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Abstract— This paper considers the problem of optimal
zero-delay jamming over an additive noise channel. Building
on a sequence of recent results on conditions for linearity of
optimal estimation, and of optimal mappings in source-channel
coding, the saddle-point solution to the jamming problem is
derived for general sources and channels, without recourse to
Gaussianity assumptions. The linearity conditions are shown to
play a pivotal role in jamming, in the sense that the optimal
jamming strategy is to effectively force both the transmitter
and the receiver to default to linear mappings, i.e., the jam-
mer ensures, whenever possible, that the transmitter and the
receiver cannot benefit from non-linear strategies. This result
is shown to subsume the known result for Gaussian source
and channel. The conditions and general settings where such
unbeatable strategy can indeed be achieved by the jammer
are analyzed. Moreover, a numerical procedure is provided to
approximate the optimal jamming strategy in the remaining
(source-channel) cases where the jammer cannot impose linearity
on the transmitter and the receiver. Next, the analysis is extended
to vector sources and channels. This extension involves a new
aspect of optimization: the allocation of available transmit and
jamming power over source and channel components. Similar
to the scalar setting, the saddle-point solution is derived using
the linearity conditions in vector spaces. The optimal power
allocation strategies for the jammer and the transmitter have an
intuitive interpretation as the jammer allocates power according
to water-filling over the channel eigenvalues, while the transmitter
performs water-pouring (reverse water-filling) over the source
eigenvalues.

Index Terms— Correlated jamming, zero-sum games,
zero-delay source-channel coding, linearity conditions,
water-filling power allocation.

I. INTRODUCTION

THE interplay between communication and game theory
has been an important research area for decades, e.g., an

explicit formulation of communication problem as a game
was first proposed more than 50 years ago by Blachman [1].
We consider in this paper the problem of optimal jamming,
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by a power constrained agent, over an additive noise channel.
The jamming problem has traditionally been studied in the
asymptotically high delay communication scenarios, using the
mutual information of the input and output of the channel
as the payoff function see [1]–[8]. Reference [1] is one of the
earliest papers to address such a problem using a mutual infor-
mation payoff. A two-player zero-sum game was explicitly
adopted in [2] yielding the Gaussian distribution as a saddle
point. In [3], vector strategies were considered in a game-
theoretic formulation of communication over channels with
block memory, where it was found that memoryless jamming
and transmission constitute a saddle point. Such jamming
problems, with mutual information payoff, are essentially
identical to the Shannon theoretic studies of the capacity
of arbitrarily varying channels (AVCs) [9]–[11]. The scalar
and vector Gaussian AVCs were studied in [12] and [13]
respectively, where a saddle point in the vector case was
achieved by a water-filling solution for the jammer and for
the transmitter.

This paper builds on our prior work [14], [15], and
in contrast with most previous contributions, considers the
zero-delay setting, motivated by current and emerging appli-
cations such as sensor networks and the smart grid where
delay is a critical constraint. We consider the setting where
the shared objective of the transmitter and the receiver is to
minimize the mean squared error (MSE) between the source
and the reconstruction at the receiver, while the jammer aims
to maximize this MSE. Another important distinction of this
work, beside the zero-delay constraint, is that we consider
joint source and channel coding, to avoid the suboptimality
of separate source-channel coding at zero-delay settings. This
problem of interest was solved in [16] and [17] for the special
case of scalar Gaussian source and scalar Gaussian channel,
and under various types of information available to the jammer.
The analysis was extended to vector Gaussian settings in [18]
with linear encoding and decoding mappings. From a game
theoretic perspective, the problem can be viewed as a
two-player zero-sum game, where allowing mixed strategies
for the transmitter and the jammer in this strictly com-
petitive game, one can show that a saddle-point solution
exists. Consider for example the specific case of the scalar
Gaussian source-channel pair, where the jammer has access
to the source, and where the transmitter and the receiver
cooperate through a side channel carrying randomization
information. The saddle-point solution of this zero-sum game
was shown in [17] to comprise: randomized linear mapping
for the transmitter; an independent, Gaussian noise as the
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jammer output; and a linear (conditioned on the random-
izing sequence of the transmitter) decoder. In this paper,
by leveraging recent results on conditions for linearity of
optimal estimation and communication mappings, [19], [20],
we extend this analysis to non-Gaussian sources and
non-Gaussian channels. The contributions of this paper are
thus the following:

• We show that linearity is essential to characterizing the
optimal jamming. The jammer, whenever possible, forces
the transmitter and the receiver to be linear (conditioned
on the randomization random variable). While in the
Gaussian source-channel setting, this result is not surpris-
ing and corresponds to generating a Gaussian jamming
noise, it is quite surprising in general, where the optimal
jamming noise is not Gaussian.

