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There has been considerable interest in distributed source coding (DSC) in recent years, primarily due to
its potential contributions to low-power sensor networks. However, two major obstacles pose an existen-
tial threat to practical deployment of such techniques: the exponential growth of decoding complexity with
network size and coding rates and the critical requirement of resilience to bit errors and erasures, given
the severe channel conditions in many wireless sensor network applications. This article proposes a novel,
unified approach for large-scale, error/erasure-resilient DSC that incorporates an optimally designed, near-
est neighbor classifier-based decoding framework, where the design explicitly controls performance versus
decoding complexity. Motivated by the highly nonconvex nature of the cost function, we present a determin-
istic annealing-based optimization algorithm for the joint design of the system parameters, which further
enhances the performance over the greedy iterative descent technique. Simulation results on both synthetic
and real sensor network data provide strong evidence for performance gains compared to other state-of-the-
art techniques and may open the door to practical deployment of DSC in large sensor networks. Moreover,
the framework provides a principled way to naturally scale to large networks while constraining decoder
complexity, thereby enabling performance gains that increase with network size.
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1. INTRODUCTION AND MOTIVATION

Sensor networks have gained immense importance in recent years, both in the re-
search community and in the industry, mainly due to their practicability in numerous
applications. It is essential to operate them at low power to extend network lifetime.
Since communication consumes significant power, the primary objective of the sys-
tem designer is to operate the sensor nodes/motes at the lowest bit rate possible. It is
widely accepted that exploiting intersensor correlations to compress information is an
important paradigm for such energy-efficient sensor networks. The problem of encod-
ing correlated sources in a network has conventionally been tackled in the literature
from two different directions. The first approach is based on in-network compression,
wherein recompression is performed at intermediate nodes along the route to the sink
[Pattem et al. 2008]. Such techniques tend to be wasteful in resources at all but the
last hop of the sensor network. The second approach involves distributed source cod-
ing (DSC), wherein the correlations are exploited before transmission at each sensor
[Cristescu et al. 2005].

The basic DSC setting involves multiple correlated sources (e.g., data collected by
a number of spatially distributed sensors) that need to be transmitted from different
locations to a central data collection unit/sink. The main objective of DSC is to exploit
intersource correlations despite the fact that each sensor encodes its source without ac-
cess to the other sources. The only information available during the design of DSC is the
joint statistics (e.g., extracted from a training dataset). Current research in DSC can
be categorized into two broad camps. The first camp derives its principles from channel
coding, wherein block encoding techniques are used to exploit correlation [Bajcsy and
Mitran 2001; Pradhan and Ramchandran 2003; Xiong et al. 2004]. While these tech-
niques are efficient in achieving good compression and resilience to channel errors and
packet losses (using efficient error-correcting codes), they suffer from significant delays
and high encoding complexities, which make them unsuitable for an important subset
of sensor network applications. The second approach is based on source coding and
quantization techniques, which introduce low to zero delay into the system. Efficient
design of such low-delay DSC for noiseless systems has been studied in several publica-
tions [Fleming et al. 2004; Cardinal and Assche. 2002; Flynn and Gray 1987; Rebollo-
Monedero et al. 2003; Saxena et al. 2010] and will be more relevant to us in this article.

This article is motivated by two of the major obstacles that have deterred these
approaches from gaining practical significance in real-world sensor networks. First,
the decoder complexity grows exponentially with the number of sources and the coding
rates, making these conventional techniques (typically demonstrated for two to three
sources) infeasible for large sensor networks. As an illustrative example, consider
20 sensors transmitting information at 2 bits per sensor. The base station receives
40 bits and using these it reconstructs estimates of the signals perceived by the 20
sensors. This implies that to fully exploit all information, the decoder has to maintain
a codebook of size 20 × 240, which requires about 175 Terabytes of memory. In general,
for N sensors transmitting at R bits per sensor, the total decoder codebook size would be
N2NR. Some prior research has addressed this important issue (e.g., [Maierbacher and
Barros 2009; Ramaswamy et al. 2010; Yahampath 2009; Yasaratna and Yahampath
2009]). However, methods to date suffer from significant drawbacks, which will be
explained in detail in Section 3.

The second important reason for the inefficiency of current DSC methods is the fact
that sensor networks usually operate at highly adverse channel conditions and codes
designed for noise-free settings provide no resilience to channel errors and erasures.
The design of DSC that is robust to channel errors and erasures is highly challenging,
as the objectives of DSC and channel coding are counteractive in the sense that one

ACM Transactions on Sensor Networks, Vol. 11, No. 2, Article 35, Publication date: December 2014.



Error/Erasure-Resilient DSC for Large-Scale Sensor Networks 35:3

Fig. 1. An example to demonstrate the operating principles of DSC: two sensors observe temperatures
that cannot differ by more than 3◦. The simple DSC approach is to send the first sensor’s temperature (T1)
specifying one of the 100 symbols and the second sensor’s temperature (T2) modulo 7 (specifying one of the
seven symbols). The decoder knows that T2 must be in the range T1 − 3 to T1 + 3 and hence decodes T2
losslessly.

Fig. 2. The sensitivity of DSC to channel errors: for the example shown in Figure 1, a small error in the
decoded value of T1 causes considerable error in T2.

tries to eliminate intersource dependencies while the other tries to correct errors using
the redundancies.

1.1. An Illustrative Example: The Pitfalls of Distributed Quantization

We illustrate the underlying challenge in designing error/erasure-resilient DSC using
a pedagogical example. Consider a simple network with two temperature sensors com-
municating with a base station. The two sensors observe integral temperatures in the
range of 1 to 100 and their objective is to convey their respective temperatures to the
base station, losslessly. Suppose that the sensors are located sufficiently close to each
other so that the difference between their measured temperatures is never greater
than 3◦. If the two sensors were allowed to communicate with each other, one approach
to exploit correlation is to allow the first sensor to communicate its temperature to
the base station (i.e., specify one of the 100 symbols) and then transmit the difference
from the value measured by the second sensor (i.e., specify one of seven symbols). Dis-
tributed source coding provides an elegant approach to perform compression at these
rates, even if the two sensors are not allowed to communicate with each other. Let the
first sensor send its temperature as before, using one of the 100 transmit symbols. Now,
the second sensor sends its temperature modulo 7, which specifies one of seven sym-
bols, and does not require knowledge of the first sensor’s measurement. Let us consider
the decoding operation. Suppose that the channel is noise-free; that is, the decoder re-
ceives error-free information from both the sensors. Let the two sensors’ temperatures
be denoted by T1 and T2, respectively. As the decoder knows T1 exactly, it knows that
T2 must fall in the range T1 −3 to T1 +3. It is easy to verify that all these temperatures
lead to different modulo 7 values for all T1. Hence, the decoder succeeds in decoding T2
without error, even though the encoder at the second sensor has no knowledge of T1.
Figure 1 depicts the decoding operation when there are no channel errors.

However, now let us consider the same encoding scheme when the channel is noisy.
Suppose that T1 is 9 and T2 is 11; that is, the sensors transmit 9 and 4, respectively,
as shown in Figure 2. Further, let us suppose that T1 is corrupted by the channel
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and received at the decoder as 7 instead of 9. It is easy to verify that the decoder
would decode T2 as 4 instead of 11, when the information from the second sensor is
received error-free. Essentially, the nonlinearity introduced at the encoder, to exploit
the correlation between the sensors, makes the system highly susceptible to channel
errors/erasures. The challenge underlying this example is precisely what makes the
design of such distributed source codes, which are robust to channel noise, a very
important and challenging problem. On the one hand, the system could be made com-
pression centric and designed to fully exploit intersource correlations. However, this
reduces the dependencies across transmitted bits, leading to poor error resilience at the
decoder. On the other extreme, the encoders could be designed to preserve all the cor-
relations among the transmitted bits that could be exploited at the decoder to achieve
good error resilience. However, such design fails to exploit the gains due to distributed
compression, leading to poor overall rate distortion performance. The design approach
proposed in Section 5 optimally trades compression efficiency for error resilience to
achieve minimum end-to-end distortion at a fixed decoder complexity.

1.2. Contributions of This Article

Motivated by these practical challenges, we address the problem of error/erasure-
resilient and zero-delay distributed compression for large-scale sensor networks. We
propose a new decoding paradigm, wherein the received bits are first compressed (trans-
formed) down to an allowable decoding rate and the reconstructions are estimated in
the compressed space. A nearest neighbor vector quantizer structure is imposed on the
compressor, which naturally builds error resilience into the system, leading to a unified
error-resilient and complexity-constrained mechanism for distributed coding in large-
scale sensor networks. Essentially, we map every received index to a cloud center based
on a minimum distance criterion leading to partitioning of the received index space
into decoding spheres. The reconstructions are purely based on the sphere to which
the received index belongs. These spheres (clouds), when designed optimally, lead to an
error/erasure-correcting code that serves the dual purpose of a source-channel decoder.
We use design principles from source-channel coding for point-to-point communication
and propose a design strategy, based on greedy iterative descent, to learn the system
parameters and show that it provides significant improvement in performance over
conventional techniques. Motivated by the nonconvex nature of the cost function, we
also propose a deterministic annealing-based design algorithm that provides further
gains by avoiding poor local minima and by approaching the globally optimal solu-
tion. As we will present in Section 4, our methodology overcomes the drawbacks of
conventional approaches, enumerated in Section 3, and provides significant improve-
ments in reconstruction distortion over state-of-the-art methods for both synthetic and
real-world sensor network datasets.

