial imposition of independent
encoders at each source, which leads to strict sub-optimality
in the rate region, for networks with helpers. Specifically, it
would require us to assume 2|�| − 1 independent encoders
at each source that generate the 2|�| − 1 packets that are
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routed to the respective sinks. We show that, for the 2-sink-
1-helper setup shown in Fig. 7, the rate region in Theorem 1
strictly improves upon the extended Han and Kobayashi rate
region derived assuming three independent encoders at E0.
We denote the Han and Kobayashi rate region obtained by
assuming independent encoders at each source by RH K−I

and the rate region in Theorem 1 by RDI R . Before stating
the result, we specialize the Han and Kobayashi rate region to
the DIR setup and state the rate region explicitly.

Let {U�}J (�) be any set of N(2M − 1) random variables
defined on arbitrary finite alphabets, jointly distributed with
{X}� , satisfying the following conditions ∀i ∈ �, j ∈ �:

P({X}�, {U�}J ( j )) = P({X}�)
∏
i∈�

P({Ui }J ( j )|Xi ) (61)

P
({Ui }J (�)|Xi

) =
∏

K∈2�−φ

P
(

Ui,K
∣∣∣Xi

)
(62)

Let (R
′′
i,K ∀i ∈ �,K ∈ 2� − φ), be any set of auxiliary rate

tuples such that:∑
i∈�

∑
K∈Qc

i

R
′′
i,K ≥ I ({X}�; {Ui}Qc

i
∀i |{Ui}Qi ∀i) (63)

for each k ∈ �, ∀Q1,Q2, . . .QN ⊆ J (k) satisfying (32), such
that ∃i ∈ {1, . . . , N} : Qi �= J (k). Let (R̃i,K ∀i ∈ �,K ∈
2�k − φ) satisfy: ∑

i∈�

∑
K:k∈K

R̃i,K ≥ γk(�) (64)

∀k ∈ �,� ∈ 2�k − φ. Then, an achievable rate region for the
tuple (Ri,S ∀i ∈ �,S ∈ 2� − φ) contains all rates such that,

Ri,K ≥
{

R
′′
i,K + R̃i,K if K ⊆ 2�i − φ

R
′′
i,K if K � 2�i − φ

(65)

The convex closure of these achievable tuples over all such
N(2M − 1) random variables satisfying (62) is denoted by
RH K−I . It is easy to verify that that the above region can
also be obtained from the region in Theorem 1, by restricting
the auxiliary random variables to satisfy (62), in addition to
(33). We next formally state the strict improvement result as
part of the following theorem.

Theorem 4: (a) For any network, we have:

RH K−I ⊆ RDI R

(b) For any network with no helpers:

RH K−I = RDI R

(c) There exist network scenarios with helpers for which:

RH K−I ⊂ RDI R

Specifically, for the 2-sink-1-helper setup shown in Fig. 7,
RH K−I ⊂ RDI R.

Proof: Parts (a) and (b) are rather straightforward to
prove. (a) follows by noting that RH K−I can be obtained from
RDI R by restricting the auxiliary random variables to satisfy
(62), in addition to (33). (b) also follows directly, as for any
network with no helpers, all the auxiliary random variables

in the characterizations of both RH K−I and RDI R , can be
set to constants without any loss of optimality. In fact, both
the regions degenerate to the power binning region, which is
complete for networks with no helpers.

To prove (c), we consider the 2-sink-1-helper setup with
binary symmetric sources and show that RDI R is strictly larger
than RH K−I . We first restate the Han and Kobayashi rate
region assuming independent encoders at E0. Let (U0, U1, U2)
be random variables distributed over arbitrary finite sets U0 ×
U1 × U2, jointly distributed with (X1, X0, X2) such that the
following conditions hold:

X1 ↔ X0 ↔ (U0, U1, U2)

X2 ↔ X0 ↔ (U0, U1, U2)

P(U0, U1, U2|X0) = P(U0|X0)P(U1|X0)P(U2|X0) (66)

Then, the following rate tuples are achievable:

R0,12 ≥ I (X0; U0|U1)

R0,1 ≥ I (X0; U1|U0)

R0,12 + R0,1 ≥ I (X0; U0, U1)

R0,12 ≥ I (X0; U0|U2)

R0,2 ≥ I (X0; U2|U0)

R0,12 + R0,2 ≥ I (X0; U0, U2)

R1 ≥ H (X1|U0, U1)

R2 ≥ H (X2|U0, U2) (67)

The convex closure of the above rate region over all random
variables satisfying (66) is RH K−I . Our objective is to show
that RH K−I is strictly suboptimal. Recall from Theorem 3
that RDI R is complete for this setup.

We consider a particular example where (X0, X1, X2) are
binary symmetric sources such that X1 ↔ X0 ↔ X2 holds.
The transition probabilities are such that X1 and X2 are
obtained as outputs of two independent binary symmetric
channels (BSC) with X0 as input and cross-over probabilities
of P1 and P2, respectively. Without loss of generality, let us
assume that 0.5 > P1 > P2 > 0. We consider one operating
point and show that it is not part of RH K−I . Fix some � > 0,
such that max(Hb(P1) + �, Hb(P2) + �) < 1. Consider the
following operating point:

R1 = Hb(P1) + �

R2 = Hb(P2) + �

R0,12 = 1 − Hb(P01)

R0,1 = 0

R0,2 = Hb(P01) − Hb(P02) (68)

where P01 and P02 solve the respective equations Hb(P1 •
P01) = Hb(P1) + � and Hb(P2 • P02) = Hb(P2) + � where
P1 • P2 = P1(1 − P2) + (1 − P1)P2. We will show that this
point is part of RDI R , but is not in RH K−I .

To prove that it is part of RDI R , we consider the following
joint density for (U0, U1, U2), in Theorem 3. U2 is the output
when X0 is sent through a BSC with cross over probability
P02 and U0 is the output when U2 is sent through a BSC with
cross over probability P012 where P02 • P012 = P01. U1 is set
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as a constant. It is easy to verify from Theorem 3 that the
above rate tuple is achievable and hence is part of RDI R .

Next, we prove that the above point is not in RH K−I .
We note that the proof of this claim is, in fact, very similar
to the [14, Proof of Theorem 6]. However, the proof does not
follow directly from their result. We incorporate some of the
required machinery wherever necessary.