• We derive the necessary and sufficient condition (called
the “matching condition”) on the jamming noise density
to ensure linearity of the optimal transmitter and the
receiver.

• Based on the matching condition, we derive asymp-
totic (in terms of low and high channel signal-to-noise
ratios (CSNRs)), optimal jamming strategies.

• We present a numerical procedure to approximate the
optimal jammer strategy, in cases where a matching
jamming density does not exist and the jammer hence
cannot force the transmitter and the receiver to be exactly
linear.

• Using the necessary and sufficient condition (called the
“vector matching condition”) on the jamming noise den-
sity to ensure linearity of the optimal transmitter and the
receiver, within the vector setting, we extend our analysis
to vector spaces. The condition is much more involved
than in the scalar case due to dependencies across source
and channel components.

The paper is organized as follows. In Section II,
we present the problem definition and preliminaries.
In Section III, we review prior results related to jamming,
estimation and communication problems. In Section IV, we
derive the linearity result, which leads to our main result.
In Section V, we study the implications of the main result,
and in Section VI, we present a procedure to approxi-
mate the optimal jamming density in the non-matching case.
In Section VII, we present our results on the vector extension.
We discuss future directions in Section VIII.

II. PROBLEM DEFINITION

Let R and R
+ denote the respective sets of real numbers

and positive real numbers. Let E(·), P(·) and ∗ denote the
expectation, probability and convolution operators, respec-
tively. Let Bern(p) denote the Bernoulli random variable,
taking values in {−1, 1} with probability {p, 1 − p}. The
Gaussian density with mean μ and variance σ 2 is denoted as
N (μ, σ 2). Let f

′
(x) = d f (x)

dx denote the first-order derivative
of the continuously differentiable function f (·). Let δ(·, ·)
denote the Kronecker delta function. All logarithms in the
paper are natural logarithms and may in general be complex,
and the integrals are, in general, Lebesgue integrals. Let us
define Sk

m to denote the set of Borel measurable, square

Fig. 1. The jamming problem where mixed strategies are allowed and
randomization is transmitted over a side channel.

integrable functions { f : R
m → R

k}, and use S for S1
1 for

brevity.
In general, lowercase letters (e.g., c) denote scalars,

boldface ones (e.g., x) indicate vectors, and uppercase letters
(e.g., C, X) stand for matrices and random variables.
I denotes the identity matrix. RX , and RX Z denote the auto-
covariance of X and cross covariance of X and Z, respectively.
Let AT and tr(A) respectively denote the transpose and the
trace of a matrix A. The elements of a diagonal m×m matrix A
are denoted as A(i), for i = 1, . . . ,m. Let (x)+ and Fα(X)
denote respectively the function max(0, x) and α-th power
of F , i.e., (F(X))α .

We consider the general communication system whose
block diagram is shown in Figure 1. Source X ∈ R

m is mapped
into Y ∈ R

k which is fully determined by the conditional
distribution p(·|x). For the sake of brevity, and at the risk
of slight abuse of notation, we refer to this as a randomized
(stochastic) mapping y = gT (x) (i.e., we allow mixed
strategies in the problem formulation as in [17] and [18])
so that

P(gT (x) ∈ Y) =
∫

y′∈Y
p(y′|x)dx ∀Y ⊆ R

k . (1)

The adversary has access to the same source signal X and
generates the jamming signal Z through a stochastic mapping
gA(·) which is added to the channel output, and aims to
compromise the transmission of the source. In addition to the
message initiated by the encoder, the decoder also has access
to a side channel that provides the randomization sequence,
denoted as {γ } which allows the encoder and the decoder
to employ mixed (randomized) strategies. The received signal
U = Y + Z + N is mapped by the decoder to an estimate X̂
via a function h(·) ∈ Sm

k . The channel noise N is assumed to
be independent of the source X and the randomization signal.
The source density is denoted by fX (·) and the noise density
by fN (·), with characteristic functions FX (ω) and FN (ω),
respectively. All random variables are assumed to be zero
mean.1 All the statistical properties are given to all agents
(the encoder, the decoder and the jammer).