The contributions of the article are summarized as follows:

—We propose a new decoding structure for large-scale DSC wherein the monolithic
decoder is decomposed into a compressor/bit mapper followed by a lookup table
of reconstructions/codebooks. The number of cloud centers in the compression/bit
mapper is explicitly controlled during the design, thereby allowing for a scalable
approach to DSC.

—We impose a nearest neighbor/vector quantizer structure for the compressor/bit map-
per that naturally builds resilience to channel errors and erasures.

—We propose a simple greedy iterative descent approach for the joint design of the
system parameters based on an available training set of source and channel samples.

—Motivated by the highly nonconvex nature of the underlying cost function, we pro-
pose a technique based on deterministic annealing (DA) for the joint design, which
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approaches the global optimal solution and further enhances the performance over
the naive greedy iterative descent approach.

—We perform extensive simulation tests involving both synthetic and real-world sensor
network datasets to demonstrate the advantages the proposed approach exhibits over
other state-of-the-art techniques.

We note that preliminary versions of the results in this article have appeared in part
in Viswanatha et al. [2012] and Viswanatha et al. [2011]. In this article, in addition to
the results in Viswanatha et al. [2012] and Viswanatha et al. [2011], we propose and
analyze the important extension of the proposed approach to bit erasures. We provide
simulation results, both on real and synthetic datasets, as evidence for significant
gains over state-of-the-art techniques in case of bit erasures. Another important issue
addressed in this article is the robustness of the proposed approach to time-varying
source and channel statistics. We show that the proposed framework is highly robust to
mismatch in estimated statistics. Further, we provide a detailed analysis of the design
and operational complexity of the proposed approach and provide important practical
variants of the scheme that significantly reduce the design complexity.

The rest of the article is organized as follows. In Section 2, we formulate the problem,
introduce notation, and discuss the design difficulties of large-scale distributed source
coding systems. In the first part of the article, we focus on channel bit errors and post-
pone the treatment of erasures to simplify the problem formulation. In Section 3, we re-
view related work, and in Section 4, we explain our proposed compression/classification-
based approach. Section 5 describes the algorithm for system design, and the associated
design complexities are derived in Section 6. The operational complexity of the proposed
approach is compared with other state-of-the-art techniques in Section 7, followed by
the results in Section 8. In Section 9, we present a methodology to incorporate bit
erasures into the proposed framework and demonstrate the gains achievable. We also
show in Section 10 the robustness of the proposed technique to mismatch in assumed
source and channel statistics. We conclude in Section 11.

2. DESIGN FORMULATION

Before describing the problem setup, we state some of the assumptions made in this
article. First, for simplicity, we only consider spatial correlations between sensors and
neglect temporal correlations. Temporal correlations can be easily incorporated using
techniques similar to that in Saxena and Rose [2009]. Second, in this article, we assume
that there exists a separate channel from every sensor to the central receiver; that is,
information is not routed in a multihop fashion. However, the method we propose is
fairly general and is applicable to the multihop setting. Throughout this article, we
make the practical assumption that while the joint densities may not be known during
the design, there will be access to a training sequence of source samples and channel
errors during design. In practice, this could either be gathered of-line before deploy-
ment of the sensor network or be collected during an initial phase after deployment.
During the first half of the article, we consider only channels with bit errors and demon-
strate the working principles of the proposed approach. We extend the methodology to
incorporate bit erasures in Section 9.

We begin with the conventional (zero-delay) DSC setup. We refer to Maierbacher
and Barros [2009] for a detailed description. Consider a network of N sensors (denoted
s1, s2 . . . , sN, respectively). The sensors communicate with a central receiver (denoted
S) at rates (R1, R2 . . . RN), respectively, over noisy channels. At regular time intervals,
each sensor makes an observation (e.g., temperature, pressure, etc.). These sensor
observations are modeled as correlated random variables X1, X2 . . . XN. Sensor si
encodes Xi using Ri bits for transmission to the receiver. The central receiver attempts
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Fig. 3. Basic DSC setup: lookup-table-based decoder.

to jointly reconstruct X1, X2 . . . XN using bits received from all sensors, as depicted
in Figure 3. The objective is to design the encoders at each of the sensors and
decoders (estimators) at the central receiver so that the overall distortion between the
observations and their reconstruction is minimized.

Encoding at each sensor is performed in two stages. At sensor si, the first stage is a
simple high-rate quantizer (labeled as “HQ” in Figure 3), Hi, which discretizes the real
space into a finite number of nonoverlapping regions Ni. Specifically, Hi is a mapping
that assigns one of the quantization indices to every point on the real space, that is,

Hi : R → Qi = {1 . . . Ni}. (1)

Note that these quantizers are high rate so that they only discretize and may be
excluded from joint encoder–decoder design. This is a practical engineering choice and
we refer to Saxena et al. [2010] for further details. The second stage of encoding, which
we call, a Wyner Ziv map/WZ map1 (also called binning in some related work [Yasaratna
and Yahampath 2009]), relabels the Ni quantization regions with a smaller number,
2Ri , of transmission indices. Mathematically, the Wyner Ziv map at source i, denoted
by Wi, is the following function:

Wi : Qi → Ii = {1 . . . 2Ri }, (2)

and the encoding operation can be expressed as a composite function:

Ii = Ei(xi) = Wi(Hi(xi)) ∀i. (3)

A typical example of a WZ map is shown in Figure 4. Observe that the WZ map per-
forms lossy compression. In fact, some regions that are far apart are mapped to the same
transmission index, and this makes the encoding operation at each source equivalent
to that of an irregular quantizer. Although this operation might seem counterintuitive
at first, if designed optimally, it is precisely these modules that enable exploiting inter-
source correlations, without intersensor communication. Essentially, the design would

1The term “Wyner-Ziv map” is coined after Wyner and Ziv [Wyner and Ziv 1976], who first solved the lossy
version of the side information setup introduced by Slepian and Wolf [1973].
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Fig. 4. Example of a typical encoder (irregular quantizer). In this example, Ni = 16 quantization regions
and Ri = 2 bits.

be such that the decoder can distinguish between the distinct quantization regions cor-
responding to a transmitted index, by accounting for the indices received from other,
correlated sources. It is fairly well known in the source coding literature (see Rebollo-
Monedero et al. [2003], Saxena et al. [2010], and Yasaratna and Yahampath [2009] and
the references therein) that these WZ maps, if properly designed, provide significant
improvements in overall rate distortion performance compared to that achievable by
regular quantizers operating at the same transmission rates (see also Section 8.4). It
is important to note that the WZ maps must be designed jointly prior to operation,
using available source-channel statistics or a training sequence of observations. Effi-
cient design of these mappings for noiseless networks has been studied in several prior
publications, such as Maierbacher and Barros [2009] and Saxena et al. [2010].

The encoder at sensor si transmits the binary representation of Ii to the remote
receiver using a standard binary symmetric modulation scheme. In this article, we
assume that each channel introduces an independent additive white Gaussian noise
and the receiver employs separate optimal detection. This makes the effective channel
seen by each bit an independent Binary Symmetric Channel (BSC) whose cross-over
probability depends on the variance of the noise. However, we note that the design prin-
ciples presented in the article are based on an available training set of source samples
and channel errors and hence can be easily extended to more general modulation-
demodulation schemes and channel error patterns. In particular, the method can be
easily applied to the setting where bits are routed over multiple hops (in which case the
channel errors are correlated) by collecting the corresponding training set of error sam-
ples and designing the system using the collected training sets. We denote the symbol
obtained following optimal detection by Îi ∈ Ii as shown in Figure 3. In vector notation,
I = (I1, I2 . . . IN) and Î = ( Î1, Î2 . . . ÎN), where I and Î take values in I = I1 × I2 . . . IN.

Observe that the total number of bits received at the decoder is Rr = ∑N
i=1 Ri, of

which a subset could be erroneous. The decoder reconstructs each source based on the
received index Î. Formally, the decoder for source i is a mapping from the set of received
index tuples to the reconstruction space and is given by

Di : I → X̂i ∈ R. (4)

Usually the decoder is assumed to be a lookup table, which has the reconstruction
values stored for each possible received index as shown in Figure 3. For optimal decod-
ing, the lookup table has a unique reconstruction stored for each possible received index
tuple. Hence, the total storage at the decoder grows as O(N × 2Rr ) = O(N × 2

∑N
i=1 Ri ),

which is exponential in N. We refer to the total storage of the lookup table as the
decoder complexity. In most prior work, DSC principles have been demonstrated with
a few (typically two to three) sources. But this exponential growth in decoder complex-
ity, for optimal decoding with the number of sources and transmission rates, makes it
infeasible to use the conventional setup in practical networks even with a moderately
large number of sources. In the next section, we describe some related prior work to
address this huge exponential storage at the decoder.