Let us say, there exists a joint distribution satisfying (66),
such that all conditions in (67) are satisfied for the point (68),
i.e.:

I (X0; U0) ≤ 1 − Hb(P01)

I (X0; U1|U0) = 0

H (X1|U0, U1) ≤ Hb(P1) + �

I (X0; U0|U2) ≤ 1 − Hb(P01)

I (X0; U2|U0) ≤ Hb(P01) − Hb(P02)

I (X0; U0, U2) ≤ 1 − Hb(P02)

H (X2|U0, U2) ≤ Hb(P2) + � (69)

Let us focus on the first three conditions in (69). First, observe
that X1 ↔ X0 ↔ {U0, U1} form a Markov chain from
(66). Therefore, the condition I (X0; U1|U0) = 0 implies
that the Markov chain X1 ↔ X0 ↔ U0 ↔ U1, must
hold. Next, the condition I (X0; U0) ≤ 1 − Hb(P01) is
equivalent to H (X0|U0) ≥ Hb(P01) and hence it follows that
H (X0|U0, U1) ≥ Hb(P01). Let X1 = X0 ⊕ Z1, where Z1 ∼
Bern(P1) is independent of {X1, U0, U1}, and ⊕ denotes
the modulo 2 sum. Then the following series of inequalities
follow:

Hb(P1 • P01) = Hb(P1) + �

≥ H (X0 ⊕ Z1|U0, U1)

≥ (a)Hb(P1 • H −1
b (H (X0|U0, U1)))

≥ (b)Hb(P1 • H −1
b (Hb(P01)))

= Hb(P1 • P01) (70)

where (a) follows from Mrs. Gerber’s Lemma [43], (b) follows
from the monotonicity of Hb(·) and H −1

b (·) denotes the inverse
of the binary entropy function. Here, we assume that the range
of the inverse of the binary entropy function is {0 − 0.5}, i.e.,
0 ≤ H −1

b (·) ≤ 0.5. As the LHS and the RHS of the above
series of inequalities are the same, all the inequalities must be
equalities and therefore the following conditions must hold:

H (X1|U0, U1) = H (X0 ⊕ Z1|U0) = Hb(P1 • P01)

H (X0|U0, U1) = H (X0|U0) = Hb(P01) (71)

From the above arguments, it follows that U1 can be any
random variable that in independent of {X0, X1} given U0.
In fact, the specific distribution of U1 does not play a role
in the remainder of the proof, as it does not influence the
remaining inequalities. Let us next focus on U0. Let U0 be the
alphabet of U0 and let |U0| = M . It follows from standard
cardinality bounding techniques that M is finite. Without loss
of generality, let U0 = {1, 2, . . . , M} and let the distribution
over U0 be {q1, q2, . . . , qM }. Let P(X0 = 0|U0 = i) =
pi , i ∈ {1, . . . , M}. This implies that P(X1 = 0|U0 = i) =

pi(1 − P1) + (1 − pi )P1. We have:

H (X0|U0) =
∑

i

qi Hb(pi) = Hb(P01) (72)

H (X0 ⊕ Z1|U0) =
∑

i

qi Hb(pi(1 − P1) + (1 − pi )P1)

=
∑

i

qi Hb(pi • P1)

= Hb(P1 • P01) (73)

As Hb(x) is strictly concave in the range x ∈ [0, 0.5], (72)
and (73) imply that M has to be even and H (X0|U0 = i) =
Hb(P01), ∀i ∈ {1, . . . , M}. As X0 is a binary symmetric
random variable, it implies that U0 can be divided into two
sub-groups, such that, pi = P01 ∀i ∈ {1, . . . , M

2 }, pi = 1−P01

∀i ∈ { M
2 + 1, . . . , M} and qi+ M

2
= qi ∀i ∈ {1, . . . , M

2 }. As
a consequence, U0 can be split into two independent random
variables {Ub

0 , V }, without any loss of optimality, where Ub
0

is a binary symmetric random variable and V is a random
variable taking values over an alphabet of size M

2 , with a
distribution of P(V = i) = 2qi , ∀i ∈ {1, . . . , M

2 }. Note
that the conditional distribution P(X0|U0) = P(X0|Ub

0 , V ) =
P(X0|Ub

0 ), and is given by the BSC with cross-over proba-
bility P01. As V is independent of Ub

0 and the Markov chain
condition X0 ↔ Ub

0 ↔ V holds, V must be independent of
(X0, Ub

0 ). In fact, if M is 2, U0 is a standard binary symmetric
random variable and V is a constant.

Our objective now is to show that there does not exist a
joint density satisfying (66), such that conditions (69) hold,
where:

i) U0 = {Ub
0 , V }, where Ub

0 is a binary symmetric random
variable and V is a random variable that takes values
over an alphabet of size M

2
ii) P(X0|U0) = P(X0|Ub

0 )
iii) P(X0|Ub

0 ) is distributed according to a BSC with cross-
over probability P01 and

iv) V is independent of (X0, Ub
0 ).

Let us again suppose that such a joint density exists and
let the alphabet of U2 be U2. Let us focus on the last four
conditions in (69). Note that, as the distribution of (X0, U0)
is fixed, it is sufficient to consider only the following three
conditions:

I (X0; U0|U2) ≤ 1 − Hb(P01)

I (X0; U2|U0) ≤ Hb(P01) − Hb(P02)

H (X2|U0, U2) ≤ Hb(P2) + � (74)

From the second condition above, we have:

H (X0|U0, U2) ≥ Hb(P02) (75)

Next, let X2 = X0 ⊕ Z2, where Z2 ∼ Bern(P2) and is
independent of (X0, U0, U2). We have the following series of
inequalities:

Hb(P2 • P02) = Hb(P2) + � ≥ H (X2|U0, U2)

= H (X0 ⊕ Z2|U0, U2)

≥ (a)Hb(P2 • H −1
b (H (X0|U0, U2)))

≥ (b)Hb(P2 • P02) (76)
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where (a) follows from Mrs. Gerber’s lemma and (b) follows
from monotonicity of Hb(·). As the LHS and RHS of the above
series of inequalities are the same, each inequality must be an
equality and hence, we have:

H (X0|U0, U2) = Hb(P02)

H (X0 ⊕ Z2|U0, U2) = Hb(P2 • P02) (77)

Following similar arguments as before, it again follows from
strict concavity of Hb(·) that H (X0|U0, U2) = Hb(P02),
∀U0 ∈ U0, U2 ∈ U2. Therefore, there exists a function of U0
and U2, 
(U0, U2) = X̂0, such that P(X0 �= X̂0) ≤ P02.
These arguments imply that, if there exists a joint density
satisfying (66), such that conditions (69) hold and (X0, U0)
are distributed such that conditions (i)-(iv) above hold, then
there should exist a function 
(U0, U2) = X̂0, such that
P(X0 �= X̂0) ≤ P02, i.e., the following conditions must hold:

I (X0; U2|Ub
0 , V ) ≤ Hb(P01) − Hb(P02)

{Ub
0 , V } ↔ X0 ↔ U2

P(X0 �= 
(Ub
0 , V , U2)) ≤ P02 (78)

However, it is well known that these conditions cannot
hold simultaneously if X0 is a binary symmetric source and
P(Ub

0 |X0) is distributed according to a BSC with cross-
over probability P01 [44].5 Recall that the same conditions
appear in the context of the Wyner-Ziv setup with Hamming
distortion, when the source and side information are binary
symmetric with the conditional distribution given by BSC
(see [11, Sec. 2]). If there existed such a joint density, then
there would be no loss in the corresponding Wyner-Ziv setup,
compared to a setup where the side information is available
to both the encoder and the decoder. However, it is well
known that there is a strict loss in the Wyner-Ziv setup with
Hamming distortion, when the sources are binary symmetric
with the conditional distribution given by BSC. This leads to
a contradiction and implies that there cannot exist such a joint
density. Hence, for the 2-sink-1-helper setup shown in Fig. 7,
RH K−I ⊂ RDI R .

Remark 8: It is interesting to note that the Wyner-Ziv prob-
lem is inherently a lossy setup and the scenarios that we focus
on in this paper are all lossless. However, the last condition
in (78) mimics the distortion constraint in the Wyner-Ziv
framework and hence enables us to incorporate results from
the lossy setting. In fact, the source of sub-optimality for the
Han and Kobayashi coding scheme when applied to the DIR
setup, in exactly same as that in the Wyner-Ziv setting. In the
Wyner-Ziv setup, the codeword generated at the source must
be independent of the side information sequence given the
source sequence. This constraint manifests itself as a Markov
chain condition in the Wyner-Ziv characterization and leads
to the strict loss over joint encoding, for certain sources and
distortion measures. Application of the Han and Kobayashi
scheme to the DIR setup requires artificial imposition of
independence of certain transmitted messages, which appear
as Markov chain conditions in (66), and lead to strict loss over
the proposed encoding scheme.

5Note that V is independent of (X0, Ub
0 ) and hence does not affect the

Wyner-Ziv bound.

IX. CONCLUSION

This paper considers a new routing paradigm called dis-
persive information routing, wherein each intermediate node
is allowed to “split a packet” and forward subsets of the
information on individual forward paths. We demonstrated
using simple examples the gains of DIR over conventional
routing techniques. Under certain assumptions on the cost
function, the problem of finding the minimum cost under
DIR essentially reduces to characterizing an achievable rate
region for a new multi-terminal information theoretic setup.
We proposed a new coding scheme for this setup using
principles from multiple descriptions encoding and showed
that it achieves the complete rate region for certain spe-
cial cases of the setup. We further showed that this coding
scheme strictly improves upon a corresponding variant of the
Han and Kobayashi coding scheme, that was proposed for
general multi-terminal source networks.

APPENDIX A
TYPICALITY DEFINITION AND LEMMAS

We follow the notation and the notion of strong typicality
defined in [3]. Let γ = {1, . . . , m} and let Zγ denote a vector
of random variables taking values in a finite set Zγ = Z1 ×
Z2 × · · ·Zm .

Definition 1: Let 0 < ε < 1 be given. Denote by p(iγ ) =
Pr(Zγ = iγ ) ∀iγ ∈ Zγ . Define the length n ε−typical set as:

T n
ε (Zγ ) =

{
zn
γ : |N(iγ |zn

γ ) − np(iγ )| ≤ εnp(iγ )

log |Zγ | ∀iγ ∈ Zγ

}
(79)

where N(iγ |zn
γ ) denotes the number of occurrences (fre-

quency) of iγ in zn
γ . Every sequence which belongs to this

set is called an ε−typical sequence. We denote it by T n
ε when

the associated variables are clear from the context. We also
omit the superscript n when it is obvious from the context.
For any subset α ⊆ γ , we define:

T n
ε (Zα) =

{
zn
α : (zn

α, zn
αc) ∈ T n

ε (Zγ ) for some zn
αc ∈ Zn

αc

}
(80)

where αc = γ − α. For two disjoint subsets α, β ⊆ γ , we
define the conditional typical set given zn

β ∈ Zn
β as:

T n
ε (Zα|zn

β) =
{

zn
α : (zn

α, zn
β) ∈ T n

ε (Zα∪β)
}

(81)

Lemma 1: Let 0 < ε < 1 be given. For two disjoint subsets
α, β ⊆ γ and for n sufficiently large, the following properties
hold:

a)
Pr(Zn

α ∈ T n
ε (Zα)) ≥ 1 − ε (82)

b) For any zn
α ∈ Zn

α , we have:

2−nH(Zα)−nε ≤ Pr(Zn
α = zn

α) ≤ 2−nH(Zα)+nε (83)

c)
(1 − ε)2nH(Zα)−nε ≤ |T n

ε (Zα)| ≤ 2nH(Zα)+nε (84)

d) For any zn
β ∈ Zn

β , we have:

Pr(Zn
α ∈ T n

ε (Zα|zn
β)
∣∣Zn

β = zn
β) ≥ 1 − ε (85)
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e) For any zn
α ∈ Zn

α and zn
β ∈ Zn

β , denoting Pr(Zn
α =

zn
α

∣∣Zn
β = zn

β) by P(zn
α

∣∣zn
β), we have:

2−nH(Zα |Zβ )−2nε ≤ P(zn
α

∣∣zn
β) ≤ 2−nH(Zα |Zβ)+2nε (86)

f) For any zn
β ∈ Zn

β :

2−nH(Zα |Zβ)−2nε ≤ |T n
ε (Zα|zn

β)| ≤ 2−nH(Zα |Zβ )+2nε (87)
Proof: Refer to [3].