1The zero-mean assumption is not essential but simplifies the presentation,
and therefore it is made throughout the paper.
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The overall cost, measured as the mean squared error (MSE)
between source X and its estimate at the decoder, X̂ , is a
function of the transmitter, jammer and the receiver mappings:

J (gT (·), g A(·), h(·)) = E{||X − X̂||2}, (2)

where expectation is over the statistics of all random variables.
Transmitter gT (·) and receiver h(·) seek to minimize this cost
while the adversary (jammer) seeks to maximize it by an
appropriate choice of g A(·). Pre-specified power constraints
must be satisfied by the transmitter

E{||gT (X)||2} ≤ PT , (3)

and the jammer

E{||g A(X)||2} ≤ PA. (4)

The conflict of interest underlying this problem implies
that the optimal transmitter-receiver-adversarial policy has
to be sought as a saddle-point solution (g∗

T (·), g∗
A(·), h∗(·))

satisfying the set of inequalities

J (g∗
T , g A, h∗) ≤ J (g∗

T , g∗
A, h∗) ≤ J (gT , g∗

A, h), (5)

provided that such a saddle point exists. In this paper, we
show the existence of such a saddle point, and its essential
uniqueness.2

Remark 1: The setting considered here (also the one
in [16]) involves a jammer accessing the source input but not
the channel input (transmitter output). Such scenarios are of
interest where accessing the source is relatively easy (such
as a sensor network setting where all sensors observe the
same source). The setting where the jammer taps into the
communication channel is beyond the scope of the current
paper and left as future work (see [17], [18] for analysis of
such settings in the presence of scalar Gaussian sources and
channels).

Remark 2: The focus of this paper is on communicating
a memoryless source, i.e., independent and identically
distributed (i.i.d.) random variables as done in prior work
(see [16], [17]). Hence, all the mappings and random sources
are memoryless. This is in contrast with many conventional
settings in control theory, where sources with memory are
of interest. Note that for communication purposes, it is rea-
sonable to first solve the memoryless case, since one can
block the source process into a sequence of vectors to be
sent over a vector channel. Alternatively, the encoder can
apply whitening transforms or perform predictive filtering over
random processes with memory and treat the independent
innovations as an effective memoryless source, consistent with
the setting considered here.

2The optimal transmitter and receiver mappings are not strictly unique, in
the sense that multiple trivially “equivalent” mappings can be used to obtain
the same MSE cost. For example, a scalar unit variance Gaussian source and
scalar Gaussian channel with power constraint P , can be optimally encoded
by either y = √

Px or y = −√
Px . To account for such trivial, essentially

identical solutions, we use the term “essentially unique” when a solution is
unique up-to sign differences.

Fig. 2. The estimation problem.

Fig. 3. The communication setting.

III. PRIOR WORK

The jamming problem, in the form defined here, was studied
in [16] and [17], for a scalar Gaussian source and a scalar
Gaussian channel and in [18] for the vector case. In this paper,
we show that jamming problem is intrinsically connected to
fundamental problems in estimation theory and the theory of
zero-delay source-channel coding. In particular, conditions for
linearity of optimal estimation [19] and optimal mappings in
communications [20] play a key role in the solution of the
general (non-Gaussian) jamming problem considered in this
paper. We start with the estimation theoretic viewpoint.

A. A Fundamental Estimation Problem

Consider the one dimensional setting in Figure 2. The
estimator receives U , the noisy version of the source X and
generates the estimate X̂ by employing a function h : R → R,
selected such that MSE, E{(X − X̂)2} is minimized. It is
well-known that, when a Gaussian source is contaminated
with Gaussian noise, a linear estimator minimizes the MSE.
Recent work [19] analyzed, more generally, the conditions for
linearity of optimal estimators. Given a noise (or source) dis-
tribution, and a specified channel signal to noise ratio (CSNR),
conditions for existence and uniqueness of a source (or noise)
distribution for which the optimal estimator is linear were
derived.