It is worthwhile to note that the encoding operation in the previous scheme involves
a simple quantization of the source samples followed by a direct lookup of the trans-
mission index. The total storage at each encoder includes its high-rate quantization
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codebook (of size |Qi|) and the WZ maps (of size |Qi|Ri). For typical values of |Qi| and Ri,
the encoder complexity is sufficiently modest and hence can be easily implemented on
a physical sensor mote. This inherent advantage makes such approaches to distributed
coding more viable in low-cost practical sensor networks than the channel coding based
methods, such as Pradhan and Ramchandran [2003] and Xiong et al. [2004], which en-
tail significant encoding delay and complexity. Hence, hereafter, our concern will be
only toward addressing decoder complexity, assuming that the encoders can be easily
implemented on a physical sensor mote.

3. RELATED WORK

One practical solution proposed in the past to handle the exponential growth in de-
coder complexity is to group the sources based on degree of correlation [Maierbacher
and Barros 2009] and to separately perform DSC within each cluster. By restricting the
number of sources within each group, the decoder complexity is maintained at afford-
able limits. Evidently, even in the noiseless scenario, such an approach does not exploit
intercluster dependencies and hence would yield suboptimal performance. Moreover,
when there is channel noise, the resilience of the decoder to channel errors degrades
significantly as it is forced to use only a subset of the received bits to correct errors.
Also, in most prior work, source grouping is designed only based on the source statistics
while ignoring the impact of channel conditions. Indeed, it is a much harder problem
to devise good source grouping mechanisms that are optimized for both source and
channel statistics.

It is worthwhile to mention that an alternate approach, other than the lookup ta-
ble, has been proposed in the literature for practical implementation of the decoder
[Maierbacher and Barros 2009; Yahampath 2009; Yasaratna and Yahampath 2009].
In this approach, the decoder computes the reconstructions on the fly by estimating
the posterior probabilities, P(qi| Î), for quantization index qi given received index Î.
Such an approach requires the storage of the high-rate quantization codewords at the
decoder, which grow linearly in N. However, to compute the posterior probabilities,
P(qi| Î), using Bayes rule, we have

P(q̃i| Î) = γ
∑

Q:qi=q̃i

P( Î
∣∣I(Q))P(Q), (5)

where γ is a normalization constant, Q = (q1, q2 . . . , qN), and P( Î
∣∣I(Q)) is the conditional

PMF of the channel. The previous marginalization requires an exponential number of
operations to be performed at the decoder, as well as exponential storage required to
store the probabilities P(Q).

To limit the computational complexity, prior work (e.g., [Barros and Tuechler 2006;
Maierbacher and Barros 2009; Yasaratna and Yahampath 2009]) has proposed cluster-
ing the sources and linking the clusters in a limited complexity Bayesian network (or
a factor graph), thereby using message passing algorithms to find P(qi| Î) at affordable
complexity. These approaches provide significant improvement in distortion over sim-
ple source grouping methods at fixed transmission rates and channel SNRs, as they
exploit intercluster correlations. However, a major drawback of such techniques is that
they require the storage of the Bayesian network/factor graph at the decoder. While
this storage grows linearly in N, it grows exponentially with the rate of the high-rate
quantizers. Specifically, if Ni = 2Rq∀i, then the storage of the Bayesian network grows
as O(N2MRq ), where M is the maximum number of neighbors for any source node in
the Bayesian network. Typically [Rebollo-Monedero et al. 2003; Saxena et al. 2010;
Maierbacher and Barros 2009], Rq is chosen as R + 3 or R + 4 for the Wyner-Ziv maps
to exploit the intersource correlations effectively. This impacts the efficiency of the
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Bayesian network approach as the gains in distortion, due to introducing the Bayesian
network, come at the cost of the excess storage required to store the Bayesian network.
We will show in our results that Bayesian network-based methods may even underper-
form source grouping techniques for moderate values of N at a fixed storage. Hence,
though counterintuitive at first, it is sometimes beneficial to group more sources within
a cluster instead of connecting the clusters using a Bayesian network.

We further note that the storage required for transition probabilities in the Bayesian
network can be significantly reduced if the joint source densities are parameter-
ized (e.g., as multivariate Gaussian). However, such approximations are restrictive
and prone to estimation inaccuracies and hence lead to suboptimal designs for more
general/real-world source and channel statistics, as has been observed in Yasaratna
and Yahampath [2009]. We next describe our proposed classification-based approach
for decoding that overcomes these drawbacks and achieves a unified approach to error-
resilient and complexity-constrained distributed compression.

4. THE CLASSIFICATION/COMPRESSION-BASED APPROACH TO DECODING

Recall that the decoder receives Rr = ∑N
i=1 Ri bits of information, which may have been

corrupted by the channel. The lookup table at the receiver cannot store a unique recon-
struction for every possible received combination of bits. Hence, to decode source si, we
first find an optimal classification scheme that groups the set of all possible received
index tuples, I, into Ki groups. We then assign a unique reconstruction for all received
combinations that belong to the same group. Essentially, we decompose the monolithic
decoder, which was a simple lookup table, into a compressor/classifier/bit mapper fol-
lowed by a lookup table of reconstructions. Note that the classification need not be the
same for decoding each source. This would bring down the total storage required for
codebooks from N2Rr to

∑N
i=1 Ki, which can easily be controlled by varying the number

of groups.
However, a fully general bit mapper would require us to store the class information

for every possible received index that entails a storage exponential in N, defeating
the purpose of classification. Hence, we impose the structure of a nearest neighbor
classifier or a vector quantizer for the bit mapper that clusters the received index
tuples into clouds based on a minimum distance criterion, as shown in Figure 5. Such
a modification to the bit mapper may incur some loss in optimality but provides a
twofold advantage. On one hand, it dramatically reduces the storage overhead required
to store the bit mapper, as it requires us to store only the cloud centers. On the other
hand, it builds error resilience into the system as it effectively implements an error-
correcting mechanism at the decoder by assigning the same codeword to several nearby
received indices. If the probability of channel error is not excessive, we would expect Î
to be sufficiently close to I and hence belong to the same decoding sphere (group) as
I. If the prototypes, encoders, and reconstruction codebooks are optimally designed for
the given source-channel statistics/training sequences, such an approach would assist
error correction, leading to improved end-to-end reconstruction distortion.

These cloud centers are called “prototypes” in the literature [Rose 1998] and the
structure is normally termed “nearest prototype classifier.” Technically, these proto-
types can be defined in any subspace (e.g., RN) with an appropriate distance metric
defined between the received index tuples to the prototypes. However, we require these
prototypes to entail minimal excess storage but at the same time provide enough diver-
sity for achieving good error resilience. Hence, we restrict the prototypes to the binary
hypercube, I, and choose as distance metric the Hamming distance between the bi-
nary representations of the received indices and prototypes. Recall that the Hamming
distance between two binary tuples is defined as the number of positions at which the
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Fig. 5. Prototype-based bit mapper approach to decoding.

corresponding bits differ. Given a set of prototypes Ji = {Si1 . . . SiKi }, Si, j ∈ I ∀i, j, the
bit mapper can mathematically be written as

Bi(I) = arg min
S∈Ji

d(I, S), (6)

where d(·, ·) denotes the Hamming distance. We note that the design methodology is
applicable for prototypes chosen from any generic subspace.

In the next stage of decoding, each prototype is associated with a unique reconstruc-
tion codeword. We denote this mapping by Ci(Si, j). Hence, if the received index is Î and
if the nearest prototype to Î is Si, j , then the estimate of source i is x̂i = Ci(Si, j); that is,
the composite decoder can be written as

x̂i( Î) = Di( Î) = Ci(Bi( Î)). (7)

5. SYSTEM DESIGN ALGORITHM

As mentioned in Section 2, we assume that a training set of source and channel samples
is available during design. Hence, given a training set, T = {(x, n)}, of source and
noise samples, our objective in this section is to find the encoders, prototypes, and
reconstruction codebooks that minimize the average distortion on the training set,
which is measured as

Davg = 1
N|T |

∑
(x,n)∈T

||x − x̂||2. (8)

Note that in the previous equation, we have assumed the distortion metric to be the
mean squared error (MSE) and given equal weightings to all the sources similar to
Maierbacher and Barros [2009] and Yasaratna and Yahampath [2009]. We note that
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Table I. Summary of Notation Used

Notation Description

N Number of sources
Ri Rate of transmission of source i
T Training set
Ji Set of prototypes for decoding source i
Sij jth prototype associated with decoding source i
I and Î Transmitted and received indices
I Set of all possible indices
Davg, H, J, T Average distortion, entropy, Lagrangian, and temperature
Pi( j|k) Probability of associating the kth training sample

to the jth prototype for decoding source i
βi Inverse pseudo temperatures

the MSE distortion metric measures the average energy of the error in reconstruction
and hence is a measure of the quality of reconstruction. Nevertheless, the design
methodology we propose is extendable and applicable to any other general distortion
measure. A summary of the notation used in the rest of the section is listed in Table I.

We first note that the high-rate quantizers are designed separately using a standard
Lloyd-Max quantizer design technique [Gersho and Gray 1991] to minimize the re-
spective average squared errors. The challenging part is to design the Wyner-Ziv maps
jointly with the prototypes and the reconstruction codebooks to minimize Davg.