APPENDIX B
BOUNDING ENCODING/DECODING

ERRORS IN THEOREM 1

Probability of Encoding Error: Let us analyze the proba-
bility of encoding error at source node Ei . Let E denote the
event of an encoding error. We have:

P(E) = P(E |xn
i ∈ T n

ε )P(xn
i ∈ T n

ε )

+P(E |xn
i /∈ T n

ε )P(xn
i /∈ T n

ε ) (88)

From standard typicality arguments, we have P(xn
i /∈

T n
ε ) → 0 as n → ∞. Hence, it is sufficient to find conditions

on the rates to bound P(E |xn
i ∈ T n

ε ).
Towards finding conditions on the rate to bound P(E |xn

i ∈
T n

ε ), we define the random variables:

χ({ j}J (�)) =
{

1 if
(
xn

i , un
i ({ j}J (�))

) ∈ T n
ε

0 else
(89)

We have P(E |xn
i ∈ T n

ε ) = P(
 = 0) where 
 =∑
J (�) χ({ j}J (�)). From Chebyshev’s inequality, it follows

that:

P(
 = 0) ≤ P [|
 − E[
]| ≥ E[
]/2] ≤ 4Var(
)

(E[
])2 (90)

From [3, Lemma 3.1], we can bound E[
] as follows:

E[
] ≥ 2n
∑

K∈J (�) R
′
K−n(α(i,J (�))+ε) (91)

where

α(i,Q) = −H
({Ui }Q|Xi

) +
∑
K∈Q

H
(

Ui,K|{Ui }I|K|+(K)

)
(92)

∀i,Q ⊆ J (�). We follow the convention αW (i, φ) = 0. Next
consider Var(
) = E[
2] − (E[
])2 where,

E[
2] =
∑

{ j }J (�)

∑
{k}J (�)

E
[
χ({ j}J (�))χ({k}J (�))

]
=

∑
{ j }J (�)

∑
{k}J (�)

P
[
χ({ j}J (�)) = 1, χ({k}J (�)) = 1

]
(93)

The probability in (93) depends on whether un
i ({ j}J (�)) and

un
i ({k}J (�)) are equal for a subset of indices. Let Q ⊆

J (�), Q �= φ, such that { j}Q = {k}Q. Observe that,
due to the hierarchical structure in the conditional codebook
generation mechanism, for un

i ({ j}Q) = un
i ({k}Q) to hold,

Q must be such that,

if K ∈ Q ⇒ I|K|+(K) ⊂ Q (94)

i.e., Q ∈ Q∗ given in (32). It follows from the code-
book generation mechanism that given the codeword tuple
{un

i ({ j}Q)}, tuples {un
i ({ j}J (�)−Q)} and {un

i ({k}J (�)−Q)} are
independent and identically distributed. Hence we can rewrite
the probability in (93) for some Q ⊆ J (�), Q �= φ, as:

P
[
E({ j}J (�)) ∩ E({k}J (�))

] =
(

P
[
E({ j}J (�))

]
P
[
E({ j}Q)

]
)2

×P
[
E({ j}Q)

]
(95)

However, note that if Q = φ, then:

P
[
E({ j}J (�)) ∩ E({k}J (�))

] = (
P
[
E({ j}J (�))

])2 (96)

Next, the total number of ways of choosing { j}J (�) and
{k}J (�) such that they overlap in the subset Q is:

2n
∑

K∈Q R
′
i,K

∏
K∈J (�)−Q

2nR
′
i,K (2nR

′
i,K − 1)

≤ 2n{∑K∈J (�) R
′
i,K+2

∑
K∈J (�)−Q R

′
i,K} (97)

On substituting (95) and (97) in (93), we bound Var(
) as:

Var(
) ≤
∑{

2
−2n

(
α(i,J (�))−∑

K∈J (�) R
′
i,K

)

2
n
(
α(i,Q)−∑

K∈Q R
′
i,K

)
+5nε

}
(98)

where the summation is over all non-empty Q such that (94)
holds. Observe that the term corresponding to Q = φ gets
canceled with the ‘(E[
])2’ term in Var(
). Inserting, (98)
and (91) in (90), we get:

P(E |xn
i ∈ T n

ε ) ≤ 4
∑

2
n
(
α(i,Q)−∑

K∈Q R
′
K
)
+7nε

(99)

where the summation is over all non-empty Q satisfying (94).
Hence, the probability of encoding error at all the source nodes
can be made arbitrarily small if:∑

K∈Q
R

′
i,K ≥ α(i,Q) + 7ε (100)

∀i,Q satisfying (94).
Probability of Decoding Error: We focus on decoding at

sink Sk . We first bound the probability of error for the first
stage of decoding. The decoder looks for a unique codeword
tuple from

{
{C�}J (k)

({m�}J (k)

)}
which are jointly typical.

We know that {u∗
�}J (k) are jointly typical from the Markov

Lemma in Appendix C. We have to find conditions on R
′′
i,S

to ensure no other tuple satisfies this property. Denote by F
the event of a decoding error given the encoding is error-free.
Due to the symmetry in codebook generation, we can assume
that the index tuple of {u∗

�}J (k) is (1, . . . , 1). Let { j�}J (k) be
an index tuple such that:

{ j�}J (k) �= (1, . . . , 1) (101)

Define the event F({ j�}J (k)) as:

F({ j�}J (k)) =
{(

un
�({ j�}J (k))

) ∈ T n
ε

}
(102)
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Fig. 8. Depicts the different Markov lemmas. (a) Generalized Markov Lemma [3]. (b) Conditional Markov Lemma [14]. (c) Conditional Markov Lemma -
for mutual covering.

It then follows from union bound that:

P(F) ≤
∑

P
(
F({ j�}J (k))

)
(103)

where the summation is over all { j�}J (k) �= (1, . . . , 1).
However, a subset of indices of { j�}J (k) can still be equal
to 1. We expand the above summation over all such possible
subsets. Let Q1,Q2, . . .QN ⊆ J (k) satisfying (94) be such
that the following holds6:

∃i ∈ {1, 2, . . . , N} : Qi ⊂ J (k) (104)

i.e., at least one of the Qi ’s is a strict subset of J (k). Define
the set:

AQ1,Q2,...,QN = { j�}J (k) : ∀i

{
ji,K = 1 if K ∈ Qi

ji,K �= 1 otherwise

Then, we can expand (103) as:

P(F) ≤
∑∑

P
(
F({ j�}J (k))

)
(105)

where the first summation is over all {Q1, . . . ,QN : Qi ⊆
J (k), satisfying (94) and (104)} and the second summa-
tion is over all { j�}J (k) ∈ AQ1,Q2,...QN . We note that,
due to the conditional independence of the codewords gen-
erated, P

(
F({ j�}J (k))

)
is the same for all { j�}J (k) ∈

A(Q1,Q2, . . .QN ), i.e., P
(
F({ j�}J (k))

