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Abstract— This paper studies the zero-delay source-channel
coding problem, and specifically the problem of obtaining
the vector transformations that optimally map between the
m-dimensional source space and k-dimensional channel space,
under a given transmission power constraint and for the mean
square error distortion. The functional properties of the cost
are studied and the necessary conditions for the optimality of
the encoder and decoder mappings are derived. An optimization
algorithm that imposes these conditions iteratively, in conjunction
with the noisy channel relaxation method to mitigate poor
local minima, is proposed. The numerical results show strict
improvement over prior methods. The numerical approach is
extended to the scenario of source-channel coding with decoder
side information. The resulting encoding mappings are shown
to be continuous relatives of, and in fact subsume as special
case, the Wyner–Ziv mappings encountered in digital distributed
source coding systems. A well-known result in information theory
pertains to the linearity of optimal encoding and decoding
mappings in the scalar Gaussian source and channel setting,
at all channel signal-to-noise ratios (CSNRs). In this paper, the
linearity of optimal coding, beyond the Gaussian source and
channel, is considered and the necessary and sufficient condition
for linearity of optimal mappings, given a noise (or source)
distribution, and a specified a total power constraint are derived.
It is shown that the Gaussian source-channel pair is unique in the
sense that it is the only source-channel pair for which the optimal
mappings are linear at more than one CSNR values. Moreover,
the asymptotic linearity of optimal mappings is shown for low
CSNR if the channel is Gaussian regardless of the source and,
at the other extreme, for high CSNR if the source is Gaussian,
regardless of the channel. The extension to the vector settings
is also considered where besides the conditions inherited from
the scalar case, additional constraints must be satisfied to ensure
linearity of the optimal mappings.
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I. INTRODUCTION

AFASCINATING result in information theory is that
uncoded transmission of Gaussian samples, over a chan-

nel with additive white Gaussian noise (AWGN), is optimal in
the sense that it yields the minimum achievable mean square
error (MSE) between source and reconstruction [1]. This result
demonstrates the potential of joint source-channel coding:
Such a simple scheme, at no delay, provides the performance
of the asymptotically optimal separate source and channel
coding system, without recourse to complex compression
and channel coding schemes that require asymptotically long
delays. However, it is understood that the best source channel
coding system at fixed finite delay may not, in general, achieve
Shannon’s asymptotic coding bound (see [2, Th. 21] or [3]).

The problem of obtaining the optimal scheme for a given
finite delay is an important open problem with considerable
practical implications. There are two main approaches to the
practical problem of transmitting a discrete time continuous
alphabet source over a discrete time additive noise channel:
“analog communication” via direct amplitude modulation, and
“digital communication” which typically consists of quantiza-
tion, error control coding and digital modulation. The main
advantage (and hence proliferation) of digital over analog com-
munication is due to advanced quantization and error control
techniques, as well as the prevalence of digital processors.
However, there are two notable shortcomings: First, error
control coding (and to some extent also source coding) usually
incurs substantial delay to achieve good performance. The
other problem involves limited robustness of digital systems
against varying channel conditions, due to underlying quan-
tization or error protection assumptions. The performance
saturates due to quantization as the channel signal to noise
ratio (CSNR) increases beyond the regime for which the
system was designed. Also, it is difficult to obtain “graceful
degradation” with decreasing CSNR, when it falls below the
minimum requirement of the error correction code in use.
Further, such threshold effects become more pronounced as
the system performance approaches the theoretical optimum.
Analog systems offer the potential to avoid these problems. As
an important example, in applications where significant delay
is acceptable, a hybrid approach (i.e., vector quantization +
analog mapping) was proposed and analyzed [4], [5] to
circumvent the impact of CSNR mismatch, wherein linear
mappings were used and hence no optimality claims were
made. Perhaps more importantly, in many applications delay
is a paramount consideration. Analog coding schemes are
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Fig. 1. A general block-based point-to-point communication system.

low complexity alternatives to digital methods, providing
a “zero-delay” transmission which is suitable for such
applications.

There are no known explicit methods to obtain such analog
mappings for general sources and channels, nor is the optimal
mapping known, in closed form, for other than the trivial case
of the scalar Gaussian source-channel pair. Among the few
practical analog coding schemes that have appeared in the
literature are those based on the use of space-filling curves
for bandwidth compression, originally proposed more than
50 years ago by Shannon [6] and Kotelnikov [7]. These
were extended in the work of Fuldseth and Ramstad [8],
Chung [9], Vaishampayan and Costa [10], Ramstad [11], and
Hekland et.al. [12], where spiral-like curves were explored
for transmission of Gaussian sources over AWGN channels
for bandwidth compression (m > k) and expansion (m < k).
There exist two main approaches to numerical optimization
of the mappings: i) optimization of the parameter set of
a structured mapping [11]–[14]. The performance of this
approach is limited to the parametric form (structure) assumed.
ii) Design based on power constrained channel optimized
vector quantization (PCCOVQ) where a “discretized version”
of the problem is tackled using tools developed for vector
quantization [8], [15], [16].

A similar problem was solved in [17] and [18] albeit under
the stringent constraint that both encoder and decoder be
linear. A related problem, formulated in the pure context
of digital systems, was studied by Fine [19]. Properties of
the optimal mappings have been considered, over the years,
in [6], [20], and [21]. Shannon’s arguments [6] are based
on the topological impossibility to map between regions in a
“one-to-one”, continuous manner, unless they have the same
dimensionality. On this basis, he explained the threshold
effect common to various communication systems. Moreover,
Ziv [20] showed that for a Gaussian source transmitted over
an AWGN channel, no single practical modulation scheme can
achieve optimal performance at all noise levels, if the channel
rate is greater than the source rate (i.e., bandwidth expansion).
It has been conjectured that this property holds whenever
the source rate differs from the channel rate [21]. Our own
preliminary results appeared in [22]–[24]. The existence of
optimal real time encoders has been studied in [25]–[28] for
encoding a Markov source with zero-delay. Along these lines,
for similar set of problems, [26] demonstrated the existence
of optimal causal encoders using dynamic programming, its
results are recently extended to partially observed Markov
sources and multiterminal settings in [29]. The problem we
consider is intrinsically connected to problems in stochastic
control where the controllers must operate at zero delay.

A control problem, similar to the zero-delay source channel
coding problem here, is the Witsenhausen’s well known
counterexample [30] (see [31] for a comprehensive review)
where a similar functional optimization problem is studied and
it is shown that nonlinear controllers can outperform linear
ones in decentralized control settings even under Gaussianity
and MSE assumptions.

In this paper, we investigate the problem of obtaining
vector transformations that optimally map between the
m-dimensional source space and the k-dimensional channel
space, under a given transmission power constraint, and where
optimality is in the sense of minimum mean square reconstruc-
tion error. We provide necessary conditions for the optimality
of the mappings used at the encoder and the decoder. It is
important to note that virtually any source-channel communi-
cation system (including digital communication) is a special
case of the general mappings shown in Figure 1. A typical
digital system, including quantization, error correction and
modulation, boils down to a specific mapping from the source
space R

m to the channel space R
k and back to reconstruction

space R
m at the receiver. Hence the derived optimality condi-

tions are generally valid and subsume digital communications
as an extreme special case. Based on the optimality conditions,
we propose an iterative algorithm to optimize the mappings
for any given m, k (i.e., for both bandwidth expansion or
compression) and for any given source-channel statistics. We
provide examples of such m : k mappings for source-channel
pairs and construct the corresponding source-channel coding
systems that outperform the mappings obtained in [8]–[12].
We next study the functional properties of the point-to-point
problem. Specifically, first we show that MSE is a concave
functional of the source density, given a fixed noise density,
and of the noise density given a fixed source. Secondly,
MSE is a convex functional of the channel input density. The
convexity result makes the optimal encoding mapping essen-
tially unique.1 Next, we derive the necessary and sufficient
conditions for linearity of optimal mappings in terms of the
source, channel densities and the power constraint. We study
the CSNR asymptotics and particularly show that given a
Gaussian source, optimal mappings are asymptotically linear
at high CSNR, irrespective of the channel. Similarly, for
a Gaussian channel, optimal mappings are asymptotically
linear at low CSNR regardless of the source. We next extend
our analysis to higher dimensional spaces and study the

1The optimal mapping is not strictly unique, in the sense that multiple
trivially “equivalent” mappings can be used to obtain the same channel
input density. For example, a scalar unit variance Gaussian source and scalar
Gaussian channel with power constraint P , can be optimally encoded by either
y = √

Px or y = −√
Px .
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implications of linearity conditions. The last part of the paper
extends the numerical approach to the scenario of source-
channel coding with decoder side information (i.e., the decoder
has access to side information that is correlated with the
source). This setting, in the context of pure source coding,
goes back to the pioneering work of Slepian and Wolf [32]
and Wyner and Ziv [33]. The derivation of the optimal-
ity conditions for the decoder side information setting is a
direct extension of the point-to-point case, but the distributed
nature of this setting results in highly nontrivial mappings.
Straightforward numerical optimization of such mappings is
susceptible to get trapped in numerous poor local minima that
riddle the cost functional. Note, in particular, that in the case of
jointly Gaussian source and side information and a Gaussian
channel, linear encoders and decoder (automatically) satisfy
the necessary conditions of optimality while, as we will see,
careful optimization obtains considerably better mappings that
are far from linear.