The design of such nearest prototype classifiers or generalized vector quantizers
has been studied earlier in the context of source-channel coding for a single source
and is known to be a very challenging problem [Rao et al. 1999]. The main challenge
arises because, unlike the standard quantizer design problem where the objective is to
minimize the average quantization distortion, here the classifiers/quantizers are to be
designed to minimize the distortion in the reconstruction space, which is different from
the space where quantization is performed. One straightforward design approach is to
employ a greedy iterative descent technique that reduces Davg in each iteration. Such an
algorithm would initialize the Wyner-Ziv maps, the prototypes, and the reconstruction
codebooks randomly and then update the parameters iteratively, reducing Davg in each
step, until convergence. As the number of possible Wyner-Ziv maps and prototypes is
finite, convergence is guaranteed to a local minimum for any initialization.

However, in Equation (8), the prototypes are parameters in a highly nonconvex func-
tion, which makes the greedy approach likely to get trapped in poor local minima
(even if multiple random initializations are tried), thereby leading to suboptimal de-
signs. Finding a good initialization for such greedy iterative descent algorithms, even
for problems much simpler in nature than the one at hand, is known to be a very
difficult task. Hence, in the following section, we propose an optimization technique
based on deterministic annealing (DA) that provides significant gains by avoiding poor
local minima. Also note that the design approach we propose optimizes all the sys-
tem parameters for the given source and channel statistics, in contradistinction with
recent source-channel design approaches such as Maierbacher and Barros [2009] and
Yasaratna and Yahampath [2009], which optimize the WZ maps for the noiseless sce-
nario (without the knowledge of the channel) and then optimize the decoder codebooks
for the given channel statistics. We particularly study the gains due to this jointly
optimal design later in Section 8.

We note that the computational complexity of the DA-based design scheme may
be deemed moderately high for certain applications. We emphasize that the design
is normally performed only once, offline, and hence design complexity tends to be a
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less critical constraint for most practical applications. Nevertheless, should the design
complexity be strictly constrained, one may use the greedy iterative descent algorithm,
with very few initializations. We note that the proposed framework performs better
than conventional techniques even when a greedy iterative descent technique is em-
ployed to optimize the system parameters. Deterministic annealing offers further gains
over the greedy iterative descent technique. We next present the DA-based algorithm
for the joint design of the system parameters. We omit explicitly stating the steps for
the greedy iterative descent scheme as the optimization steps for the last stage of DA
coincide with the greedy iterative descent approach. However, instead of a random
guess, DA uses the equilibrium solution of an annealing process as an initialization for
the iterative descent.

5.1. Design by Deterministic Annealing

A formal derivation of the DA algorithm is based on principles borrowed from informa-
tion theory and statistical physics. Here, the design problem is cast in a probabilistic
framework, where the standard deterministic bit mapper is replaced by a random
mapping that maps a training sample to all the prototypes in probability. The expected
distortion is then minimized subject to an entropy constraint that controls the “ran-
domness” of the solution. By gradually relaxing the entropy constraint, we obtain an
annealing process that seeks the minimum distortion solution. More detailed deriva-
tion and the principles underlying DA can be found in Rose et al. [1992] and Rose
[1998].

Specifically, for every element in the training set, the received index tuple, Î, is
mapped to all the prototypes, Ji, in probability. These mapping probabilities are de-
noted by Pi( j|k) ∀i ∈ (1, . . . , N), j ∈ (1, . . . , |Ji|), k ∈ (1, . . . , |T |); that is, the received
index tuple for training sample k is mapped to prototype j in Ji with probability Pi( j|k).
Hence, the average distortion is

Davg = 1
N|T |

|T |∑
k=1

N∑
i=1

∑
j∈Ji

Pi( j|k)(xi(k) − x̂i( j))2, (9)

where xi(k) is training sample k of sensor i and x̂i( j) = Ci(Sij). Note that this includes
the original hard cost function as a special case when probabilities are hard, that is,

Pi( j|k) =
{

1 if arg min j ′ di(Sij ′ , Î(k)) = j
0 else. (10)

It is important to note that these mappings are made soft only during the design stage.
Of course, our final objective is to design hard bit mappers that minimize the average
distortion.

Further, we impose the nearest prototype structural constraint on the bit mapper
partitions by appropriately choosing a parameterization of the association probabilities.
Similar methods have been used before in the context of design of tree-structured
quantizers [Rose 1998], generalized VQ design [Rao et al. 1999], and optimal classifier
design [Miller et al. 1996]. The principle of entropy maximization can be used to impose
a nearest prototype structure, leading, at each temperature, to association probabilities
that are governed by the Gibbs distribution [Rose 1998]:

Pi( j|k) = e−βi(di( Î(k),Sij))∑
j e−βi(di( Î(k),Sij))

, (11)

where βis are called the inverse pseudo-temperatures. Observe that this parameteri-
zation converges to the nearest prototype classifier as βi → ∞.
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These mappings introduce randomness into the system measured by the Shannon
entropy as

H = 1
N|T |

∑
k∈T

N∑
i=1

∑
j∈Ji

Pi( j|k) log Pi( j|k). (12)

The DA algorithm minimizes Davg in Equation (9), with a constraint on the entropy of
the system, Equation (12), where the level of randomness is controlled by a Lagrange
parameter (usually called the temperature in the literature due to its roots in statistical
physics), T , as

J = Davg − TH. (13)

Initially, when T is set to a very high level, our objective is to maximize H and hence
all the βis are very close to 0. This leads to a very random system where all the received
indices are mapped to every prototype with equal probability. Then, at each stage, the
temperature is gradually lowered maintaining the Lagrangian cost at its minimum.
All βis gradually increase as T reduces, thereby making the association distribution
less random. Finally, as T → 0, all the βis → ∞ and we obtain hard mappings where
every received index maps to the closest prototype. As T → 0, our Lagrangian cost
becomes equal to Davg and our original objective is realized. At each temperature, we
minimize J with respect to Wi, Ji, βi, and Qi ∀i. This minimization is achieved using
a standard gradient descent method with update rules given next.

5.1.1. Wyner-Ziv Map Update. At fixed T , the WZ map update rules are given by

W∗
i (m) = arg min

l∈Ii

J(Wi(m) = l) (14)

∀i ∈ (1, . . . , N), m ∈ Qi, where J(Wi(m) = l) denotes the Lagrange cost obtained for the
training set when Wi(m) is set to l, with all the remaining parameters unchanged.

5.1.2. Prototype Update. Note that each prototype can take values in the set I and the
size of the set |I| = 2

∑N
i=1 Ri , which grows exponentially in N. Hence, for large sensor

networks, it is impractical to exhaustively search for the best prototype in the set I,
in every iteration. Therefore, in each step, we find an incrementally better solution
among all the neighboring prototypes, which are at a Hamming distance of one from
the current solution. Mathematically, for fixed Wyner-Ziv maps and reconstruction
codebooks, the prototype update rule is

S∗
i j = arg min

s∈N(Sij )
J(Sij = s), (15)

where J(Sij = s) is the Lagrange cost obtained by setting Sij = s with all the re-
maining parameters unchanged and N(Sij) denotes the prototype neighborhood about
Sij . For an illustrative example, consider three sensors transmitting at 2 bits/sensor.
Let the current prototype configuration associated with decoding the first source be
110100. Then, during the prototype update step, the best prototype is chosen among
the following possible solutions:

{110100, 010100, 100100, 111100, 110000, 110101, 110101}
Observe that this low-complexity update step requires us to compute the Lagrange

cost associated with
∑N

i=1 Ri+1 prototypes (seven in this example), as opposed to 2
∑N

i=1 Ri

(64 in this example) in case of an exhaustive search.
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5.1.3. βi Update. As βis take real values, we find the gradient of J with respect to
βi for fixed Wyner-Ziv maps, prototypes, and reconstruction codebooks and employ a
standard gradient descent operation to update βi. The gradients of J with respect to
βi ∀i are given by

δJ
δβi

= 1
N|T |

∑
k, j

{
(xi(k) − x̂i(k))2 + T log(2Pi( j|k))

Pi( j|k)
(∑

j ′
Pi( j ′|k)d( Î(k), Sij ′ ) − di( Î(k), Sij)

)}
. (16)

Then the update rule for βi is given by

β∗
i = βi − 	 δJ

δβi
, (17)

where 	 is the step size for descent.

5.1.4. Reconstruction Codebook Update. Note that J is a convex function of the recon-
struction values, and hence the optimum codebook that minimizes J for any fixed
encoders, prototypes, and βis is given by

x̂i( j) = Ci( j) =
∑

k Pi( j|k)xi(k)∑
k Pi( j|k)

. (18)

The complete set of steps for DA is summarized in Flowchart 1.2 T is initialized
to a very high value and βis are set very low. All the Wyner-Ziv maps and the recon-
struction codebooks are initialized randomly. The prototypes are set to the median of
the received indices so as to minimize the average Hamming distance. Temperature is
gradually lowered using an exponential cooling schedule, T ∗ = αT . In all our simula-
tions, we used α = 0.98. At each temperature, all the system parameters are optimized
using Equations (14), (15), (17), and (18) until the system reaches equilibrium. This
equilibrium is perturbed and used as an initialization for the next temperature. This
annealing procedure is continued until T approaches zero. In practice, the system is
“quenched” once T is small enough; that is, T is set to zero and the bit mapper is made
“hard,” once the entropy becomes sufficiently small. Note that the optimization steps,
at T = 0, coincide with the greedy approach. However, instead of a random guess, the
equilibrium at the previous temperature is now used as the initialization. We further
note that under certain conditions on the continuity of phase transitions in the process,
DA achieves the global minimum [Rose et al. 1992; Rose 1998], but its ability to track
the global minimum as we lower the temperature depends on a sufficiently slow cooling
schedule (i.e., α sufficiently close to 1). In practice, however, α is restricted based on the
available design time. In our simulations, we observed that using α = 0.98 is enough
to achieve significantly better solutions, compared to the greedy descent approach.