)
depends only on

Q1,Q2, . . .QN . We can bound P(F) as:

P(F) ≤
∑{|AQ1,Q2,...QN |P(

F(Qi ; ∀i ∈ �)
)}

(106)

where P(F(Qi ; ∀i ∈ �)) =P
(
F(Q1,Q2, . . . ,QN )

)
denotes

P(F({ j�}J (k))) for some { j�}J (k) ∈ AQ1,Q2,...QN and
the summation is over all {Q1, . . . ,QN : Qi ⊆
J (k), satisfying (94) and (104)}. We next bound the individ-
ual terms in the above product. Recall that each of the bins

Ci,S (·) have 2n(R
′
i,S−R

′′
i,S ) codewords. Using Lemma 3.1 [3],

6Again observe that it is sufficient for us to consider Qi s which satisfy (94)
due to the hierarchical structure of the conditional codebook generation.

we can bound both the terms in the above product as:

P
(
F(Qi ; ∀i ∈ �)

) ≤ 2
nH

(
{Ui }Qc

i
∀i
∣∣{Ui }Qi ∀i

)

2
n
∑
i∈�

∑
K∈Qc

i

H
(

Ui,K
∣∣{Ui }I|K|+(K)

)
−4nε

|AQ1,Q2,...QN | ≤ 2
n
∑
i∈�

∑
K∈Qc

i

(R
′
i,K−R

′′
i,K )

(107)

where Qc
i = J (k)−Qi . Substituting (107) in (106), it follows

that P(F) can be made arbitrarily small if: ∀Q1,Q2, . . .QN ⊆
J (k) satisfying (94) and (104),∑

i∈�

∑
K∈Qc

i

(R
′
i,K − R

′′
i,K) ≤

∑
i∈�

∑
K∈Qc

i

H (Ui,K|{Ui }I|K|+(K))

−H
(
{Ui }Qc

i
∀i |{Ui }Qi ∀i

)
− 4ε

(108)

where Qc
i = J (k) − Qi . On plugging in the bounds for R

′
i,K

from (100) into (108), we get (40) in Theorem 1.

APPENDIX C
CONDITIONAL MARKOV LEMMA-FOR

MUTUAL COVERING

It was shown in [3]7 that if a codeword of U1 (denoted
by U∗

1 ) is selected jointly typical with Xn
1 and a codeword of

U2 (denoted by U∗
2 ) is selected jointly typical with Xn

2 and if
U1 ↔ X1 ↔ X2 ↔ U2, then (U∗

1 , Xn
1 , Xn

2 , U∗
2 ) are jointly

typical, with probability approaching 1. This is called the
generalized Markov lemma and is depicted in Fig. 8. Similarly,
Wagner et al. [14] considered the case in which codewords
of U11 and U22 are generated conditioned on codewords
of U1 and U2, respectively. They showed that if a pair of
codewords of (U1, U11) (denoted by (U∗

1 , U∗
11)) are jointly

typical with Xn
1 and a pair of codewords of (U2, U22) (denoted

by (U∗
2 , U∗

22)) are typical with Xn
2 , and if (U1, U11) ↔ X1 ↔

X2 ↔ (U2, U22), then (U∗
1 , U∗

11, Xn
1 , Xn

2 , U∗
2 , U∗

22) are jointly
typical, with probability approaching 1. This is called the

7We note that an earlier Markov Lemma proof appeared in [13]. However
the proof in [3] is easily extendible to more general settings as it is based on
standard typicality arguments.
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conditional Markov lemma for obvious reasons and is depicted
in Fig. 8. However, these results are not sufficient for our
scenario and we require a stronger version of the conditional
Markov lemma. In what follows, we will establish a series
of lemmas, culminating with the needed variant called the
conditional Markov lemma for mutual covering (Lemma 4).

We begin by illustrating the need for a
stronger version. Let us consider random variables
(X1, X2, U1, U2, U11, U12, U21, U22), jointly distributed
according to a density that satisfies:

(U1, U11, U12) ↔ X1 ↔ X2 ↔ (U2, U21, U22) (109)

Let codebooks of U1 and U2 be generated according to their
respective marginal densities. Let U∗

1 and U∗
2 be codewords

(selected from the codebooks) that are jointly typical with Xn
1

and Xn
2 , respectively. From the generalized Markov Lemma, it

follows that (U∗
1 , Xn

1 , Xn
2 , U∗

2 ) ∈ T n
ε , with probability 1. Next,

let codebooks of U11 and U12 be generated independently,
conditioned on U∗

1 (according to P(U11|U1) and P(U12|U2),
respectively). Similarly, let codebooks of U21 and U22 be
generated independently, conditioned on U∗

2 . Let U∗
11 and

U∗
12 be codewords, selected from the codebooks, that are

jointly typical with (X, U∗
1 ), i.e., (Xn

1 , U∗
1 , U∗

11, U∗
12) ∈ T n

ε .
Similarly, let U∗

21 and U∗
22 be selected from the respective

codebooks such that (Xn
2 , U∗

2 , U∗
21, U∗

22) ∈ T n
ε . It follows

from the conditional Markov lemma in [14] that the following
conditions hold with probability 1:

(Xn
1 , Xn

2 , U∗
1 , U∗

2 , U∗
1i , U∗

2 j ) ∈ T n
ε i, j ∈ {1, 2}

However, this does not imply that (Xn
1 , Xn

2 , U∗
1 ,

U∗
2 , U∗

11, U∗
12, U∗

21, U∗
22) ∈ T n

ε with probability 1. The
primary source of difficulty arises because the codebooks
of U11 and U12 are generated independently, conditioned
on U∗

1 , and not jointly according to the conditional density
P(U11, U12|U1). Our objective in this appendix is to prove
that (Xn

1 , Xn
2 , U∗

1 , U∗
2 , U∗

11, U∗
12, U∗

21, U∗
22) ∈ T n

ε holds, with
probability 1. We note that this setup lies at the heart of
the DIR encoding scheme and can be easily extended to
more than 2 random variables and layers of encoding, to
incorporate the general DIR setup. However, we restrict
ourselves to the 2 variable case to keep the notation simple.
We also note that the lemmas and proofs here are applicable
to more general contexts beyond DIR.