The paper is organized as follows: We formulate the prob-
lem in Section II. We analyze the functional properties of the
problem, derive the necessary conditions for the optimality of
the mappings and provide an iterative algorithm based on these
conditions in Section III. We analyze the linearity of encoding
and/or decoding mappings in Section IV. We provide example
of mappings and comparative numerical results in Section V.
Discussion and future work are presented in Section VI.

II. PROBLEM FORMULATION

A. Preliminaries and Problem Definitions

Let R, N, R
+, and C denote the respective sets of real

numbers, natural numbers, positive real numbers and complex
numbers. In general, lowercase letters (e.g., x) denote scalars,
boldface lowercase (e.g., x) column vectors, upper-case
(e.g., C, X) matrices and random variables, and boldface
uppercase (e.g., X) random column vectors. I denotes the
identity matrix. Unless otherwise specified, vectors and ran-
dom vectors have length m, and matrices have size m×m. The
kth element of vector x is denoted by [x]k and the (i, j)− th
element and the kth column of the matrix U by [U ]i j and
[U ]k respectively. U−T denotes (U T )−1. RX and RX Z denote
the auto-covariance of X and cross covariance of X and Z
respectively. AT denotes the transpose of matrix (vector) A.
∇ denotes the gradient. Let E(·), P(·) and ‖ · ‖ denote
the expectation, probability and l2 norm operators, respec-
tively. Let f

′
(x) = d f (x)

dx denote the first-order derivative of
the continuously differentiable function f (·). The Gaussian
density with mean μ and variance σ 2 is denoted as N (μ, σ 2).
All logarithms in the paper are natural logarithms and may in
general be complex, and the integrals are, in general, Lebesgue
integrals. Throughout the paper, “almost everywhere” is
denoted as a.e..

We assume that the source X is an m-dimensional zero
mean vector2 and covariance RX . The channel noise Z is
additive, k-dimensional mean zero and covariance RZ and

2The zero mean assumption is not necessary, but it considerably simplifies
the notation. Therefore, it is made throughout the paper.

is independent of the source X . The m-fold source density
is denoted fX (·) and the k-fold noise density is fZ (·) with
characteristic functions FX (ω) and FZ (ω), respectively.

Let Sk
m denote the set of Borel measurable functions

{ f : R
m → R

k} with E{|| f (X)||2} < ∞ and S+
m ⊂ Sk

m
be the subset of monotone { f : R

m → R
m} functions in

Sk
m . Monotonicity simplifies to “monotone increasing" in the

scalar R → R case, while in higher dimensional settings, it is
equivalent to the condition ( f (x) − f (y))T (x − y) > 0 a.e.
in x and y.

1) Point to Point: We consider the communication system
with a block diagram shown in Figure 1. A vector source
X ∈ R

m is mapped onto Y ∈ R
k by a function g ∈ Sk

m ,
and transmitted over an additive noise channel. The received
vector Ŷ = Y + Z is mapped by the decoder to the estimate
X̂ via a function h ∈ Sm

k . The objective is to minimize the
MSE

D(g, h) = E{||X − X̂ ||2}, (1)

over the choice of encoder g(·) ∈ Sk
m and decoder h(·) ∈ Sm

k ,
subject to the average power constraint,

P(g) = E{||g(X)||2} ≤ PT , (2)

where PT is the specified transmission power level. To impose
the power constraint, we minimize the Lagrangian cost
functional:

J (g, h) = D(g, h) + λP(g). (3)

Note that this a well known relaxation in convex optimization
and there is no duality gap since the distortion is a convex
function of power [34]. Bandwidth compression-expansion is
determined by the source and channel dimensions, k/m. The
power constraint limits the choice of encoder function g(·).
Note that without a power constraint on g(·), the CSNR is
unbounded and the channel can be made effectively noise free.
Let g∗ and h∗ denote the optimal mappings, i.e.,

J (g∗, h∗) ≤ J (g, h), (4)

for any g ∈ Sk
m and h ∈ Sm

k .
2) Decoder Side Information: As shown in Figure 2, there

are two correlated vector sources X1 ∈ R
m1 and X2 ∈ R

m2

with a joint density fX1,X2(·, ·). The side information X2 is
available only to the decoder, while X1 is mapped to
Y ∈ R

k by an encoding function g ∈ Sk
m1

and transmitted
over the channel with additive noise Z ∈ R

k , with a density
fZ (·), independent of X1, X2. The received channel output
Ŷ = Y + Z is mapped to the estimate X̂1 by a decoding
function h : R

k ×R
m2 → R

m1 . The objective is to find optimal
mapping functions g(·), h(·) that minimize MSE

D(g, h) = E{||X1 − X̂1||2}, (5)

subject to P(g) ≤ PT where

P(g) = E{||g(X1)||2}. (6)
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Fig. 2. Source-channel coding with decoder side information.

B. Asymptotic Bounds for Gaussian Source and Channel

Although the problem we consider is delay limited, it is
insightful to consider asymptotic bounds obtained at infi-
nite delay. Shannon’s source and channel coding theorems
imply that, asymptotically, the source can be compressed to
R(D) bits (per source sample) at distortion level D, and that
C(PT ) bits can be transmitted over the channel (per channel
use) with arbitrarily low probability of error, where R(D) is
the source rate-distortion function, and C(PT ) is the channel
capacity at power PT (see [35]). The asymptotically optimal
coding scheme is the tandem combination of the optimal
source and channel coding schemes, hence m R(D) ≤ kC(PT )
must hold. By setting

R(D) = k

m
C(PT ), (7)

one obtains a lower bound on the distortion of any source-
channel coding scheme. Next, we specialize to Gaussian
sources and channels, which we will use in the numerical
results as benchmark. The rate-distortion function for the
memoryless Gaussian scalar source of variance σ 2

X , under
MSE is given by

R(D) = max

(
0,

1

2
log

σ 2
X

D

)
, (8)

for any distortion value D ≥ 0. The capacity of the additive,
scalar, memoryless Gaussian channel is given by

C(PT ) = 1

2
log

(
1 + PT

σ 2
Z

)
, (9)

where σ 2
Z is the noise variance. Plugging (8) and (9)

in (7), we obtain the optimal performance theoretically attain-
able (OPTA):

DO PT A = σ 2
X(

1 + PT
σ 2

Z

) k
m

. (10)

For source-channel coding with decoder side information,
OPTA can be obtained by equating Wyner-Ziv rate distortion
function [33] to the channel capacity. The Wyner-Ziv rate
distortion function of X1 when X2 serves as side information

and (X1, X2) ∼ N (0, RX1,X2), where RX1,X2 = σ 2
X

[
1 ρ
ρ 1

]
with |ρ| ≤ 1 is:

R(D) = max

(
0,

1

2
log

(1 − ρ2)σ 2
X

D

)
, (11)

We plug (11) and (9) in (7) to obtain

DO PT A = (1 − ρ2)σ 2
X(

1 + PT
σ 2

Z

) k
m

. (12)

Note that DO PT A is derived without any delay constraints
and may not be achievable by a delay-constrained coding
scheme. No achievable theoretical bound is known for joint
source-channel coding at zero-delay, although there are recent
results that tighten the outer bound, see [36]–[38].

III. FUNCTIONAL PROPERTIES OF ZERO-DELAY

SOURCE-CHANNEL CODING PROBLEM

In this section, we study the functional properties of the
optimal zero-delay source-channel coding problem. These
properties are not only important in their own right, but also
enable the derivation of several subsequent results. Particularly
concavity properties of Jm play an important role in
jamming problems where the worst case additive noise distri-
bution (maximizer of Jm ) is explored (see [39] for details).
Convexity properties enable the sufficiency of the linearity
results presented later. Let us restate the Lagrangian cost (3),
as J (X, Z, g, h) which makes explicit its dependence on the
source and channel noise X and Z, beside the deterministic
mappings g(·) and h(·) as:

J (X, Z, g, h)=E
{||X−h(g(X)+ Z)||2} + λE

{||g(X)||2}.
(13)

The minimum cost is

Jm(X, Z) � inf
g,h

J (X, Z, g, h). (14)

A. Concavity of Jm in fX (·) and fZ (·)
In this section, we show the concavity of Jm in fX (·)

and in fZ (·). Similar results were derived for the related
but different setting of MMSE estimation in [40], where a
scalar estimation problem not involving communication and
encoding was studied. We start with the following simple
lemma which states the impact of conditioning on the overall
cost. Conditioned on another random variable U , Jm(X, Z|U)
denotes Jm(X, Z) when U is available to both encoder and
decoder.