6. DESIGN COMPLEXITY

This section describes the design complexity for the proposed algorithm. We study the
complexity of each of the design stages independently. These steps are integral parts of
both the greedy and the DA-based design algorithms. Throughout this section, we as-
sume that every source sends information at rate R and all the high-rate quantizers op-
erate at rate Rq ≥ R. Further, we assume that the decoding rate is Rdi = Rd (Rd ≤ NR)

2The simulation code is available at http:www.scl.ece.ucsb.edu/html/database/Error_Resilient_DSC.zip.

ACM Transactions on Sensor Networks, Vol. 11, No. 2, Article 35, Publication date: December 2014.

file:www.scl.ece.ucsb.edu/html/database/Error_Resilient_DSC.zip


Error/Erasure-Resilient DSC for Large-Scale Sensor Networks 35:15

Flowchart 1: DA Approach for System Design
————————————————————————
Inputs : Ni (Numberof high-rate quantization indices),
Ri (Transmission rates),
Rdi (Decoding rate, i.e., |Ji | = Ki = 2Rdi ),
T (Trainingset), Tmax(∼ 1 − 10), Tmin(∼ 10−5 − 10−4),
βmin(∼ 0.1 − 0.2), Hmin(∼ 0.1 − 0.2), α < 1 (Cooling rate), 	(∼ 0.1 − 0.2).
Outputs : Hi(High-rate quantizers),
Wi (WZ maps),
Ji (Prototypes),
and Ci (Reconstruction codebooks)
————————————————————————

(1) Design the high-rate quantizers individually using a standard Lloyd-Max algorithm.
(2) Initialize: T = Tmax, βi = βmin, initialize WZ maps randomly, set

Sij = median( Î(x), x ∈ T ) ∀i ∈ (1, . . . , N), j ∈ (1, . . . ,Ji).
(3) Compute: Pi( j|k) using Equation (11) and Ci( j) using Equation (18).
(4) Update:

— WZ maps using Equation (14).
— Prototypes using Equation (15).
— βi using Equation (17), and then compute Pi( j|k) using Equation (11).
— Ci( j) using Equation (18).

(5) Convergence: Compute J and H using Equations (13) and (12), respectively. Check for
convergence of J. If not satisfied go to step (4).

(6) Stopping: If T ≤ Tmin or H ≤ Hmin, set Pi( j|k) as Equation (10) and perform last
iteration for T = 0. Then STOP.

(7) Cooling:
— T ∗ ← αT .
— Perturb prototypes: S∗

i j ← s ∈ neighborhood(Sij), where s is chosen randomly.
— Perturb β∗

i ← βi + δ for small δ > 0 generated randomly.
— Go to step (4).

for all sources. This implies that the number of prototypes for decoding any source is
|Ji| = |Ki| = 2Rd∀i. We denote the training set by T and the size of the training set by |T |.
6.1. Design of the High-Rate Quantizers

Recall that the high-rate quantizers are designed independently at each source, to
minimize the respective average squared error, using a standard Lloyd-Max quantizer
design algorithm [Gersho and Gray 1991] before the joint design of the remaining
system parameters. During each iteration, all the training samples are clustered to the
nearest codeword and then the codewords are updated to the centroid of the training
samples within each cluster. Hence, the design complexity of the high-rate quantizers
grows as O(N2Rq |T |). This is a low-complexity step as compared to the joint design of
all the other system parameters. We note that there are techniques to accelerate the
scalar quantizer design, but these will not be considered here.

6.2. Wyner-Ziv Map Update

During each iteration, the search for the optimal WZmap involves finding 2R|T | distor-
tion values for each source, calculated as

∑N
i=1

∑
j∈Ji

Pi( j|k)(xi(k)− x̂i( j))2. Each training
sample is then assigned to one of the 2R transmit indices that minimizes the average
reconstruction distortion. The average entropy of the system does not depend on the
WZ maps and hence need not be recomputed during the WZ map update. Therefore, the
complexity cost during each iteration of the design of WZ maps grows as O(N22R+Rd|T |).
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6.3. Prototypes Update

Recall that during each iteration of the design, an incrementally better prototype
is chosen among all the neighboring prototypes that are at a Hamming distance of
one from the current solution. There are overall N2Rd prototypes, each having NR
neighbors at a Hamming distance of one. To find the complexity of the prototype update
step, we first derive the complexity of evaluating the Lagrangian cost for any fixed
configuration of the prototypes.

The average distortion is computed using Equation (9), which requires computations
on the order of O(2Rd|T |) per source. Note that to compute the total entropy of the
system, we need to first find the probabilities Pi( j|k) using Equation (11). This step
requires us to find the distances between the prototypes and the received index tuples in
the training set. As the received tuples are NR bit vectors and there are 2Rd prototypes,
finding these distances requiresO(NR2Rd) computations and hence the total complexity
for finding Pi( j|k) grows as O(NR2Rd|T |) per source. The total entropy of the system
is computed using Equation (12), which entails a complexity of O(N2Rd|T |) per source.
Therefore, the complexity for evaluating the Lagrangian cost is dominated by the step
that involves finding Pi( j|k), whose complexity grows as O(NR2Rd|T |).

From this analysis, it appears as though the computational complexity required to
update the prototypes during each iteration grows as O(N3 R24Rd|T |), which is cubic
in N. However, certain tricks allow us to reduce the complexity further, as illustrated
next.

Let b1, b2, and c be three NR bit vectors. Let b1 and b2 differ in exactly one posi-
tion. If the Hamming distance between b1 and c is given, then we require only two
additional computations to find the distance between b2 and c. This property allows
us to reduce the number of computations required to find Pi( j|k). Specifically, let the
distances between the received tuples in the training set and the prototypes be given,
for the current solution. To find an incrementally better prototype configuration, these
distances must be recomputed for all the prototypes in the neighborhood of the current
solution. However, this step requires just two additional computations per prototype,
as compared to the NR computations, which would be necessary with no prior knowl-
edge. It is easy to verify that the total complexity required to update the prototypes
now reduces to O(N2 R4Rd|T |), which is only quadratic in N.

6.4. βi Update

The βis are updated using a gradient descent technique according to Equation (17). It
is clear from Equation (17) that the number of computations required to find each of
the gradients grows as O(4Rd|T |) and hence the total complexity cost for updating all
the βis is O(N4Rd|T |).

6.5. Reconstruction Codebook Update

Updating the reconstruction codebooks is a fairly simple operation. During each iter-
ation, the codebooks are updated using Equation (18), and it is easy to show that the
codebook update involves O(N2Rd|T |) operations.

It is clear from the previous description that the design complexity is primarily
dominated by two stages: the WZ map update and the prototype update. Therefore, the
total complexity for the proposed design algorithm grows as O(N2(R4Rd + 2R2Rd)|T |),
which is quadratic in N. It is important to note that the order of growth in design
complexity remains the same for both the DA-based design scheme and the greedy
iterative design algorithm. In practice, the DA approach has a larger constant and
requires more computations compared to the greedy approach for a single initialization.
However, as the greedy approach has to be run over multiple random initializations
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Table II. Order of Growth in Storage Complexities

Storage Due To Codebook Module

Source
grouping

N2Rd F N log2( NR
Rd

)

Bayesian N2Rq F N2(Rq Rd/R) F
network +N log2(N)
Prototype-based N2Rd F N2 R2Rd

bit mapper

to avoid poor solutions, the exact comparison of design complexities is difficult and
depends on the actual source-channel distributions. A generally accepted and observed
fact (see Rose et al. [1992] and Rose [1998]) is that for a given design time, DA provides
far better solutions compared to that achieved by greedy approaches over multiple
random initializations for such complex nonconvex optimization functions.

7. OPERATIONAL COMPLEXITY

In this section, we compare the computational and storage complexities during op-
eration of all three approaches for large-scale DSC described earlier. For comparison
purposes, we assume that every source sends information at rate R and all the high-
rate quantizers operate at rate Rq ≥ R. We assume that the decoding rate is Rdi = Rd
(Rd ≤ NR) for all sources. For the source grouping approach, this implies that the max-
imum number of sources in any cluster is Rd/R; for the Bayesian network approach,
this implies that the maximum number of parent nodes for any source node is Rd/R.
For the proposed approach, this implies that the number of prototypes for decoding any
source is |Ji| = |Ki| = 2Rd∀i.