Lemma 2: Let random variables (Y, U, V1, V2) be given
and let yn ∈ T n

ε (Y ). Let the subset B0(yn) ⊂ T n
ε (U |yn) be

such that:

2n(H(U |Y )−λ) ≤ |B0(yn)| ≤ 2n(H(U |Y )+λ) (110)

for some λ > 0. For every un ∈ B0(yn), let subset
B12(yn, un) ⊂ T n

ε ((V1, V2)|un) be such that:

2n(H(V1,V2|U,Y )−λ) ≤ |B12(yn, un)| ≤ 2n(H(V1,V2|U,Y )+λ)

(111)

and the following hold:

2n(H(V1|U,Y )−λ) ≤ |B1(yn, un)| ≤ 2n(H(V1|U,Y )+λ)

2n(H(V2|U,Y )−λ) ≤ |B2(yn, un)| ≤ 2n(H(V2|U,Y )+λ)

2n(H(V1|U,Y,V2)−λ) ≤ |B̂1(yn, un, vn
2 )| ≤ 2n(H(V1|U,Y,V2)+λ)

2n(H(V2|U,Y,V1)−λ) ≤ |B̂2(yn, un, vn
1 )| ≤ 2n(H(V2|U,Y,V1)+λ)

(112)

where ∀(vn
1 , vn

2 ) ∈ B12(yn, un):

B̂1(yn, un, vn
2 ) = {vn

1 : (vn
1 , vn

2 ) ∈ B12(yn, un)}
B̂2(yn, un, vn

1 ) = {vn
2 : (vn

1 , vn
2 ) ∈ B12(yn, un)}

B1(yn, un) = {vn
1 : ∃(vn

1 , vn
2 ) ∈ B12(yn, un)}

B2(yn, un) = {vn
2 : ∃(vn

1 , vn
2 ) ∈ B12(yn, un)} (113)

Let R0, R1 and R2 be given positive rates. Let U j ( j =
1, . . . , 2nR0) be random variables drawn independently and
uniformly from T n

ε (U). For each U j , let V
1
j k(k = 1, . . . , 2nR1)

and V
2
j k(k = 1, . . . , 2nR2) be random variables drawn inde-

pendently and uniformly from T n
ε (V1|Ū j ) and T n

ε (V2|Ū j ),
respectively. Then for n sufficiently large,

P
(
� j, k1, k2 :U j ∈ B0(yn),(V̄ 1

j k1
,V̄ 2

j k2
)∈ B12(yn, U j )

)≤δ(ε)

(114)

where δ(ε) → 0 as ε → 0, if the rates R0,R1 and R2 satisfy:

R0 ≥ I (Y ; U) + 7λ + 19ε

R0 + R1 ≥ I (Y ; V1, U) + 8λ + 17ε

R0 + R2 ≥ I (Y ; V2, U) + 8λ + 17ε

R0 + R1 + R2 ≥ I (Y ; V1, V2, U) + I (V1; V2|U) + 6λ + 15ε

(115)

Proof: Define the random variable X j,k1,k2 as:

X j,k1,k2 =
{

1 if Ū j ∈ B0(yn), (V̄ 1
k1

, V̄ 2
k2

) ∈ B12(yn, Ū j )

0 else
(116)

Denote by X = ∑
j,k1,k2

X j,k1,k2 . Observe that the probability
in (114) is equal to P(X = 0). From Chebychev’s inequality,
we have:

P (X = 0) ≤ 4V ar(X )

(E[X ])2 (117)

Next we have the following from (110) and (111):

E[X ] =
∑

j,k1,k2

E[X j,k1,k2 ] =(a) 2n(R0+R1+R2) P(X1,1,1)

≥ 2n(R0+R1+R2)
2n(H(V1,V2,U |Y ))−2λ−5ε)

2n(H(U )+H(V1|U )+H(V2|U ))
(118)

where equality in (a) holds because the random variables U j ,

V
1
j k and V

2
j k are drawn independently and uniformly from

their respective typical sets. Also, using (111) and (112), we
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can bound E[X 2] as:

E[X 2] =
∑

j 1,k1
1 ,k1

2

∑
j 2,k2

1 ,k2
2

E[X j 1,k1
1 ,k1

2
X j 2,k2

1 ,k2
2
]

≤ 2n(R0+R1+R2) P1 + 2n(R0+2R1+2R2) P2

+2n(R0+2R1+R2) P3 + 2n(R0+R1+2R2) P4

+22n(R0+R1+R2) P2
1 (119)

where

P1 = 2n(H(V1,V2,U |Y )+2λ+5ε)

2n(H(U )+H(V1|U )+H(V2|U ))

P2 = 2n(H(U |Y )+2H(V1,V2|U,Y )+3λ+9ε)

2n(H(U )+2H(V1|U )+2H(V2|U ))

P3 = 2n(H(V1,U |Y )+2H(V2|U,Y,V1)+4λ+7ε)

2n(H(V1,U )+2H(V2|U ))

P4 = 2n(2H(V1|U,Y,V2)+H(V2,U |Y ))+4λ+7ε)

2n(2H(V1|U )+H(V2,U ))
(120)

On substituting (118), (119) and (120) in (117), we have:

P (X = 0)

≤ 4
[
δ(ε) + 2−n(R0−I (Y ;U )−7λ−19ε)

+2−n(R0+R1−I (Y ;V1,U )−8λ−17ε)

+2−n(R0+R2−I (Y ;V2,U )−8λ−17ε)

+2−n(R0+R1+R2−I (Y ;V1,V2,U )−I (V1;V2|U )−6λ−15ε)
]

(121)

which can be made arbitrarily small if the rates satisfy
(115).

Lemma 3: Let W, Y, U, V1 and V2 be random variables
with values in finite sets W,Y,U,V1 and V2, respectively.
Let W∗ be a random variable with values in Wn, such that:

W∗ ↔ Y n ↔ (Un, V n
1 , V n

2 ) (122)

Let R0, R1 and R2 be given positive rates. Let Ui |2nR0
i=1

denote independent random variables chosen uniformly with
replacement from T n

ε (U). Let V
1
i, j (i = 1, . . . , 2R0 , j =

1, . . . , 2nR1) and V
2
i, j (i = 1, . . . , 2R0 , j = 1 . . . 2nR2) be

random variables drawn independently and uniformly from
T n

ε (V1|Ui ) and T n
ε (V2|Ui ), respectively ∀i . Further, let,

P(W∗, Y n, Un, V n
1 , V n

2 ∈ T n
ε (W, Y, U, V1, V2)) ≥ 1 − η

(123)
Also, suppose ∀vn

1 ∈ T n
ε (V1) and vn

2 ∈ T n
ε (V2):