Lemma 1: Conditioning cannot increase the overall cost,
Jm i.e., Jm(X, Z) ≥ Jm(X, Z|U) for any U .
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Proof: The knowledge of U cannot increase the total cost,
since we can always ignore U and use the g(·), h(·) pair that
is optimal for Jm(X, Z). Hence, Jm(X, Z|U) ≤ Jm(X, Z). �

Next, we have the following theorem.
Theorem 1: Jm is concave in fX (·) and fZ (·).

Proof: Let X be distributed according to fX = p fX1 +
(1 − p) f X2 , where fX1 and fX2 respectively denote the densi-
ties of random variables X1 and X2. Next, X can be expressed,
in terms of a time sharing random variable U which takes
values in the alphabet {1, 2}, with P{U = 1} = p : X = XU .

Jm(X, Z) ≥ Jm(X, Z|U) (15)

= p Jm(X1, Z) + (1 − p)Jm(X2, Z), (16)

which proves the concavity of Jm(X, Z) for fixed fZ . Similar
arguments on Z prove that Jm(X, Z) is concave in fZ for
fixed fX . �

B. Convexity of Overall Cost in fY (·)
In this section, we study the convexity of J (X, Z, g, h) in

the channel input density fY (·) of Y = g(X), when h(·) is
optimized for g(·). An important distinction to make is that
convexity in g(·) is not implied in general. A trivial example
to demonstrate non-convexity in g(·) in the general setting is
the scalar Gaussian source and channel setting, where both

Y =
√

PT
σ 2

X
X and Y = −

√
PT
σ 2

X
X are optimal (when used

in conjunction with their respective optimal decoders). This
example leads to the intuition that the cost functional may be
essentially convex (e.g., convex when g(·) is limited to be in
the set S+

1 in the scalar case) although it is clearly not convex
in the strict sense. It turns out that this intuition is correct:
total cost is convex in fY (·) which implies that the cost is
convex in g(·) when g(·) is limited to be in the set S+

m .
We first reformulate the mapping problem by allowing

random mappings, i.e., we relax the mappings from deter-
ministic functions Y = g(X) and X̂ = h(Ŷ) to probabilistic
transformations, expressed as fY |X and f X̂ |Ŷ . Note that similar
relaxations have been used in the literature, e.g., recently
in [41]. We define the generalized mapping problem as:
minimize Jgen(X, Z, fY |X , f X̂ |Ŷ ) over the conditional densi-
ties fY |X and f X̂ |Ŷ where the cost functional Jgen is defined
as

Jgen(X, Z, fY |X , f X̂ |Ŷ ) � E{||X − X̂ ||2} + λE{||Y ||2}, (17)

where Y and X̂ are random transformations of X and Ŷ =
Y + Z through fY |X and f X̂ |Ŷ respectively. We first show that

this relaxation does not change the solution space, via the
following lemma.

Lemma 2: The optimal fY |X and f X̂ |Ŷ are deterministic,

i.e., Y and X̂ which minimize (17) are deterministic
functions of X and Ŷ respectively. Hence, Jm(X, Z) =
inf
g,h

J (X, Z, g, h) = inf
fY |X , f X̂ |Ŷ

Jgen(X, Z, fY |X , f X̂ |Ŷ ).

Proof: First, we observe that optimal f X̂ |Ŷ is deterministic

since h(Y) = E{X |Ŷ } minimizes MSE. Next, consider the
following:

inf
fY |X

Jgen(X, Z, fY |X , f X̂ |Ŷ )

= inf
h

∫
fX (x) inf

fY |X

{∫
G Z (x, y) fY |X (x, y)d y

}
dx.

(18)

where

G Z (X, Y) �
∫ (

‖X − h(Y + Z)‖2 + λ‖Y‖2
)

fZ (z)dz.

The minimization in (18) can be done, for a fixed h(·),
by choosing the Y = y that minimizes G Z (x, y) for each
X = x. Using the optimal h(·) as the fixed h(·) in (18),
it follows that the optimal Y is a deterministic function of X .

(Alternatively, note that Jgen is affine in fY |X . The point-
wise infimum of this functional with respect to h(·) is concave
in fY |X and the minima of a concave functional occur in the
boundary which corresponds to deterministic mappings in our
problem.) �

Next, we investigate the essential convexity of the overall
cost in the encoder mapping when the decoder is optimized,
in the randomized setting with matched source-channel dimen-
sions, i.e., m = k. To this aim, we define Jr ( fY ) as the
infimum of Jgen as a function of fY (y), where infimum
is taken over all conditional distributions f X̂ |Ŷ , under the
condition that the following is satisfied

f X̂ (x̂) =
∫

fY (y) f X̂ |Ŷ (x̂, y + z) fZ (z)d ydz, (19)

i.e., we have (20), as shown at the bottom of this page.
Theorem 2: Jr ( fY ) is convex in fY (·) in the setting of

m = k.
Proof: We first note that E{||Y ||2} does not depend on

f X̂ |Ŷ , hence can be taken out of the infimum. E{||Y ||2} is a
linear (and hence convex) function fY . Hence, the convexity
of Jr is determined by the first term given in (21), as shown
at the bottom of this page, which can be expressed as in (22),
as shown at the bottom of this page,

Jr ( fY ) = inf
f X̂ |Ŷ

{
E

{
||X − X̂ ||2

}
+ λE

{
||Y ||2

}∣∣∣∣ f X̂ (x̂) =
∫

fY (y) f X̂ |Ŷ (x̂, y + z) fZ (z)d ydz
}

. (20)

J1( fY ) = inf
f X̂ |Ŷ

{
E

{
||X − X̂ ||2

}∣∣∣∣ f X̂ (x̂) =
∫

fY (y) f X̂ |Ŷ (x̂, y + z) fZ (z)d ydz
}

(21)

J1( fY ) =
∫

inf
f X̂ |Y,Z=z

{
E

{
||X − X̂||2

∣∣∣Z = z
}∣∣∣∣ f X̂ (x̂) =

∫
fY (y) f X̂ |Ŷ (x̂, y + z) fZ (z)d ydz

}
fZ (z)dz (22)
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noting that X̂ depends on X only through Y , i.e., X̂ −
Y − X forms a Markov chain in this order. We also note that
E
{‖X − X̂‖2|Z = z

}
is a linear functional of f X̂ ,X |Z=z , and

hence of f X̂ ,Y |Z=z . The overall function is convex in f X̂ ,Y ,
since any weighted sum of convex functionals is convex under
affine constraints over the variables, i.e., in this case, under the
condition that f X̂ ,Y (x̂, y) = ∫

fZ (z) f X̂ ,Y |Z=z(x̂, y, z)dz.
This implies that we have a jointly convex functional of

f X̂ |Y and fY where (19) must be satisfied. It is known that in
general �(b) = infa∈C �(a, b) is a convex function of b under
one-to-one affine constraints on a, b when C is a convex set,
�(a, b) > −∞, and �(a, b) is convex in the product space of
a, b (see [42, Th. 5.7, p. 38] or [34, Sec. 3.2.5, Example 3.17]).
In our problem, the set of conditional probabilities f X̂ |Y is
convex, and J1( fY ) > 0; hence J1( fY ) is convex in fY (·),
which implies that Jr ( fY ) is convex in fY (·). �

A practically important consequence of Theorem 2 is stated
in the following corollary. Let Jr (g) denote Jr when the
deterministic encoding mapping g(·) is used in conjunction
with its optimal decoder.

Corollary 1: Jr (g) is convex in g(·) in the set of S+
m .

Proof: There is one-to-one mapping between Y and
the encoder g(·) ∈ S+

m as FX (X) = FY (g(X)) where
FX and FY denote the cumulative distribution functions of
X and Y , respectively. It follows from Theorem 2 that for any
fY1 and fY2 and for 1 ≥ α ≥ 0 we have

αJr ( fY1) + (1 − α)Jr ( fY2) ≥ Jr (α fY1 + (1 − α) fY2 ). (23)

The fact Jr ( fY ) is achieved by a unique g(·) ∈ S+
m implies

that

αJr (g1) + (1 − α)Jr (g2) ≥ Jr (αg1 + (1 − α)g2), (24)

which shows the convexity of Jr in g(·), in S+
m . �

C. Optimality Conditions

We proceed to develop the necessary conditions for the
optimality of the encoder and decoder subject to the average
power constraint (2), in the general setting of m, k ∈ N. While
the optimality conditions follow from standard arguments, they
have not been explicitly reported in the literature, hence are
presented in the following theorem.3

Theorem 3: Given source and noise densities, a coding
scheme (g(·), h(·)) is optimal only if

g(x) = 1

λ

∫
h′(g(x)+ z)[x−h(g(x)+ z)] fZ (z)dz, (25)

h( ŷ) =
∫

x fX (x) fZ ( ŷ − g(x)) dx∫
fX (x) fZ

(
ŷ − g(x)

)
dx

, (26)

where varying λ provides solutions at different levels of power
constraint PT . In fact, λ is the slope of the distortion-power
curve: λ = − d D

d PT
.