7.1. Computational Complexity

First, we note that the computational complexity during operation of all three ap-
proaches is polynomial in N. It is easy to observe that the decoder in the source grouping
method has literally no computations to perform; that is, the complexity is a constant,
O(1). The decoder in the Bayesian network approach has to implement a message pass-
ing algorithm for every received combination of indices. This leads to a computational
complexity, which grows as O(N2Rq Rd/R). On the other hand, the proposed prototype-
based bit mapper approach finds the closest prototype for every received index tuple,
which requires O(RdRN2) bit comparisons. Note that, although the complexity grows
as N2, it requires only bit comparisons and will incur much fewer machine cycles than
that required for implementing each iteration in the Bayesian network approach. Ad-
ditionally, the complexity for the proposed approach grows only linearly in R and Rd as
opposed to the exponential growth in these rates for the Bayesian network approach.
As all three methods can be implemented with affordable computational complexities
in practice, we hereafter assume they are feasible as far as computational complexity
is concerned and focus on their storage requirements.

7.2. Storage Complexity

Table II summarizes the order of growth in storage as a function of N,R, Rq, and Rd
for all three approaches. Here, F denotes the bits required to store a real number or
the floating point accuracy. In all our simulations, we use F = 32 bits.

The codebook storage required for each of the three approaches is considerably easier
to derive. For the source grouping approach, Rd bits are used to decode each source and
hence the total number of codewords to be stored is N2Rd. Similarly, for the prototype
approach, there is a unique codeword associated with every prototype. There are 2Rd
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prototypes for decoding each source and hence the total storage for the reconstruction
codebooks is N2Rd F. For the Bayesian network approach, it is sufficient to store the
high-rate quantization codewords for all the sources. This entails a complexity of N2Rq ,
leading to a total codebook storage as indicated in Table II.

As for module storage, the source grouping method requires us to store the group
labels for each source. As there are at least NR/Rd groups, we need at least N log2( NR

Rd
)

bits to store the source groupings. The Bayesian network approach requires complexity
that grows as O(N Rd

R log2(N)) bits to store the parent node information for each source.
However, additional storage is required to store the transition probabilities, which grow
as O(N2Rq Rd/RF). The prototype-based bit mapper approach requires the storage of all
the prototypes at the decoder. Each prototype requires NR bits to store and there are
N2Rd such prototypes, leading to a total storage of N2 R2Rd .

A first glance at Table II would suggest that, since the prototype-based bit mapper
approach requires a module storage that grows as N2 in the number of sources, it
entails a very high overhead. However, for typical values of these parameters (i.e.,
N ∼ 10 − 500 sources, R ∼ 1 − 10 bits, Rq ∼ (R + 2) − (R + 4) bits, and Rd/R ∼
(2 − 4), the storage overhead for the proposed approach is modest and the distortion
gains obtained more than compensate for the minimal loss due to excess storage.3 On
the other hand, within these typical ranges, the Bayesian network approach entails
a storage requirement that is significantly higher than the other two methods and
hence yields higher distortion at a prescribed storage. Note that the values in Table II
indicate the order of growth of storage complexities and hence are accurate only up to
a constant. In all our simulations, we consider the exact storage required and not the
order expressions from Table II.

8. RESULTS

To test the performance of the proposed approach, we used three different datasets:
1) Synthetic dataset: A toy dataset consisting of 10 synthetic sources, randomly

deployed on a square grid with dimensions of 100m × 100m, was generated according
to a multivariate Gaussian distribution (the grid is shown in Figure 6). All sources
were assumed to have zero mean and unit variance. The correlation was assumed to
decay exponentially with the distance. Specifically, we assumed ρ = ρ

d/do
0 , ρ0 < 1. For

all our simulations with this dataset, we set do = 100. The training set generated was of
length 10,000 samples. All results presented are on a test set, also of the same length,
generated independently using the same distribution.

2) Temperature sensor dataset: The first real-world dataset we used was collected
by the Intel Berkeley Research Lab, CA.4 Data were collected from 54 sensors they
deployed between February 28 and April 5, 2004. Each sensor measured temperature
values once every 31 seconds.5 We used data from the top 25 sensors that collected the
highest number of samples and retained time samples when all sensors recorded data.
Half the dataset was used to train the system and the remaining half was used as the
test set.

3) Rainfall dataset: As a second real-world dataset, we used the rainfall dataset of
Pattem et al. [2008].6 This dataset consists of the daily rainfall precipitation for the

3Note that if N >> 500, then the optimal approach would be to group ∼500 sources within each cluster and
to perform decoding based on the proposed approach at affordable complexities within each cluster, instead
of directly grouping at the allowed complexity.
4Available at http://db.csail.mit.edu/labdata/labdata.html.
5Note that the sensors also measured humidity, pressure, and luminescence. However, we consider only the
temperature readings here.
6Available for download at http://www.jisao.washington.edu/data sets/widmann.
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Fig. 6. Randomly generated synthetic sensor grid. Stars denote the sensor motes.

Pacific Northwest region over a period of 46 years. The measurement points formed
a regular grid of 50km x 50km cells over the entire region under study. Again, half
the data were used for training and the remaining to test the system. Note that the
intersource correlations in such “large area” datasets are considerably lower. However,
performance evaluation using such diverse real-world datasets is important to validate
the efficiency of the proposed setup.

We note that the performance depends on the crossover probability or the error
probability of the effective BSC seen by each bit. We denote the crossover probability
by Pe, that is, P(1|0) = P(0|1) = Pe. Note that Pe is directly related to the channel SNR
(CSNR) as Pe = Q(

√
CSNR); that is, Pe = 0.1 corresponds to a CSNR of about 2.15dB.

In all our simulations, we generated a training sequence of channel errors of the same
size as the training set. The average distortion of the test set over 100 random (i.i.d.)
channel realizations is used as the performance metric.

8.1. Complexity–Distortion Tradeoff

Figures 7, 8, and 9 show the total storage (complexity) versus the distortion tradeoff
for the three datasets, respectively. For these simulations, the transmission rate was
set to Ri = 1 bit. This allows us to compare the performances with the minimum
distortion achievable using full-complexity decoding for the synthetic dataset. We will
present results at higher transmission rates in Section 8.4. The decoding rate was
varied from 1 to 5 bits to obtain the distortion at different complexities. We plot the
total storage, which includes both codebook and module storage, versus the distortion
to obtain a tradeoff curve. We show results obtained using all three decoding methods:
source grouping where the grouping is done using the source-optimized clustering
approach described in Maierbacher and Barros [2009], Bayesian network as described
in Yasaratna and Yahampath [2009], and the prototype-based bit mapper approach
proposed in this article. For fairness, we design the WZ maps for the given channel
statistics for all the approaches. However, note that in most prior work, the channel
statistics were ignored while designing the WZ maps [Yasaratna and Yahampath 2009].
We study the gains due to this optimal design in the following section. For comparison,
we also include the performance obtained for designs using the greedy iterative descent
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Fig. 7. Total storage versus distortion for the synthetic dataset, Ri = 1∀i and Pe = 0.1.

Fig. 8. Total storage versus distortion for the temperature sensor dataset, Ri = 1, Pe = 0.1.

approach (optimized over up to 25 random initializations) along with that achieved
using DA.

Figure 7 shows the result obtained for the synthetic dataset using ρ0 = 0.9 and
Pe = 0.1. We see improvements of over 2dB in distortion compared to the source
grouping technique at a fixed storage. Alternatively, the total storage can be reduced
by a factor of 10 while maintaining the same distortion. We also see that the per-
formance of the prototype-based bit mapper approaches the optimal full-complexity
decoder significantly faster than the source grouping method. However, observe that
while the Bayesian network-based decoder gains substantially over the source group-
ing approach in distortion at fixed decoding rates, the excess storage required to store
the Bayesian network offsets these gains, leading to much higher storage at fixed dis-
tortions. Note that in this case, the greedy approach also provides similar performance
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Fig. 9. Total storage Versus Distortion for the Rainfall dataset, Ri = 1, Pe = 0.2.

as DA, as the probability of getting trapped in local minima is low after 25 runs for
smaller networks.

Figures 8 and 9 show the performance obtained for the temperature sensor dataset
and the rainfall dataset at Pe of 0.1 and 0.2, respectively. For the temperature sensor
dataset, we see gains of over 2.5dB in distortion at fixed storage over the source group-
ing approach. For the rainfall dataset, gains are around 1dB in distortion. In general,
higher correlations assist the bit mapper as it uses all the received bits to correct errors,
unlike the grouping approach, which is forced to use only the bits within each group.
We therefore see more gains in the temperature sensor dataset as opposed to the rain-
fall dataset. Figure 8 also illustrates that the overhead required to store the Bayesian
network aggravates at higher N and the performance degrades further, making the
Bayesian network approach impractical for very large networks.7 Observe that for
such large networks, the DA-based design significantly outperforms the greedy itera-
tive descent approach, which in itself performs better than the source grouping and the
Bayesian-network-based techniques. This clearly demonstrates the highly nonconvex
nature of the optimization function and the susceptibility of greedy iterative descent
techniques to poor local minima. Unless the design complexity is severely constrained,
it is better to design the system using DA. Hence, hereafter, we only show results
for DA, noting that the greedy approach, although it outperforms the conventional
techniques, is susceptible to poor local minima for large networks.