Here, we restate the basic result whose relevance to the jam-
ming problem will become evident. Specifically, we present
the necessary and sufficient condition on source and channel
distributions such that the linear estimator h(U) = κ

κ+1 U is

optimal, where κ = σ 2
X
σ 2

N
is the CSNR.

Theorem 1 [19]: Given a CSNR level κ , and noise N with
characteristic function FN (ω), there exists a source X for
which the optimal estimator is linear if and only if

FX (ω) = FκN (ω). (6)
Given a valid characteristic function FN (ω), and for some

κ ∈ R
+, the function FκN (ω) may or may not be a valid

characteristic function, which determines the existence of a
matching source. For example, the existence of a matching
source density is guaranteed for integer κ and it is also
guaranteed for infinitely divisible N . More comprehensive
discussion of the conditions on κ and FN (ω) for FκN (ω) to
be a valid characteristic function can be found in [19].
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B. A Communication Problem

In [20], a communication scenario whose block diagram
is shown in Figure 3 was studied. We will focus on a
scalar setting (results on the vector extension are presented
in Section VII) where source X ∈ R is mapped into Y ∈ R

by a function g(·) ∈ S, and transmitted over an additive noise
channel. The channel output U = Y + N is mapped by the
decoder to estimate X̂ via function h(·) ∈ S. The zero-mean
noise N is assumed to be independent of the source X and the
randomization signal. The source density is denoted by fX (·)
and the noise density by fN (·), with characteristic functions
FX (ω) and FN (ω), respectively. Note that there is no jammer
in the problem formulation and hence a side channel does not
exist (no randomization needed).

The objective is to minimize, over the choices of encoder
g(·) and decoder h(·), the distortion

D = E{(X − X̂)2}, (7)

subject to the average transmission power constraint,

E{g2(X)} ≤ PT . (8)

A result pertaining to the simultaneous linearity of optimal
mappings is summarized in the next theorem.

Theorem 2 [20]: The optimal mappings are either both
linear or they are both nonlinear.
The necessary and sufficient condition for linearity of both
mappings is given by the following theorem.

Theorem 3 [20]: For a given power constraint PT , noise N
with variance σ 2

N and characteristic function FN (ω), source X
with variance σ 2

X and characteristic function FX (ω), the
optimal encoder and decoder mappings are linear if and
only if

FX (αω) = FκN (ω) (9)

where κ = PT
σ 2

N
and α =

√
PT
σ 2

X
.

Remark 3: In [20], it was shown that the cost function
associated with the communication problem is convex in the
channel input density fY (·) and the set of encoding mappings
is compact due to the constraint E{g2(X)} ≤ P. Hence,
a minimizer for this problem, within the set of encoding
mappings, exists. The cost is concave in the density of the
channel noise, fN (·), and E{N2} = σ 2

N ; hence, a maximizer
exists, within this set of channel noises.

C. The Gaussian Jamming Problem (The Scalar Case)

The problem of transmitting independent and identically
distributed (i.i.d.) Gaussian random variables over a Gaussian
channel in the presence of an additive jammer, depicted in
Figure 1, was considered in [16] and [17]. In [17], a game
theoretic approach was developed and it was shown that
the problem admits a mixed saddle-point solution where
optimal transmitter and receiver employ a randomized strategy.
The randomization information can be sent over a side channel
between the transmitter and the receiver or it could be viewed
as the information generated by a third party and observed

by both the transmitter and the receiver.3 Surprisingly, the
optimal jamming strategy ignores the input to the jammer and
merely generates Gaussian noise, independent of the source.
Here we state the main relevant result of [17] which derives
the optimal strategy for the transmitter, the adversary and the
receiver in Figure 1.