Proof: See Appendix A. �
Corollary 2: In the setting of m = k, (25) and (26) are

sufficient for optimality.

3To simplify the expressions of the optimality conditions, we assume that
h(·) is differentiable a.e., noting that this assumption is not essential.

Proof: The proof follows from Theorem 2. �
The following auxiliary result will be used in the next

section.
Corollary 3: There exist linear mappings g(x) = Ke X and

h(Y ) = KdY for some Ke ∈ R
m×k, Kd ∈ R

k×m that satisfy
(25) for any m, k ∈ N, regardless of the source and channel
densities.

Proof: Let us plug h(Y ) = KdY in (25). Noting that
h′(Y) = Kd a.e. in Y , we have

λg(X) = Kd

∫
(X − Kd g(X) − Kd z) fZ (z)dz, (27)

a.e. in X . Evaluating the integral and noting that E{Z} = 0,
we have

λg(X) = Kd (X − Kd g(X)) (28)

a.e. in X and hence g(X) = Ke X . �
The necessary conditions for optimality in Theorem 3

are not sufficient in general settings, as is demonstrated in
particular by the following corollary.

Corollary 4: For a Gaussian source X and a Gaussian
channel Z, (25) and (26) are satisfied by linear mappings
g(X) = Ke X and h(Y ) = Kd Y for some Ke ∈ R

m×k ,
Kd ∈ R

k×m for any m, k ∈ N.
Remark 1: Although linear mappings satisfy the necessary

conditions of optimality for the Gaussian case for any m and k,
they are highly suboptimal when m �= k, see [18].

Proof: Linear mappings satisfy the first necessary condi-
tion, (25) due to Corollary 3. Optimal decoder is linear in the
Gaussian source-channel setting, satisfying (26). �

1) Extension to Distributed Settings: Optimality conditions
for the setting of decoder side information can be obtained by
following similar steps (see Appendix B). We note, in partic-
ular, that for these settings a similar result as in Corollary 4
holds, i.e., for Gaussian sources and channels, linear mappings
satisfy the necessary conditions. Perhaps surprisingly, even
in the matched bandwidth case, e.g., scalar source, channel
and side information, linear mappings are strictly suboptimal.
This observation highlights the need for powerful numerical
optimization tools.

D. Algorithm Design

A basic approach is to iteratively alternate between the
imposition of individual necessary conditions for optimality,
and thereby successively decrease the total Lagrangian cost.
Imposing optimality condition for the decoder is straightfor-
ward, since the decoder can be expressed as closed form func-
tional of known quantities, g(·), fX (·) and fZ (·). Since (25) is
not in closed form, we perform steepest descent search in the
direction of the functional derivative of the Lagrangian with
respect to the encoder mapping g(·) as:

gi+1(x) = gi (x) − μ∇ J(g, h), (29)

where i is the iteration index, ∇ J(g, h) is the directional
derivative in the direction of mapping g(·) whose exact expres-
sion is provided in Appendix A, in (44), and μ is the step
size. At each iteration i , the total cost decreases monotonically
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and iterations are continued until convergence to a local
minimum. Note that there is no guarantee that an iterative
descent algorithms of this type will converge to the globally
optimal solution. A low complexity approach to mitigate the
poor local minima problem, is to embed in the solution
the noisy relaxation method of [43] and [44]. We initialize the
encoding mapping with random initial conditions and run the
algorithm at very low CSNR (high Lagrangian parameter
λ). We gradually increase the CSNR (decrease λ) while
tracking the minimum until we reach the prescribed CSNR
(or power PT for a given channel noise level). The numerical
results of this algorithm is presented in Section V.

IV. ON LINEARITY OF OPTIMAL MAPPINGS

In this section, we address the problem of linearity of
the optimal encoding and decoding mappings. Our approach
builds on [45], where conditions for linearity of optimal
estimation are derived, and on Theorems 2 and 3 of the previ-
ous section. Throughout this section, we only study matched
source and channel dimension settings, i.e., m = k. Let us
first provide some background that is particularly relevant to
linearity in vector settings. The source and the channel noise
have covariance matrices RX and RZ , which allow the eigen-
decomposition

RX = QX�X QT
X , and RZ = QZ �Z QT

Z , (30)

where QX and QZ are unitary matrices, i.e., they satisfy
QX QT

X = QZ QT
Z = I , and �X and �Z are diagonal

matrices whose entries are λX = [λX (1), . . . , λX (m)]T and
λZ = [λZ (1), . . . , λZ (m)]T , respectively. We assume4 that
λX and λZ are inversely ordered, i.e., λX (i) ≥ λX ( j) and
λZ ( j) ≥ λZ (i) for all i < j .

A. Optimal Linear Mappings

We first briefly revisit the optimal linear encoder and
decoder. In the scalar case, g(X) = ke X and h(Y ) = kdY
where ke and kd are given by

ke =
√

PT

σ 2
X

, kd = 1

ke

(
PT

PT + σ 2
Z

)
. (31)

It is well known that if X and Z are scalar Gaussian,
X ∼ N (0, σ 2

X ) and Z ∼ N (0, σ 2
Z ), g∗(X) = ke X and

h∗(Y ) = kdY are unbeatable even by coding at asymptoti-
cally high delay. In vector settings, derivation of the optimal
linear mappings is not as straightforward as the scalar case.
Here, we reproduce the classical result due to [17] (see also
[18], [46], [47] for alternative derivations of this result).

Theorem 4 ([17]): The encoding-decoding linear trans-
forms that minimize the MSE distortion subject to the total
power constraint PT is

Ke = QZ 	QT
X , (32)

4This assumption is made only for simplicity in the presentation of the
vector linearity conditions, in order to avoid permutation matrices in related
expressions.

and

Kd = RX K T
e (Ke RX K T

e + RZ )−1, (33)

where 	 is a diagonal power allocation matrix that depends
on PT .

B. On Simultaneous Linearity of Optimal
Encoder and Decoder

We next show that optimality requires that mappings either
both be linear or both nonlinear. In other words, a linear
encoder with a nonlinear decoder, or a nonlinear encoder in
conjunction with a linear decoder, are both strictly suboptimal.
We show this in two steps in the following lemmas.

Lemma 3: g∗(X) = Ke X a.e. in X if h∗(Y) = Kd Y .
Proof: Follows directly from Corollaries 2 and 3. �

Lemma 4: h∗(Y) = KdY a.e. in Y if g∗(X) = Ke X .
Proof: See Appendix C. �

Next, we summarize our main result pertaining to the
simultaneous linearity of optimal encoder and decoder.

Theorem 5: The optimal mappings are either both linear or
they are both nonlinear.

Proof: The proof directly follows from Lemma 3 and
Lemma 4. �

C. Conditions for Linearity of Optimal
Mappings: Scalar Settings

In this section, we study the conditions for linearity of
optimal encoder and/or decoder. We first focus on the scalar
case, m = k = 1, and next extend to higher dimensional spaces
(m = k > 1). The following theorem presents the necessary
and sufficient condition for linearity of optimal encoder and
decoder mappings.

Theorem 6: For a given power limit PT , noise Z with
variance σ 2

Z and characteristic function FZ (ω), source X
with variance σ 2

X and characteristic function FX (ω), the
optimal encoding and decoding mappings are linear if and
only if

FX (αω) = Fγ
Z (ω), (34)

where γ = PT
σ 2

Z
and α =

√
PT
σ 2

X
.

Proof: See Appendix D. �
We next explore some special cases obtained by varying

CNSR (i.e., γ ) and utilizing the matching conditions for
linearity of optimal mappings given in Theorem 6. We start
with a simple but perhaps surprising result.

Theorem 7: Given a source and noise of the same variance,
equal to the power limit (σ 2

X = σ 2
Z = PT ), the optimal

mappings are linear if and only if the noise and source
distributions are identical, i.e., fX (x) = fZ (x), a.e. and in
which case, the optimal encoder is g∗(X) = X and the optimal
decoder is h∗(Ŷ ) = 1

2 Ŷ .
Proof: It is straightforward to see from (34) that, at γ = 1,

the characteristic functions must be identical. Since the char-
acteristic function uniquely determines the distribution [48],
fX (x) = fZ (x), a.e.. �
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Remark 2: Note that Theorem 7 holds, albeit at a specific
power constraint and second order statistics of the source and
the channel, irrespective of the source (and channel) density.
This example demonstrates the departure from the well known
example of scalar Gaussian source and channel.