In what follows, we compare the distortion performance of the prototype-based bit
mapper and the source grouping approaches by varying the network size and design
parameters at a fixed decoding rate. As the total storage is not reflected in these plots,
we do not consider the performance of the Bayesian network approach hereafter, noting
that the storage required to achieve good distortion performance is significantly higher.

8.2. Pe Versus Distortion

In this section, we show the performance gains when Pe is varied. We restrict Pe to be
in the range 0 − 0.2 (i.e., CSNR ≥ −1.5dB). For all the simulations, we have chosen

7For the rainfall dataset, the storage required for the Bayesian network approach was considerably larger,
and hence we do not plot it along with the other curves.
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Fig. 10. Pe versus distortion for the synthetic dataset, Ri = 1 and Rd = 3.

Ri = 1 and Rd = 3. Figure 10 shows the distortion obtained versus Pe for the synthetic
dataset. For the source grouping approach, we plot two curves. The first curve shows
the performance when the WZ maps are optimized jointly with the decoder for the
given channel statistics. The second curve shows the performance when the WZ maps
are designed when the knowledge of channel statistics is absent, that is, designed
to minimize reconstruction distortion at zero noise. However, after the design of the
WZ maps, the reconstruction codebooks are designed for the given channel statistics.
Recall that in all prior work related to DSC design for large networks, the system was
designed assuming that the channel statistics are unknown. Clearly, optimal design of
the WZ maps for the given channel provides about a 0.5dB improvement in distortion.
Further, major improvements of over 2dB are due to the error resilience provided by
the proposed decoder structure. We see similar behavior even for the two real-world
datasets in Figures 11 and 12. The higher error correction capability of the nearest
prototype structure is further reflected as the gains improve when Pe increases (CSNR
decreases). Again, observe that the gains in case of the rainfall dataset are smaller due
to lower correlations in the dataset.

8.3. Performance Versus Network Size

In this section, we study how the gains vary with the size of the network. To eliminate
the impact of specific random realizations of the deployment grid, we consider a uni-
formly placed, linear grid of sensors between two fixed points. We increase the number
of sensors from six to 90 while keeping the transmission and decoding rates fixed. We
assume a correlation model that falls off exponentially with the distance and assume Pe
to be 0.2 throughout. Figure 13 compares the results obtained for the source grouping
approach and the proposed bit mapper approach. We see that the gains keep increasing
with the network size. This is because, as the number of sources increase, the decoder
receives more correlated bits, which are efficiently used by the proposed approach to
correct errors. On the other hand, the inefficiency of the the source grouping method is
directly evident, as it only uses bits within the given cluster.

8.4. Performance Dependance on Other Design Parameters

In the following, we vary different design parameters and study the performance gains
on the synthetic dataset described in the beginning of this section.
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Fig. 11. Pe versus distortion for the temperature sensor dataset, Ri = 1 and Rd = 3.

Fig. 12. Pe versus distortion for the rainfall dataset, Ri = 1 and Rd = 3.

8.4.1. The Correlation Parameter (ρo). Figure 14 depicts the distortion as a function of
ρo. The plot shows results obtained by the source grouping method, the proposed ap-
proach, and the optimal full-complexity design, which uses all the received bits. A
3dB improvement of the proposed approach over the grouping method at very high
correlations provides further evidence of improved error resilience.

8.4.2. Transmitted Bits (Ri ). In this section, we compare the competitor’s performances
over a range of transmission rates. Figure 15 shows the comparison plots. We consider
three different transmission rates, Ri = 1, 2, and 4. However, we fix the decoding rate
at 4 bits. We see that the gains increase radically to over 6dB, at higher transmission
rates. This is primarily because of two reasons. First, as Ri increases, the decoder has
access to more correlated bits, which can be used efficiently for correcting more errors.
Second, the decoder for any source has the freedom of selectively giving importance
only to a subset of bits sent from a different source. However, the source grouping
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Fig. 13. Variation of reconstruction distortion with the number of sources deployed on a linear grid placed
uniformly along a length of 10 kilometers. Correlation model is assumed to be 0.95dist(Km), Ri = 1 bit and
Pe = 0.2.

Fig. 14. Performance gains with varying correlation coefficient for the synthetic dataset.

approach does not exploit either of these advantages and hence suffers significantly
more at higher transmission rates. It must, however, be emphasized that the difficulty
arises at very high transmission rates as the proposed design complexity grows as
O(N2(R4Rd + 2R2Rd)|T |), that is, exponentially in the transmit and decoding rates.

8.4.3. Rate of Quantizers (Rq). All results so far have focused on the decoder structure.
It is also of interest to consider the importance of the encoder structure/WZ maps.
Figure 16 shows the decrease in distortion as the rates of Hi are increased from Rq = 1
to 4 bits while keeping the transmission rates fixed at Ri = 1. Note that Rq = 1 is equiv-
alent to having no WZ maps (i.e., each encoder is a simple scalar quantizer). Results
show over 2.5dB gains for the bit mapper approach and about a 1.5dB improvement for
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Fig. 15. Performance gains as a function of Ri for the synthetic dataset.

Fig. 16. Performance gains with the number of high-rate quantization levels for the synthetic dataset.

the source grouping approach when Rq is increased from 1 to 4 bits. Such improvements
(see also Yasaratna and Yahampath [2009]) demonstrate the crucial role played by WZ
maps in exploiting intersource correlations. It is important to note that while achiev-
ing these gains, we have not increased the transmit rate or the decoder complexity
of the system. These gains are achieved only at the cost of a very minimal increase
in the encoder complexity. This shows that the use of WZ maps to exploit intersource
correlations is very critical in practical sensor networks.

Note, moreover, that the proposed structure for the decoder provides about 1dB
improvement over the source grouping method even when Rq = 1, that is, when dis-
tributed source encoding is not used. Such an approach could be useful in certain
applications (see, e.g., Barros and Tuechler [2006]) due to its lower design complexity.
This result shows that, even in the absence of its DSC advantage, the proposed decoder
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structure provides significant gains over the source grouping method due to the inher-
ent error-correcting capability.

9. LARGE-SCALE DSC DESIGN FOR ERASURES

It is critical to develop robust distributed source coding techniques for networks with
bit/packet erasures, as these are encountered often in low-powered sensor networks. In
this section, we address this issue in detail and describe how the proposed technique
can be extended to handle erasures. In the erasure setting, it is assumed that a subset of
the transmitted bits is lost due to sensor/channel failures and the decoder reconstructs
all the sources based only on the received bits. The objective is to design the encoders
(at each source) and decoders (for each bit erasure pattern) to minimize the average
distortion at the decoder.

For optimal decoding, the decoder would, in principle, have an independent code-
book stored for each possible bit erasure pattern, where an estimate for each source
is obtained from the codebook corresponding to the particular subset of bits received.
Obviously, the total number of codebooks in this case grows exponentially with the
number of sources and transmission rates and is further compounded by the exponen-
tial growth in the number of codewords within each codebook. It is easy to show that,
if the optimal decoder is implemented by such a naive approach, the total storage at
the decoder (the decoder complexity) grows as O(N3NR) if Ri = R∀i. However, we will
later show that certain properties of the optimal codebooks, under the MSE distortion
measure, enable implementation using reduced complexity that grows as O(N2NR+1),
which is still exponential in NR.

In this article, we describe one possible approach to extend the classifier-based de-
coding paradigm to handle erasures and demonstrate by simulation results that the
proposed technique significantly outperforms the source grouping technique in pro-
viding robustness against bit erasures. In the proposed approach, the received index
tuples are mapped to one of the cloud centers only based on the bits that are received;
that is, we assume that erased bits are equally likely to be a 0 or a 1. We describe the
technique more formally in Section 9.2. The proposed approach effectively mimics an
erasure code at the decoder, which attempts to recover the lost bits using the corre-
lation across the sources. There are several other possible approaches to extend the
underlying principles to handle erasures, which will be studied in future work. We also
note that, using the same principles, the proposed technique can be easily applied to
networks that suffer from a combination of bit errors and erasures. We omit the details
here for brevity.

The rest of the section is described as follows. We first begin with the description
of the optimal decoder in conjunction with bit erasures and derive the corresponding
decoder complexity. We then consider an intuitive heuristic scheme that provides close
to optimal performance at half the decoding complexity. We use both these techniques,
designed within clusters, as competitors for the proposed approach. We then describe
the proposed methodology to extend the classifier-based decoding paradigm to handle
erasures.

9.1. Optimal Decoder for Bit Erasures

Recall the description of the conventional DSC system in Section 2. In the erasures
setting, the decoded index tuple, denoted by Î, is a subset of the transmitted bits, I,
that is, Î ∈ 2I , where we employ the notation, 2S , to denote the power set (the set of all
subsets) of a given set S. The decoder reconstructs each source based on the received
index Î. Formally, the decoder for source i is given by the mapping

Di : 2I → X̂i ∈ R. (19)
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Fig. 17. The optimal decoding mechanism when there are bit erasures. The stars denote bits that are lost.
Note that there is a unique codebook for each possible bit erasure pattern.