Theorem 4 [16], [17]: The optimal encoding function for
the transmitter is randomized linear mapping:

g(X) = γαT X, (10)

where {γ } is i.i.d Bernoulli ( 1
2 ) over the alphabet {−1, 1} and

αT =
√

PT
σ 2

X
. The optimal jammer generates i.i.d. Gaussian

output {Z}
Z ∼ N (0, PA). (11)

where Z is independent of the source X. The optimal
receiver is

h(U) = σ 2
X

PT + PA + σ 2
N

αT γU , (12)

and total cost is

J = σ 2
X (PA + σ 2

N )

PT + PA + σ 2
N

. (13)

Remark 4: In this paper, we study the generalized jamming
problem which does not limit the set of sources and channels
to Gaussian random variables. As we show in Section IV-B,
the linearity property of the optimal transmitter and receiver
at the saddle-point solution still holds, while the Gaussianity
of the jammer output in the early special case was merely a
means to satisfy this linearity condition, and does not hold in
general.

Remark 5: The proof of Theorem 4 relies on the fact that for
a Gaussian source over a Gaussian channel, zero-delay linear
mappings achieve the performance of the asymptotically high
delay optimal source-channel communication system [21].
This fact is unique to the Gaussian source-channel pair given
that the channel cost constraint is a power constraint and
the distortion measure is MSE (see [22] for necessary and
sufficient conditions for this fact to hold for general distortion
and channel cost measures), hence it is tempting to conclude
that the saddle-point solution in Theorem 4 can only be
obtained in the “all Gaussian” setting. Perhaps surprisingly,
we show that there are infinitely many source-noise pairs that
yield a saddle-point solution of this type (see Remark 7).

IV. MAIN RESULTS-SCALAR SETTING

A. A Simple Upper Bound From Linear Mappings

In this section, we present a new lemma that is used to upper
bound the distortion of any zero-delay communication system.
Although the main idea is quite simple, it is nevertheless
presented as a separate lemma, due to its operational
significance here.

3In practice, randomization can be achieved by (pseudo) random number
generators at the transmitter and the receiver using the same seed.
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Lemma 1: Consider the problem setting in Figure 1.
For any given jammer output satisfying the power
constraint (4), the minimum distortion achievable by a

transmitter-receiver, D, is upper bounded by DL = σ 2
X (PA+σ 2

N )

PT +PA+σ 2
N

which is determined by second moments, regardless of the
shape of the densities.

Proof: Clearly, encoder and decoder can achieve DL by
utilizing linear mappings that satisfy the power constraint PT

for any source and channel density. Hence, it is straightforward
to achieve D = DL in any source-channel density by using
linear mappings. �

Lemma 1 connects the recent results on linearity of opti-
mal estimation and communication mappings to the jamming
problem. It implies that the optimal strategy for a jammer that
can only control the density of the overall additive noise in the
channel (as is the case in our problem due to the side channel
allowing randomization) is to force the transmitter and the
receiver to use (randomized) linear mappings.

B. The Saddle-Point Solution of the Scalar Jamming Problem

Our main result concerns the optimal strategy for the
transmitter, the adversary and the receiver in Figure 1. Let
us introduce the quantity

β �
PA + σ 2

N

PT
. (14)

The CNSR associated with the jamming problem is redefined
in conjunction with β as C SN R = 1

β . In this section, we
make the following assumption.

Assumption 1:
FβX (αTω)

FN (ω)
is a valid characteristic function for

a given β ∈ R
+ and αT ∈ R

+.
The case where Assumption 1 does not hold is analyzed

in Section VI. Next, we present our result which pertains to
optimal jamming.

Theorem 5: For the jamming problem, the optimal encoding
function for the transmitter is randomized linear mapping:

g(X) = γαT X, (15)

where {γ } is i.i.d. Bernoulli ( 1
2 ) over the alphabet {−1, 1} and

αT =
√

PT
σ 2

X
. The optimal jamming function is to generate i.i.d.

output {Z} with characteristic function

FZ (ω) = FβX (αTω)

FN (ω)
(16)

where Z is independent of the source input X.
The optimal receiver is

h(U) = σ 2
X

PT + PA + σ 2
N

αT γU , (17)

and total cost is

J = σ 2
X (PA + σ 2

N )

PT + PA + σ 2
N

. (18)

Moreover, this saddle-point solution is (almost surely)
unique.

Proof: We prove this result by verifying that the mappings
in this theorem satisfy the saddle-point inequalities given
in (5), following the approach in [16]. First, we note that this
saddle point exists due to Remark 3.