Next, we investigate the asymptotic behavior of optimal
encoding and decoding functions at low and high CSNR. The
results of our asymptotic analysis are of practical importance
since they justify, under certain conditions, the use of linear
mappings without recourse to complexity arguments at asymp-
totically high or low CSNR regimes.

Theorem 8: In the limit γ → 0, the optimal encoding and
decoding functions are asymptotically linear if the channel is
Gaussian, regardless of the source. Similarly, as γ → ∞, the
optimal mappings are asymptotically linear if the source is
Gaussian, regardless of the channel.

Proof: The proof follows from applying the central limit
theorem [48] to the matching condition (34). The central
limit theorem states that as γ → ∞, for any finite variance
noise Z , the characteristic function of the matching source
FX (ω) = Fγ

Z (ω/ke) converges to the Gaussian characteristic
function. Hence, at asymptotically high CSNR, any noise
distribution is matched by the Gaussian source. Similarly,

as γ → 0 and for any FX (keω), F
1
γ

X (keω) converges
to the Gaussian characteristic function and hence the opti-
mal mappings are asymptotically linear if the channel is
Gaussian. �

Let us next consider a setup with given source and noise
variables and a power which may be scaled to vary the
CSNR, γ . Can the optimal mappings be linear at multiple
values of γ ? This question is motivated by the practical
setting where γ is not known in advance or may vary
(e.g., in the design stage of a communication system). It
is well-known that the Gaussian source-Gaussian noise pair
makes the optimal mappings linear at all γ levels. Below,
we show that this is the only source-channel pair for which
the optimal mappings are linear at more than one CSNR
value.

Theorem 9: Given X and Z, let power PT be scaled to vary
CSNR, γ . The optimal mappings g∗(·) and h∗(·) are linear at
two different power levels P1 and P2 if and only if source and
noise are both Gaussian.

Remark 3: This theorem also holds for the setting where
X or Z is scaled to change CSNR for a given power PT .

Proof: See Appendix E. �
Having discovered the necessary and sufficient condition as

answer to the question of when optimal zero-delay encoding
and decoding mappings are linear, we next focus on the
question: when can we find a matching source (or noise) for
a given noise (source)? Given a valid characteristic function
FZ (ω), and for some γ ∈ R

+, the function Fγ
Z (ω) may or

may not be a valid characteristic function, which determines
the existence of a matching source. For example, matching is
guaranteed for integer γ and it is also guaranteed for infinitely
divisible Z . Conditions on γ and FZ (ω) for Fγ

Z (ω) to be
a valid characteristic function were studied in detail in [45],
to which we refer for brevity and to avoid repetition.

D. Conditions for Linearity of Communication
Mappings: Vector Settings

For a source X ∈ R
m with covariance RX and a channel

noise Z ∈ R
m with covariance RZ , we derive the necessary

and sufficient condition for simultaneous linearity of optimal
encoder and decoder. Similar to the scalar case, we will only
investigate the conditions for linearity of optimal decoder
given that the encoder is linear due to Theorem 5.

Theorem 10: Let the characteristic functions of the trans-
formed source and channel noise (	QT

X X and QT
Z Z)

be F	QT
X X (ω) and FQT

Z Z (ω), respectively. The necessary and
sufficient condition for linearity of optimal mappings is:

∂ log F	QT
X X (ω)

∂ωi
= Si

∂ log FQT
Z Z (ω)

∂ωi
, 1 ≤ i ≤ m, (35)

where Si are the elements of the diagonal matrix
S = 	�X 	�−1

Z , 	 is a diagonal power allocation matrix,
�X and �Z are diagonal matrices whose entries are ordered
eigenvalues of RX and RZ .

Proof: See Appendix F. �
Further insight into the above necessary and sufficient

condition is provided via the following corollaries. The first
one states that the scalar matching condition, necessary and
sufficient for linearity of optimal mappings, is also a necessary
condition for each source and channel component in the
transform domain, where the transforms render the source and
channel components uncorrelated (note that QT

X and QT
Z are

the eigen-transforms of X and Z respectively, and 	 is a
diagonal matrix.).

Corollary 5: Let F[	QT
X X ]i

(ω) and F[QT
Z Z ]i

(ω) be the mar-
ginal characteristic functions of the transform coefficients
[	QT

X X]i and [QT
Z Z]i , respectively. A necessary condition

for linearity of optimal mappings is:

F[	QT
X X ]i

(ω) = F Si

[QT
Z Z ]i

(ω), 1 ≤ i ≤ m. (36)

Proof: See Appendix G. �
Another set of necessary conditions is presented in the

following corollary.
Corollary 6: A necessary condition for linearity of optimal

mappings is that one of the following holds for every pair i, j ,
1 ≤ i, j ≤ m:

• i) Si = Sj

• ii) [QT
X X]i is independent of [QT

X X] j and [QT
Z Z]i is

independent of [QT
Z Z] j .

Proof: See Appendix H. �
Note that we only presented necessary conditions so far.

In the following, we present a sufficient condition.
Corollary 7: If the necessary condition of Corollary 5 is

satisfied, the second condition of the Corollary 6 is sufficient
for linearity of optimal mappings.

Proof: Independence of the transform coefficients implies
that the joint characteristic function is the product of the
marginals:

F	QT
X
(ω) =

m∏
i=1

F[	QT
X X ]i

(wi ), FQT
Z Z (ω) =

m∏
i=1

F[QT
Z Z ]i

(wi ).

(37)
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Fig. 3. Example encoder mapping and comparative results. (a) Encoder mapping for bi-modal scalar GMM source, modes at 3 and −3 as in (38) and a
scalar Gaussian channel. (b) Comparative results: PQCOVQ vs. the proposed method.

Plugging (37) into the necessary and sufficient condition (35)
of Theorem 10, it is straightforward to show that (36), the
necessary condition of Corollary 5, is now both necessary and
sufficient. �

Remark 4: While the condition in Corollary 7 requires
independence of transform coefficients, the weaker property of
uncorrelatedness is already guaranteed by the use of eigen-
transformations.

Corollary 8: For Gaussian X and Z, linear mappings are
optimal, irrespective of RX , RZ and PT .

Proof: Gaussian X and Z satisfy (36) for any S, QX

and QZ . As any linear transform preserves joint Gaussianity in
the transform domain, QT

X and QT
Z generates jointly Gaussian

and uncorrelated coefficients which are therefore independent,
satisfying the conditions of Corollary 7. �

Remark 5: Although linear mappings are optimal for a
Gaussian vector source and channel pair in the zero-delay
setting; they may not be, in general, optimal from an infor-
mation theoretic point of view (asymptotically high delay
settings), see [35]. This is in contrast with the scalar Gaussian
setting where linear encoding-decoding mappings are optimal
even from an information theoretic perspective.

V. NUMERICAL RESULTS

We implement the proposed algorithm by numerically
calculating the derived integrals. For that purpose, we sample
the source and noise distributions on a uniform grid with
a step size  = 0.01, i.e., to obtain the numerical results,
we approximated the integrals as Riemann sums. We impose
bounded support (−5σ to +5σ ) i.e., neglect tails of infinite
support distributions in the examples.

A. Scalar Mappings (m = 1, k = 1), Gaussian
Mixture Source and Gaussian Channel

We consider a Gaussian mixture source with distribution

fx (x) = 1

2
√

2π

{
e

−(x−3)2

2 + e
−(x+3)2

2

}
, (38)

and unit variance Gaussian noise. The encoder and decoder
mappings for this source-channel setting are numerically
obtained as shown in Figure 3(a). As intuitively expected,
since the two modes of the Gaussian mixture are well
separated, each mode locally behaves as Gaussian. Hence
the curve can be approximated as piece-wise linear, deviating
significantly from a truly linear mapping. This illustrates the
importance of nonlinear mappings for general distributions that
diverge from the pure Gaussian.

B. A Numerical Comparison With Vector
Quantizer Based Design

In the following, we compare the proposed approach to
the power constrained channel optimized vector quantiza-
tion (PQCOVQ) based approach which first discretizes the
problem, numerically solves the discrete problem and next
interpolates between the selected points linearly (see [16]).
The main difference between our approach and PQCOVQ
based approaches is that we derive the necessary conditions
of optimality in the original, “analog” domain without any
discretization. This allows not only a theoretical analysis of
the problem but also enables a completely different numerical
method which iteratively imposes the optimality conditions of
the “original problem”.