P
(
(W∗, Y n, Un, V n

1 ) ∈ T n
ε

∣∣V n
2 = vn

2

) ≥ 1 − η

P
(
(W∗, Y n, Un, V n

2 ) ∈ T n
ε

∣∣V n
1 = vn

1

) ≥ 1 − η (124)

Then for n sufficiently large, there exists functions U∗(yn),
V ∗

1 (yn, U∗) and V ∗
2 (yn, U∗), such that:

i) U
∗
(yn) = Ui (for some i ∈ {1, . . . , 2R0})⇒

V ∗
1 (yn, U

∗
) = V̄ 1

i, j1
, V ∗

2 (yn, U
∗
) = V̄ 2

i, j2
for some j1 ∈

{1, . . . , 2nR1} and j2 ∈ {1, . . . , 2nR2}
ii)

P((W∗, Y n, Ū∗, V ∗
1 , V ∗

2 ) ∈ Tε ≥ 1 − δ(ε)

P((W∗, Y n, Ū∗, V ∗
1 ) ∈ Tε

∣∣V ∗
2 ) ≥ 1 − δ(ε)

P((W∗, Y n, Ū∗, V ∗
2 ) ∈ Tε

∣∣V ∗
1 ) ≥ 1 − δ(ε) (125)

for some δ(ε) → 0 as ε → 0, if the rates R0,R1 and R2
satisfy:

R0 ≥ I (Y ; U) + 40ε

R0 + R1 ≥ I (Y ; V1, U) + 41ε

R0 + R2 ≥ I (Y ; V2, U) + 41ε

R0+ R1+ R2 ≥ I (Y ; V1, V2, U)+ I (V1; V2|U)+33ε (126)

Proof: Let us expand (123) as:∑
yn∈Yn

{
P
(
(W∗, Un, V n

1 , V n
2 ) ∈ T n

ε

∣∣∣Y n = yn
)

P(Y n = yn)
}

≥ 1 − η (127)

Let,

A �
{

yn : P
(
(W∗, Un, V n

1 , V n
2 ) ∈ T n

ε

∣∣∣Y n = yn
)

≥ 1 − √
η
}

and
A0 � A

⋂
T n

ε (Y ) (128)

Then using the reverse Markov inequality, we can show that
(similar to [3] and [14]):

P(Y n ∈ A0) ≥ 1 − δ1 (129)

where δ1 = √
η + ε. Then for any yn ∈ A0, we have:∑

un

{
P
(
(W∗, V n

1 , V n
2 ) ∈ T n

ε

∣∣∣Y n = yn, Un = un
)

P
(

Un = un
∣∣∣Y n = yn

)}
≥ 1 − √

η (130)

Let,

B(yn) �
{

un : P
(
(W∗, V n

1 , V n
2 ) ∈ T n

ε

∣∣∣Y n = yn, Un = un
)

≥ 1 − 4
√

η
}

B0 � B
⋂

T n
ε (U |yn) (131)

Using the reverse Markov inequality, we again have:

P
(

Un ∈ B0(yn)
∣∣∣Y n = yn

)
≥ 1 − δ2 (132)

where δ2 = 4
√

η + ε. Hence for any yn ∈ A0 and un ∈ B0(yn)
we have:∑

un,vn
1 ,vn

2

P
(

V n
1 = vn

1 , V n
2 = vn

2

∣∣∣Y n = yn, Un = un
)

Q(yn, un, vn
1 , vn

2 ) ≥ 1 − 4
√

η (133)

where we denote by Q(S)= P
(

W∗ ∈ T n
ε (W |S)

∣∣∣Y n = yn
)

for any set of sequences S. Note that we have used the
Markov condition (122) in the above equation. Now define sets
B̃12(yn, un) and B12(yn, un) for any yn ∈ A0 and un ∈ B0(yn)
such that:

B̃12(yn, un) �
{
(vn

1 , vn
2 ) : Q(yn, un, vn

1 , vn
2 ) ≥ 1 − 8

√
η
}

B12(yn) � B̃12(yn)
⋂

T n
ε (U, V1, V2|yn) (134)
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Then using the reverse Markov inequality, we can show that:

P
(
(V n

1 , V n
2 ) ∈ B12(yn)

∣∣∣Y n = yn, Un = un
)

≥ 1 − δ3 (135)

where δ3 = 8
√

η+ε. Then from (132), (135) and Lemma 3.1(f)
in [3], for n sufficiently large, we have:

2n(H(U |Y )−3ε) ≤ |B0(yn)| ≤ 2n(H(U |Y )+ε)

2n(H(V1,V2|Y,U )−3ε) ≤ |B12(yn, un)|≤2n(H(V1,V2|Y,U )+ε) (136)

Note that we have two of the sets required by Lemma
2. However, we further require bounds on the projections
of B12(yn, un) (as in (112)) to invoke Lemma 2. Towards
obtaining these bounds, we note that the following inequalities
can be shown directly from (123):

P
(
(W∗, Y n, Un, V n

1 ) ∈ T n
ε

) ≥ 1 − η

P
(
(W∗, Y n, Un, V n

2 ) ∈ T n
ε

) ≥ 1 − η (137)

Expanding (137) instead of (123) and repeating all steps from
(127) through (136), we obtain:

2n(H(V1|Y,U )−3ε) ≤ |B1(yn, un)| ≤ 2n(H(V1|Y,U )+ε)

2n(H(V2|Y,U )−3ε) ≤ |B2(yn, un)| ≤ 2n(H(V2|Y,U )+ε) (138)

where

B1(yn, un) = {vn
1 : ∃(vn

1 , vn
2 ) ∈ B12(yn, un)}

B2(yn, un) = {vn
2 : ∃(vn

1 , vn
2 ) ∈ B12(yn, un)} (139)

Similarly, it is easy to show that expanding (124) instead of
(123) leads to:

2n(H(V1|Y,U,V2)−3ε) ≤ |B̂1(yn, un, vn
2 )| ≤ 2n(H(V1|Y,U,V2)+ε)

2n(H(V2|Y,U,V1)−3ε) ≤ |B̂2(yn, un, vn
1 )| ≤ 2n(H(V2|Y,U,V1)+ε)

(140)

where ∀vn
1 ∈ B1(yn, un) and vn

2 ∈ B2(yn, un),

B̂1(yn, un, vn
2 ) = {vn

1 : (vn
1 , vn

2 ) ∈ B12(yn, un)}
B̂2(yn, un, vn

1 ) = {vn
2 : (vn

1 , vn
2 ) ∈ B12(yn, un)} (141)

We now have sets B0 and B12 satisfying all the bounds as
required in Lemma 2. Hence, we can define the functions
U∗, V ∗

1 and V ∗
2 as follows. U∗(yn) = Ui if Ūi ∈ B0(yn). If no

such Ūi exists, we set U∗(yn) = Ū1. Next, if there exists a
pair (V

1
i, j1 , V

2
i, j2 ) such that (V

1
i, j1 , V

2
i, j2) ∈ B12(yn, U i ), then

define (V ∗
1 (yn, U∗), V ∗

2 (yn, U∗)) = (V
1
i, j1 , V

2
i, j2). If there

exists no such pair, define (V ∗
1 (yn, U∗), V ∗

2 (yn, U∗)) =
(V

1
i,1, V

2
i,1).