A straightforward way to implement the decoder is as a simple lookup table that
stores a unique reconstruction for each source and for each possible received index
tuple, as shown in Figure 17. The total number of possible received index tuples is
given by

∑Rr
k=1 2k, and hence the number of reconstruction codewords to be stored for

optimal decoding is given by N
∑Rr

k=1 2k, which grows as O(N3Rr ). However, a neat trick
allows us to reduce the total storage to N2(Rr+1) when the distortion measure is MSE,
as illustrated next.

Recall that when the distortion measure is MSE, the optimal reconstruction for any
source given a received index tuple is obtained by conditional expectation:

X̂i = E(Xi| Î). (20)

Let K denote the bit positions that have been received reliably at the decoder, that is,
I(K) = Î. Then, the previous expression can be rewritten using the property of iterated
expectations as follows:

X̂i = E(Xi| Î) =
∑

I∈I,I(K)= Î

P(I)E(Xi|I). (21)

This allows us to compute the reconstructions on the fly given the subset of the bits
that were received, using precomputed reconstructions E(Xi|I)∀I ∈ I and the proba-
bilities P(I). This simplification reduces the total storage at the decoder for optimal
decoding to N2(Rr+1), albeit with the overhead of an exponential number of computa-
tions to be performed if very few bits are received.

As a first competitor to the proposed approach, we consider a source-grouping-based
scheme where optimal distributed source codes are designed within each group. The
decoder complexity for this approach grows as O(N2(Rd+1)), where Rd denotes the
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Fig. 18. The proposed decoding mechanism when there are bit erasures. Stars in the receiver indices denote
bits that are lost. Now, the received index tuple is mapped to the nearest prototype based only on the bits
that are received.

maximum number of bits used for decoding within a cluster. As another competitor to
the proposed approach, we consider a heuristic scheme where the sources are grouped
and the reconstructions are estimated using Equation (21), assuming that all the
transmit indices are equally probable, that is, P(I) = 1

2Rr . A priori, such an approach
compromises some of the performance in distortion, but it entails a decoder complexity
that grows as O(N2Rd), which eventually yields an improved complexity–distortion
tradeoff curve.

9.2. Proposed Approach to Handle Bit Erasures

Recall that, to build error resilience, the decoder mapped the received index tuple to one
of the cloud centers based on a minimum distance criterion leading to the classification
of the index tuples into decoding spheres. The reconstructions were purely based on
the sphere to which the received index belongs. In the current setting, however, a
subset of the transmitted bits is not received at the decoder. The received index tuples
are now mapped to one of the cloud centers only based on the bits that are received,
as shown in Figure 18. The closest cloud center is chosen based on the Hamming
distance between the received bits and the corresponding bits in the cloud centers.
In other words, since the missing bits can be 0 or 1, we may equivalently assume
the corresponding missing values to be 1/2—a value that is equidistant from 0 and
1. Subsequently, the distance (now the absolute value of the difference) is computed
between the cloud centers and the received index tuple, with every missing bit replaced
by a 1/2, and the source reconstruction is decided based on the nearest center. Clearly,
the received index tuples are effectively mapped to one of the cloud centers only based
on the bits that were actually received.

Formally, if K denotes the subset of bit positions that are received at the decoder
reliably, the bit mapper for decoding source i is given by the following mapping:

Bi(I,K) : arg min
S∈Ji

di(I, S,K), (22)
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Fig. 19. Total storage versus distortion for the synthetic dataset, Ri = 1∀i and Pe = 0.1.

where di(I, S,K) denotes the Hamming distance between vectors I and S at positions K.
Observe that the method naturally provides better robustness to channel erasures

as it uses all the available received bits to correct erasures, unlike the source group-
ing method, which estimates the sources only using the received bits within relevant
subsets. The cloud centers and the reconstruction codebooks can be designed using an
approach similar to that described in Section 4 given a training sequence of source
samples and channel erasure patterns to minimize the expected reconstruction distor-
tion. The design and the operational complexities remain the same. We omit the details
here for brevity.

9.3. Results

We again consider all three datasets mentioned in Section 8 for evaluating the pro-
posed approach to handle bit erasures. Figures 19, 20, and 21 show the performance
gains of the proposed approach for the three datasets, respectively. Here, Pe denotes
the probability of a bit erasures. We assume Pe = 0.1 for the synthetic and the tem-
perature sensor datasets and Pe = 0.2 for the rainfall dataset. As discussed earlier, we
compare the proposed technique with two approaches, both based on source grouping.
The first curve performs optimal decoding within each cluster based on Equation (21)
using optimal priors P(I), estimated using the training set. The second curve corre-
sponds to a heuristic approach where suboptimal uniform priors are used for all P(I).
We observe that despite some expected loss due to approximating the prior to be uni-
form, which is largely negligible, the heuristic approach achieves a significantly better
complexity–distortion tradeoff curve, as it requires half the decoder storage required by
the “optimal priors” scheme. It is evident from the results that the proposed approach
gains significantly over both the techniques based on source grouping. For the synthetic
dataset, the proposed technique outperforms the source-grouping-based methods by
over 3dB in distortion at fixed decoder complexities. Similarly, for the temperature and
rainfall datasets, the gains are over 3dB and 1.5dB, respectively, in distortion at fixed
complexities. As with the case of channel errors, these results demonstrate that the
proposed technique provides better erasure resilience and recovers the lost bits more
efficiently than the source grouping method, thereby providing improved end-to-end
complexity–distortion tradeoff.
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Fig. 20. Total storage versus distortion for the temperature sensor dataset, Ri = 1, Pe = 0.1.

Fig. 21. Total storage versus distortion for the rainfall dataset, Ri = 1, Pe = 0.2.

10. ROBUSTNESS TO MISMATCH IN SOURCE AND CHANNEL STATISTICS

In the proposed approach, the system parameters are designed using a training se-
quence of source and channel samples before deployment. Essentially, this design as-
sumes that the source and channel statistics are known and are stationary in time.
However, in practice, the source and channel distribution often vary significantly with
time, leading to a mismatch in statistics between training and operation. In this section,
we study the robustness of the proposed approach to mismatch in source and channel
statistics and show that the method offers a gradual degradation in performance as
the statistics diverge.

We begin with mismatch in channel statistics for the same source distribution.
We consider the 10-sensor Gaussian synthetic dataset described in Section 8 for the
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Fig. 22. Channel statistics mismatch.

analysis. For both the source grouping and the proposed approaches, we design all the
system parameters assuming ρ0 = 0.9 and Pe = 0.1. We then test the system by vary-
ing Pe from 0 to 0.2, without adjusting the system parameters to match the actual Pe.
Figure 22 shows the performance curves obtained for the two approaches. For compar-
ison, we also plot the performance obtained when the system was designed for the true
channel statistics. We observe that the performance of both the source grouping and
the proposed approaches deteriorates by a negligible amount as the channel statistics
vary. Noticeable degradation in performance is seen only at Pe = 0. The degradation
in performance is relatively similar for both techniques, and the proposed approach
continues to gain significantly over the source grouping method, even with large devia-
tions in channel statistics. This shows that the proposed approach, although designed
optimally for the given channel statistics, continues to offer robustness against errors
in channel estimation.

We next consider mismatch in source statistics, assuming that the channel statistics
remain the same during operation. We again consider the 10-sensor Gaussian synthetic
dataset described in Section 8. We design the system parameters assuming ρ0 = 0.9 and
Pe = 0.1 and then test the system by varying ρ0 from 0.7−0.95. The performance curves
are shown in Figure 23. We observe that small deviations in statistics do not affect the
performance of either technique. For large deviations in source statistics, the loss in
performance of the proposed approach is marginally higher than that for the source
grouping technique. However, the proposed approach offers a graceful degradation in
performance as the source statistics deviate from the training set. Nevertheless, the
gains over the source grouping technique continue to be significant for all correlation
values.

We next briefly outline some options for adapting the proposed approach to significant
variations in source statistics so as to reap its benefits in such highly nonstationary
applications. One possible approach to handle such variations is to design the system
(collect raw training data) at regular intervals of time and to adapt the system parame-
ters to the new statistics. This entails some additional overhead due to system training
and could lead to faster depletion of network resources if the statistics are highly
nonstationary. An alternate approach is to store multiple sets of system parameters,
designed for representative statistics, and to select a particular set of parameters, at a
given time, by estimating the current statistics at the sink. The possible implications of
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Fig. 23. Source statistics mismatch.

these directions on practical deployment of sensor networks will be evaluated as part
of our future work.

11. CONCLUSIONS

In this article, we proposed a new coding approach to achieve large-scale distributed
compression that is robust to channel errors/erasures. In the proposed approach, the
set of possible received index tuples is first partitioned into subsets, each of which is
assigned a unique codeword. The approach enables low-complexity, practically realiz-
able decoders that are scalable to large networks. The index space partition is achieved
using a nearest prototype classifier structure, which effectively provides good resilience
to channel errors and erasures. We first proposed a design strategy based on greedy
iterative descent, which itself provides significant gains over conventional techniques.
We also presented a deterministic annealing-based optimization algorithm for the de-
sign, which provides further gains in performance by avoiding poor local minima that
riddle the cost surface. Simulation results show that the proposed scheme achieves
significant gains over state-of-the-art techniques.
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