On the other hand, in PQCOVQ, the necessary conditions
are derived for the discrete problem, which may not corre-
spond to the original problem if the discretization points are
not dense enough. Moreover, it is well known that there are
problems with closed form solutions which become NP hard
once they are discretized [49]. Indeed, it is straightforward to
show that the discrete version of the analog mapping problem
can be converted to the discretized Withsenhausen’s counterex-
ample in stochastic control, which is known to be NP hard,
in polynomial number of steps, and hence the “discretized”
analog mapping problem is also NP hard. Admittedly, the
analog approach proposed in this paper does not necessarily
have lower computational complexity than the discretized
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Fig. 4. This figure shows the optimal encoder at various CSNR values when X ∼ N (0, 1) and Z is distributed uniformly on the interval [−1, 1] and CSNR
is varied by changing power, P . Observe that the optimal encoder converges to linear as CSNR increases. (a) CSNR = −5.70dB. (b) CSNR = −1.69dB.
(c) CSNR = 5.69dB.

Fig. 5. This figure shows the optimal decoder (estimator) at various CSNR (in dB) values. Observe that the optimal decoder, similar to the optimal encoder
in Figure 4, converges to linear as CSNR increases. (a) CSNR = −5.70dB. (b) CSNR = −1.69dB. (c) CSNR = 5.69dB.

one (at the same sampling resolution), however the proposed
approach allows the discovery of closed form solutions, if they
exist in addition to the analysis of the functional properties of
the problem.

To compare our method to PQCOVQ, we consider our
running example of Gaussian mixture source and Gaussian
channel. For both methods, we use 10 sampling points for the
encoder mapping. The main difference is due to two facts:
i) The proposed method is based on the necessary condition
derived in the “original” analog domain, and discretization
is merely used to perform the ultimate numerical operations.
On the other hand, PQCOVQ defines a “discretized” version
of the problem from the outset, with the implicit assumption
that the discretized problem, at sufficiently high resolution,
approximates well the original problem. Hence, although both
methods eventually optimize and interpolate a discrete set of
points, the proposed algorithm finds the values of these points
while accounting for the fact that they will eventually be
(linearly) interpolated. PQCOVQ does not account for eventual
interpolation and merely solves the discrete problem. ii) Since
we consider the problem in its original domain, we naturally
use the optimal decoder, namely, conditional expectation. The
PQCOVQ method uses the standard maximum likelihood
method for decoding, see [16].

The numerical comparisons are shown in Figure 3(b).
As expected, the proposed method outperforms PQCOVQ
for the entire range of CNSRs in this resolution constrained
setting of 10 samples. We note that the performance differ-
ence diminishes at higher sampling resolution. The purpose

of this comparison is to demonstrate the conceptual differ-
ence between these two approaches at finite resolution while
acknowledging that the proposed method does not provide
gains at asymptotically high resolution.

C. A Numerical Example for Theorem 8

Let us consider a numerical example that illustrates the
findings in Theorem 8. Consider a setting where the chan-
nel noise Z is uniform over the interval [−1, 1], and the
source X is Gaussian with unit variance, i.e., X ∼ N (0, 1).
We change γ (CSNR) by varying allowed power PT , and
observe how the optimal mappings behave for different γ.
Figures 4 and 5 respectively show how the optimal encoder
and decoder mappings converge to linear as CSNR increases.
Note that at γ = −5.70, optimal mappings are both highly
nonlinear while at γ = 5.69, they practically converge to
linear, as theoretically anticipated from Theorem 8.

D. (m = 2, k = 1) Gaussian Source-Channel Mapping

In this section, we present a bandwidth compression
example with 2:1 mappings for Gaussian vector source of
size two (source samples are assumed to be independent and
identically distributed with unit variance) and scalar Gaussian
channel, to demonstrate the effectiveness of our algorithm
in differing source and channel dimensions. We compare the
proposed mapping to the asymptotic bound (OPTA) and prior
work [50]. We also compare the optimal encoder-decoder pair
to the setting where only the decoder is optimized and the
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Fig. 6. Example encoder mapping and comparative results. (a) Encoder 2:1 mapping for unit variance Gaussian source and channel, at CSNR=40dB,
SNR=19.41dB. The axes show the two dimensional input (x) and the function value (g(x)) is reflected in the intensity level. (b) Comparative results for
Gaussian source-channel, 2:1 mapping.

Fig. 7. Encoder mappings for Gaussian scalar source, channel and side information at different CSNR and correlation levels. (a) CSNR = 10dB, ρ = 0.97.
(b) CSNR = 22dB, ρ = 0.97. (c) CSNR = 10dB, ρ = 0.9. (d) CSNR = 23dB, ρ = 0.9.

encoder is fixed. In prior work [9], [11], [50], the Archimedian
spiral is found to perform well for Gaussian 2:1 mappings,
and used for encoding and decoding with maximum likelihood
criteria.

The obtained encoder mapping is shown in Figure 6(a).
While the mapping produced by our algorithm resembles a
spiral, it nevertheless differs from the Archimedian spiral, as
will be evident from the performance results. Note further
that the encoding scheme differs from prior work in that we
continuously map the source to the channel signal, where the
two dimensional source is mapped to the nearest point on the
space filling spiral. The comparative performance results are
shown in Figure 6(b). The proposed mapping outperforms the
Archimedian spiral [50] over the entire range of CSNR values.
It is notable that the “intermediate” option of only optimizing
the decoder captures a significant portion of the gains.

E. Source-Channel Coding With Decoder Side Information

In this section, we demonstrate the use of the proposed algo-
rithm by focusing on the specific scenario of Figure 2. While
the proposed algorithm is general and directly applicable to
any choice of source and channel dimensions and distributions,
for conciseness of the results section, we assume that sources

are jointly Gaussian scalars with correlation coefficient ρ, and
the channel is scalar Gaussian as described in Section II.B.

Figure 7 presents a sample of encoding mappings obtained
by varying the correlation coefficient and CSNR. Interestingly,
the analog mapping captures the central characteristic observed
in digital Wyner-Ziv mappings, in the sense of many-to-one
mappings, where multiple source intervals are mapped to the
same channel interval, which will potentially be resolved by
the decoder given the side information. To see the effect of
correlation on the encoding mappings, we lower the correlation
from ρ = 0.97 to ρ = 0.9. As intuitively expected, the side
information is less reliable and source points that are mapped
to the same channel representation grow further apart from
each other. Comparative results in Figure 8 show that the
proposed mapping outperforms linear mapping over the entire
range of CSNR values. We note that this characteristic of the
encoding mappings was also noted in experiments with the
PCCOVQ approach in [16], and was implemented in [51], for
optimizing hybrid (digital + analog) mappings.

VI. DISCUSSION AND FUTURE WORK

In this paper, we studied the zero-delay source-channel
coding problem. First, we derived the necessary conditions
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Fig. 8. Comparative results for correlation coefficient ρ = 0.9, Gaussian
scalar source, channel and side information

for the optimality of the encoding and decoding mappings
for a given source-channel system. Based on the necessary
conditions, we proposed an iterative algorithm which generates
locally optimal encoder and decoder mappings. Comparative
results and example mappings are provided and it is shown that
the proposed method improves upon the results of prior work.
Moreover, we investigated the functional properties of the
zero-delay source-channel coding problem. Using these func-
tional properties and the necessary conditions of optimality we
had derived, we obtained the necessary and sufficient condition
for linearity of optimal mappings. We studied the implications
of this matching condition and particularly showed that the
optimal mappings converge to linear at asymptotically high
CSNR for a Gaussian source, irrespective of the channel
density and similarly for a Gaussian channel, at asymptotically
low CSNR, irrespective of the source. We also extended our
analysis to vector spaces.

The numerical algorithm presented in this paper is feasible
for relatively low source and channel dimensions (m, k).
For high dimensional vector spaces, the numerical approach
should be supported by imposing a tractable structure to
the mappings, to mitigate the problem of the dimensionality.
A set of preliminary results in this direction appeared in [47],
where a linear transformation followed by scalar non-linear
mappings were utilized for the decoder side information
setting. The purely linear solution had been investigated
in [52], where numerical algorithms are proposed to find
the optimal bandwidth compression transforms in network
settings. The analysis in this paper, specifically conditions for
linearity (and generalizations to other structural forms) of
optimal mappings, as well as the numerical approach,
can be extended to well known control problems such
as the optimal jamming problem [53] and Witsenhausen’s
counterexample [30], [31]. See [39], [54] for preliminary
results in these directions.

An interesting question pertains to the existence of structure
in the optimal mappings in some fundamental scenarios.

For instance, in [51], a hybrid digital-analog encoding was
employed for the problem of zero-delay source-channel coding
with decoder side information, where the source, the side
information and the channel noise are all scalar and Gaussian.
The reported performance results are very close to the
performance of the optimal unconstrained mappings. In con-
trast, in [16], a sawtooth-like structure was assumed and its
parameters were optimized as well as PCCOVQ was employed
to obtain the non-structured mappings, where non-negligible
performance difference between these approaches was
reported. Hence, this fundamental question, on whether the
optimal zero-delay mappings are structured for the scalar
Gaussian side information setting, is currently open. This
problem can numerically be approached by employing a
powerful non-convex optimization tool, such as deterministic
annealing [55]. Preliminary results in this direction appeared
in [56] and [57].