It follows from the rate conditions in (126), Lemma 2 with
λ = 3ε and the bounds on set sizes that:

P
(

U∗ ∈ B0(Y
n), (V ∗

1 , V ∗
2 ) ∈ B12(Y

n, U∗)
∣∣∣Y n ∈ A0

)
≥ 1 − δ(ε) (142)

for some δ(ε) → 0 as ε → 0. Note that yn ∈ A0,
U∗ ∈ B0(Y n) and (V ∗

1 , V ∗
2 ) ∈ B12(Y n, U∗) imply that

(yn, U∗, V ∗
1 , V ∗

2 ) ∈ T n
ε (Y, U, V1, V2). We then have,

P(W∗, Y n, U∗, V ∗
1 , V ∗

2 ∈ T n
ε ) ≥ P(E1)P(E2|E1) (143)

where events E1 and E2 are defined as:

E1 = {Y n ∈ A0, U∗ ∈ B0, (V ∗
1 , V ∗

2 ) ∈ B12}
E2 = {W∗ ∈ T n

ε (W |Y n, U∗, V ∗
1 , V ∗

2 )} (144)

From (129), (135) and (134), we obtain bounds on P(E1) and
P(E2|E1):

P(E1) ≥ 1 − δ1 − δ2 − δ3

P(E2|E1) ≥ 1 − 8
√

η (145)

On substituting in (143), we obtain the first bound in (125).
The other two bounds in (125) can be shown using similar
arguments.

Lemma 4 (ConditionalMarkovLemma-forMutualCovering):
Suppose that (X1, X2, U1, U2, U11, U12, U21, U22) are
random variables taking values in arbitrary finite sets
(X1,X2,U1,U2,U11,U12,U21,U22), respectively. Let the
random variables satisfy the following Markov condition:

(U1, U11, U12) ↔ X1 ↔ X2 ↔ (U2, U21, U22) (146)

Let U1,i : i = 1, . . . , 2nR1 and U2,i : i = 1, . . . , 2nR2 be
independent codewords of length n each generated using the
marginals P(U1) and P(U2), respectively. Let 2nR11 and 2nR12

codewords of U11 and U12 (denoted by U11,i j and U12,i j ),
respectively, be generated conditioned on each codeword U1,i .
Similarly generate codewords of U21 and U22 at rates R21 and
R22, respectively, conditioned on the codewords of U2. Then
for n sufficiently large, there exists functions U∗

1 (Xn
1 ),U∗

2 (Xn
2 ),

U∗
11(Xn

1 , U∗
1 ), U∗

12(Xn
1 , U∗

1 ), U∗
21(Xn

2 , U∗
2 ) and U∗

22(Xn
2 , U∗

2 )
taking values in Un

1 ,Un
2 ,Un

11,Un
12,Un

21 and Un
22, respectively,

such that:

P
(
(Xn

1 , Xn
2 , U∗

1 , U∗
2 , U∗

11, U∗
12, U∗

21, U∗
22) ∈ T n

ε

) ≥ 1 − δ(ε)
(147)

where δ(ε) → 0 as ε → 0 if the rates satisfy:

R1 > I (X1; U1),

R2 > I (X2; U2)

R1 + R11 > I (X1; U11, U1),

R1 + R12 > I (X1; U12, U1),

R2 + R21 > I (X2; U21, U2),

R2 + R22 > I (X2; U22, U2),

R1 + R11 + R12 > I (X1; U11U12, U1)

+I (U11; U12|U1),

R2 + R22 + R21 > I (X2; U21, U22, U2)

+I (U21; U22|U2) (148)

Note that this lemma can be easily extended to the more
general case of multiple random variables and multiple layers
of encoding using induction (see [3] for the general method-
ology). While we use the more general version in the proof
of Theorem 1 in Appendix B, we restrict to the simpler case
here for ease of understanding and to avoid complex notation.

Proof: We note that from standard arguments [2], [15],
[33], it follows that if the rates satisfy (148), then there exists
functions U∗

1 (Xn
1 ), U∗

11(Xn
1 , U∗

1 ) and U∗
12(Xn

1 , U∗
1 ) such that:

P
(
(Xn

1 , U∗
1 , U∗

11, U∗
12) ∈ T n

ε

) ≥ 1 − δ(ε) (149)
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for some δ(ε) → 0 as ε → 0. Also, note that Xn
2 is drawn

according to the right conditional PMF given Xn
1 . Hence, we

have:

P
(
(Xn

1 , Xn
2 , U∗

1 , U∗
11, U∗

12) ∈ T n
ε

) ≥ 1 − δ(ε) (150)

What remains for us to show is that there exists func-
tions U∗

2 (Xn
2 ), U∗

21(Xn
2 , U∗

2 ) and U∗
22(Xn

2 , U∗
2 ), taking values

in Un
2 ,Un

21,Un
22, jointly typical with Xn

1 , Xn
2 , U∗

1 , U∗
11, U∗

12.
We invoke Lemma 3 with W∗ = (Xn

1 , U∗
1 , U∗

11, U∗
12), Y n =

Xn
2 , U = U2, V1 = U21 and V2 = U22. Note that given

(148) and (150), conditions (122),(123) and (124) are satisfied
(for a formal proof of this claim, refer to [33]). Hence, it
follows from Lemma 3 that there exist functions U∗

2 (Xn
2 ),

U∗
21(Xn

2 , U∗
2 ) and U∗

22(Xn
2 , U∗

2 ) such that:

P
(
(Xn

1 , Xn
2 , U∗

1 , U∗
2 , U∗

11, U∗
12, U∗

21, U∗
22) ∈ T n

ε

) ≥ 1 − δ(ε)

(151)

thus proving the lemma.
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