APPENDIX A
PROOF OF THEOREM 3

Let g(·) be fixed. The optimal decoder is the MMSE
estimator of X given Ŷ = ŷ which can be written, using
Bayes’ rule and noting that fŶ |X (x, ŷ) = fZ ( ŷ − g(x)) as

h( ŷ) =
∫

x fX (x) fZ ( ŷ − g(x)) dx∫
fX (x) fZ ( ŷ − g(x))dx

. (39)

Let h(·) be fixed. Applying the standard method in variational
calculus [58] to the cost function defined in (3), we have

∂

∂ε

∣∣∣∣
ε=0

J (g(x) + εη(x), h) = 0, (40)

i.e., we perturb the cost functional for all admissible5 variation
functions η(x). Since the power constraint is accounted for
in the cost function, the variation function η(·) needs not
be restricted to satisfy the power constraint (all measurable
functions η : R

m → R
k are admissible). Applying (40), as

shown at the top of the next page. we get (41). Evaluating
(41) at ε = 0, we have (42), as shown at the top of the
next page, where h′(·) denotes the Jacobian of the vector
valued function h(·). Equality for all admissible variation
functions, η(·), requires the expression in braces to be iden-
tically zero (more formally the functional derivative [58]
vanishes at an extremum point of the functional). Hence,
we have

∇ J (g, h) = 0, (43)

where

∇ J (g, h) = λ fX (x)g(x)

−fX (x)

∫
h′(g(x)+ z)(x−h(g(x)+ z)) fZ (z)dz .

(44)

5Our admissibility definition does not need to be very restrictive since it is
used to derive a necessary condition. Hence, the only condition required for
the admissible functions is to be (Borel) measurable, that the integrals exist,
and that we can change the order of integration and differentiation.
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{∫ {
λ (g(x) + εη(x)) −

∫
h′(g(x) + εη(x) + z) (x − h(g(x) + εη(x) + z)) fZ (z)dz

}
η(x) fX (x)dx

} ∣∣∣∣
ε=0

= 0, (41)∫ {
λg(x) −

∫
h′(g(x) + z) (x − h(g(x) + z)) fZ (z)dz

}
η(x) fX (x)dx = 0 (42)

∇ J (x1, x2)= λ fX1,X2(x1, x2)g(x1) −
∫

h′(g(x1)+ z, x2) (x−h(g(x1)+ z, x2)) fZ (z) fX1,X2(x1, x2)dz. (50)

APPENDIX B
OPTIMALITY CONDITIONS FOR CODING WITH

DECODER SIDE INFORMATION

Let the encoder g(·) be fixed. The optimal decoder is

h( ŷ, x2) = E{X1| ŷ, x2} (45)

=
∫

x1 fX1,X2(x1, x2) fZ ( ŷ − g(x1)) dx1∫
fX1,X2(x1, x2) fZ ( ŷ − g(x1)) dx1

. (46)

We next consider the distortion functional

D = E{||X1 − h(g(X1) + Z, X2)||2}, (47)

and the Lagrangian cost to minimize:

J = D + λP. (48)

Assuming the decoder h(·) is fixed, we have

∇ J (x1, x2) = 0, ∀ x1, x2, (49)

where ∇ J (x1, x2) is given in (50), as shown at the top of this
page.

APPENDIX C
PROOF OF LEMMA 4

We prove this lemma in two steps. First, we focus on the
scalar setting and prove the lemma for m = 1. Next, we extend
the analysis to vector setting. Plugging g(x) = kex in (25),
we obtain

λkex =
∫

(x − h(kex + z))h′(kex + z) fZ (z)dz, (51)

a.e. in x . Since h(·) is a continuous6 function from R → R, the
Weierstrass theorem [59] guarantees that there is a sequence
of real valued polynomials that uniformly converges to it:

h(y) = lim
i→∞

∞∑
r=0

αr (i)yr , (52)

where αr (i) ∈ R is the r th polynomial coefficient of the
i th polynomial. Since Weierstrass convergence is uniform in y,
we can interchange the limit and summation and hence,

h(y) =
∞∑

r=0

αr yr , (53)

6We assume continuous h(·), however this assumption is not essential since
continious functions are dense in R

2, i.e., we can approximate any function
with bounded second order moments, as the limit of a sequence of continuous
functions with arbitrarily small l2 error [59].

a.e. in y, where αr = lim
i→∞ αr (i). Plugging (53) in (51) we

obtain

λkex =
∫ (

x −
∞∑

i=0

αi (kex + z)i

)

×
( ∞∑

i=0

iαi (kex + z)i−1

)
fZ (z)dz. (54)

Interchanging the summation and integration,7 we have

−λkex + x −
∞∑

i=0

iαi

∫
(kex + z)i−1 fZ (z)dz

=
∞∑

i=0

∞∑
j=0

iαiα j

∫
(kex + z)i−1(kex + z) j fZ (z)dz. (55)

Note that the above equation must hold a.e. in x , hence the
coefficients of xr must be identical for all r ∈ N. Expanding
the expressions (kex + z)i−1 and (kex + z) j via binomial
expansion, we have the following set of equations

∞∑
i=r+1

i

(
i − 1

r

)
αi E{Zi−1−r }

=
∞∑

i=0

∞∑
j=0

i−1∑
l=0

j−1∑
p=r−l+1

(
j

p

)(
i − 1

l

)
iαiα j E{Zi+ j−1−p−l},

(56)

which must hold for all r ≥ 2.
We note that every equation introduces a new variable αr ,

so each new equation is linearly independent of its predeces-
sors. Next, we solve these equations recursively, starting from
r = 1. At each r , we have one unknown (αr ) which is related
“linearly” to known constants. Since the number of linearly
independent equations is equal to the number of unknowns
for each r , there must exist a unique solution. We know that
αr = 0, for all r ≥ 2 is a solution to (56), so it is the only
solution.

Having proved the scalar version of the proposition,
we extend it to vector spaces by contradiction. Let us assume
g∗(X) = Ke X and h∗(Y) �= KdY . It can be shown, using
(25) and (26), that g∗(Xi ) = E{g∗(X)} and h∗(Yi ) = E{h(Y)}
where the expectations are taken over the joint distributions
X − {Xi } and Y − {Yi }, respectively for all i . Noting that

7Since the polynomials
∞∑

i=0
αi (kex+z)i and

∞∑
i=0

iαi (kex+z)i−1 respectively

converge to h(kex + z) and h′(kex + z) uniformly in x and z, and hence both
upper bounded in magnitude, we can use Lebesgue’s dominated convergence
theorem to interchange the summation and the integration.
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there exists an i such that g∗(Xi ) = E{g∗(X)} = ke Xi

and h∗(Yi ) = E{g∗(X)} �= kdYi since g∗(X) = Ke X and
h∗(Y) �= Kd Y . This contradicts with the scalar version of this
proposition and hence if g∗(X) = Ke X then h∗(Y) = Kd Y
for any m.

APPENDIX D
PROOF OF THEOREM 6

Theorem 5 states that the optimal g(·) is linear if and only
if the optimal h(·) is linear. Hence, we only focus on the case
where encoder and decoder are simultaneously linear. Given
Corollary 3, only the second necessary condition, (26) remains
to be verified. Plugging g(X) = ke X and h(Ŷ ) = kdŶ in (26),
we have

kd ŷ =
∫

x fX (x) fZ (ŷ − kex)dx∫
fX (x) f Z (ŷ − kex) dx

. (57)

Opening up (57), we obtain

kd ŷ
∫

fX (x) fZ (ŷ − kex) dx =
∫

x fX (x) fZ
(
ŷ − kex

)
dx .

(58)

Taking the Fourier transform of both sides and via change of
variables u � ŷ − kex , we have∫ ∫

kd(u + kex) fX (x) fZ (u) exp(− jω(u + kex))dxdu

=
∫ ∫

x fX (x) fZ (u) exp(− jω(u + kex))dxdu, (59)

and rearranging the terms, we obtain(
1 − kekd

kekd

)
FZ (ω)F ′

X (keω) = FX (keω)F ′
Z (ω). (60)

Noting that

γ = PT

σ 2
Z

= kekd

1 − kekd
, (61)

we have

F ′
X (keω)

FX (keω)
= γ

F ′
Z (ω)

FZ (ω)
, (62)

which implies

(log FX (keω))′ = (log Fγ
Z (ω))′. (63)

The solution to this differential equation is

log FX (keω) = log Fγ
Z (ω) + θ, (64)

where θ is constant. Noting that FX (0) = FZ (0) = 1,
we determine θ = 0 and hence

FX (keω) = Fγ
Z (ω). (65)

Since the solution is essentially unique, due to Corollary 1,
(65) is not only a necessary but also the sufficient condition
for linearity of optimal mappings.

APPENDIX E
PROOF OF THEOREM 9

Let γ1 and γ2 denote two CSNR levels, g1(X) = ke1 X and
g2(X) = ke2 X denote encoding mappings. Let the power be
scaled by α2 (α ∈ R

+), i.e., P2 = α2 P1 which yields

γ2 = α2γ1, ke2 = αke1 . (66)

Using (34), we have

FX (ke1ω) = Fγ1
Z (ω), FX (ke2ω) = Fγ2

Z (ω). (67)

Hence,

Fγ1
Z (ω) = Fγ2

Z (αω). (68)

Taking the logarithm on both sides of (68), applying (66) and
rearranging terms, we obtain

α2 = log FZ (αω)

log FZ (ω)
. (69)

Note that (69) should be satisfied for both α and −α since
they yield the same γ . Hence, FZ (αω) = FZ (−αω) for all
α ∈ R, which implies FZ (ω) = FZ (−ω), a.e. in ω ∈ R.
Using the fact that the characteristic function is conjugate
symmetric (i.e., FZ (−ω) = F∗

Z (ω)), we get FZ (ω) ∈ R,
a.e. in ω. As log FZ (ω) is a function from R → C, the
Weierstrass theorem [59] guarantees that we can uniformly
approximate log FZ (ω) arbitrarily closely by a polynomial∞∑
i=0

kiω
i , where ki ∈ C. Hence, by (69) we obtain:

α2 =

∞∑
i=0

ki (ωα)i

∞∑
i=0

kiωi

, (70)

a.e. in ω only if all coefficients ki vanish, except for k2,
i.e., log FZ (ω) = k2ω

2, or log FZ (ω) = 0 a.e. in ω ∈ R

(the solution α = 1 is of no interest). The latter is not
a characteristic function, and the former is the Gaussian
characteristic function, FZ (ω) = ek2ω2

, where we use the
established fact that FZ (ω) ∈ R. Since a characteristic function
determines the distribution uniquely, the Gaussian source and
noise must be the only allowable pair.

APPENDIX F
PROOF OF THEOREM 10

First, we derive the necessary and sufficient conditions for lin-
earity of optimal decoder given a linear encoder g(X) = Ke X .
Let us rewrite the MSE optimal decoder, h(y) = E{X| y} using
Bayes’ rule and independence of X and Z:

h(y) =
∫

x fX (x) fZ (y − Ke x) dx∫
fX (x) fZ (y − Ke x) dx

. (71)

Plugging h(y) = Kd y in (71) we obtain,

Kd y
∫

fX (x) fZ (y − Ke x) dx =
∫

x fX (x) fZ (y − Kex) dx.

(72)
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Taking the Fourier transform of both sides, we have

j Kd∇ [FX (Keω)FZ (ω)] = j K −1
e [∇FX (Keω)]FZ (ω). (73)

Rearranging terms, we get(
K −1

e − Kd

) 1

FX (Keω)
∇FX (Keω) = Kd

1

FZ (ω)
∇FZ (ω).

(74)

Using ∇ log FX (Keω) = 1
FX (Keω)∇FX (Keω),

∇ log FX (Keω) = (K −1
e − Kd )−1Kd∇ log FZ (ω). (75)

Let us define ζ � (K −1
e −Kd)−1 Kd where Kd is given in (33).

We have

ζ = (K −1
e − RX K T

e (Ke RX K T
e + RZ )−1)−1

×RX K T
e (Ke RX K T

e + RZ )−1. (76)

It is straightforward to see that

ζ−1 = RZ (Ke RX K T
e )−1, (77)

and hence

ζ = Ke RX K T
e R−1

Z . (78)

Plugging (32) in (78), we have

ζ = QZ 	�X	�−1
Z QT

Z , (79)

and hence

∇ log FX (Keω) = QZ (	�X 	�−1
Z )QT

Z ∇ log FZ (ω). (80)

Defining S � 	�X	�−1
Z , we have

QT
Z∇v1(ω) = SQT

Z ∇ log FZ (ω), (81)

where v1(ω) = log FX (Keω). Let us define ω̃ � QT
Z ω, hence

ω = QZ ω̃. Plugging this in (81), we have

QT
Z ∇v1(QZ ω̃) = SQT

Z ∇ log FZ (QZ ω̃). (82)

At this point, we need the following auxiliary lemma, whose
proof appeared in the Appendix E of [45]:

Lemma 5 ([45]): Given a function f : R
n → R, matrix

A ∈ R
n×m, vector x ∈ R

m, and v(x) = f (Ax).

∇v(x) = AT ∇ f (Ax). (83)
Using Lemma 5, we can rewrite (82) as

∇v2(ω̃) = S∇v3(ω̃), (84)

where v2(ω) = log FX (K T
e QZω) and v3(ω) = log FZ (QZω).

Noting that K T
e QZ = QX	 and the characteristic functions

of the source and noise after transformation can be written in
terms of the known characteristic functions FX (ω) and FZ (ω),
specifically F	QT

X X (ω) = FX (	QT
X ω) and FQT

Z Z (ω) =
FZ (QZ ω), we have

∇ log F	QT
X X (ω̃) = S∇ log FQT

Z Z (ω̃). (85)

Using the fact that S is diagonal, we convert (85) to the set
of m scalar differential equations of (35). Converse can be
shown by retracing the steps in the derivation of the necessary
condition. Note that none of these steps, (71)-(85), introduce
any loss of generality, hence retracing back from (85) to (71),

we show that (35) implies that the optimal decoder is linear if
the encoder is linear. The dual part, i.e., the proof of linearity
of optimal encoder, given the optimality of a linear decoder
follows from Theorem 5.

APPENDIX G
PROOF OF COROLLARY 5

The marginal characteristic functions of [	QT
X X]i

and [QT
Z Z]i are obtained by setting ωk = 0,∀k �= i in

F	QT
X X (ω) and FQT

Z Z (ω) respectively. By setting
ωk = 0,∀k �= i in both sides of (35), we have

∂ log F[	QT
X X ]i

(ω)

∂ω
= Si

∂ log F[QT
Z Z ]i

(ω)

∂ω
, 1 ≤ i ≤ m (86)

The solution to this differential equation is:

log F[	QT
X X ]i

(ω) = Si log F[QT
Z Z ]i

(ω) + θ, (87)

where θ is a constant. Imposing F[QT
Z Z ]i

(0) =
F[U	QT

X ]i
(0) = 1, we obtain θ = 0, which implies:

F[	QT
X X ]i

(ω) = F Si

[QT
Z Z ]i

(ω), 1 ≤ i ≤ m. (88)

APPENDIX H
PROOF OF COROLLARY 6

Let us rewrite (35) explicitly for the i th and j th coefficients:

∂ log F	QT
X X (ω)

∂ωi
= Si

∂ log FQT
Z Z (ω)

∂ωi
. (89)

∂ log F	QT
X X (ω)

∂ω j
= Sj

∂ log FQT
Z Z (ω)

∂ω j
. (90)

Taking the partial derivatives of both sides of (89) with respect
to ω j , and both sides of (90) with respect to ωi , we obtain the
following:

∂2 log F	QT
X X (ω)

∂ωi∂ω j
= Si

∂2 log FQT
Z Z (ω)

∂ωi∂ω j
, (91)

∂2 log F	QT
X X (ω)

∂ωi∂ω j
= Sj

∂2 log FQT
Z Z (ω)

∂ωi∂ω j
. (92)

There are only two ways to simultaneously satisfy
(91) and (92): i) Si = Sj , ii) the second-order derivatives
vanish, i.e.,

∂2 log F	QT
X X (ω)

∂ωi∂ω j
= 0. (93)

∂2 log FQT
Z Z (ω)

∂ωi∂ω j
= 0. (94)

Let us focus on X i.e., (93); derivation for Z follows similarly.
F[	QT

X X ]i j
(ωi , ω j ), i.e., the marginal characteristic function of

the pair ([	QT
X X]i , [	QT

X X] j ) is obtained by setting ωk = 0,
∀k �= i, j . Note that (93) implies

∂2 log F[	QT
X X ]i j

(ωi , ω j )

∂ωi∂ω j
= 0, (95)
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which implies that

log F[	QT
X X ]i j

(ωi , ω j ) = A(ωi ) + B(ω j ), (96)

for some functions A and B , i.e., log F[	QT
X X ]i j

(ωi , ω j )

is additively separable in terms of ωi and ω j . This
implies that

F[	QT
X X ]i j

(ωi , ω j ) = C(ωi )D(ω j ), (97)

for some functions C and D. But (97) implies independence
of the i th and j th transform coefficients of source X . The
independence of the i th and j th transform coefficients of the
noise Z follows from similar arguments. By the fact that 	 is
merely a diagonal scaling matrix, not effecting independence,
we obtain Corollary 6.
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