RHS of (5): Suppose the policy of the jammer is given as in
Theorem 5. The communication system at hand becomes iden-
tical to the communication problem considered in Section II.B,
for which the linear encoder, i.e., Y = αT X is optimal
(see Theorem 3). Any randomized encoder in the form of (15)
(irrespective of the density of γ ) yields the same cost as the
corresponding deterministic encoder and hence is optimal.

LHS of (5): Let us derive the overall cost conditioned on
the randomization sequence (i.e., γ = 1 and γ = −1) used in
conjunction with the decoder given in (17). If γ = 1,

D1 = σ 2
X (PA + σ 2

N )

PT + PA + σ 2
N

+	E{Z X} + ψE{Z N} (19)

for some constants 	,ψ , and similarly if γ = −1,

D2 = σ 2
X (PA + σ 2

N )

PT + PA + σ 2
N

−	E{Z X} − ψE{Z N} (20)

where the overall cost is

J = P(γ = 1)D1 + P(γ = −1)D2. (21)

Clearly, for γ ∼ Bern( 1
2 ) overall cost J = σ 2

X (PA+σ 2
N )

PT +PA+σ 2
N

is

only a function of the second-order statistics of the adversarial
outputs, irrespective of the higher order moments of Z ; hence
the solution presented here is a saddle point.

Toward showing (almost sure) uniqueness, we start by
restating the fact that the optimal solution for the transmitter
is in the randomized form given in (15). Let us prove the
properties that were not covered by the proof of the saddle
point:

i) Characteristic Function of Z and Independence of Z of X

and N: The choice FZ (ω) = FβX (αTω)
FN (ω)

renders the transmitter
and receiver mappings linear in conjunction with independence
of Z and X and N , due to Theorem 3, and it maximizes the
overall cost due to Lemma 1.

ii) Choice of Bernoulli Parameter: Note that the optimal
choice of the Bernoulli parameter for the transmitters is 1

2
since other choices will not cancel out the cross terms
in (19) and (20). These cross terms can then be exploited
by the adversary to increase the cost, and hence an optimal
transmitter strategy is to set γ = Bern(1/2). �

Remark 6: Theorem 5 subsumes the previous results that
focus on the special case of Gaussian source for this
setting [16], [17]. When X ∼ N (0, σ 2

X ), the unique matching
noise, determined by (16) is also Gaussian Z ∼ N (0, PA)
for all power levels PA and PT . Hence, Theorem 5 can be
viewed as a generalization of Theorem 4. We note in passing
that optimality at all power levels, PA and PT , is unique to
the Gaussian source-channel pair setting, i.e., the shape of
the matching jamming density will, in general, depend on the
power levels.
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V. IMPLICATIONS OF THE MAIN RESULT

In this section, we explore some special cases utilizing
the matching condition (16). We start with a simple but
perhaps surprising result on the existence of linearity achieving
jammer.

Corollary 1: If the source X and the channel noise N are
identically distributed and β is an integer, then there exists a
jammer policy that enforces the optimal mappings to be linear.

Proof: From (16), given that β is an integer and Z is
independent of X and N , the matching jammer can be writ-
ten as

Z =
β−1∑
i=1

νi (22)

where νi are independent and distributed identically to X .
Hence, there exists a matching Z . �

A more direct existence result is presented in the following
corollary.

Corollary 2: In the case of identically distributed source
and channel noise, i.e., X ∼ N, and PT = PA = σ 2

N , optimal
jamming strategy would be generating a random variable
identically distributed with X (and N), and optimal transmitter
functions are as given in Theorem 5.

Proof: It is straightforward to see from (16) that, at β = 2,
the characteristic functions must be identical, FZ (ω) = FX (ω),
almost everywhere. Since characteristic function uniquely
determines the density [23], Z ∼ X . �

Next, we recall the concept of infinite divisibility, which is
closely related to the problem at hand.

Definition [24]: A distribution with characteristic function
F(ω) is called infinitely divisible, if for each integer k ≥ 1,
there exists a characteristic function Fk(ω) such that

F(ω) = Fk
k (ω) (23)

Alternatively, fX (·) is infinitely divisible if and only if the
random variable X can be written for any k as X = ∑k

i=1 Xi

where {Xi , i = 1, . . . , k} are independent and identically
distributed.

Infinitely divisible distributions have been studied exten-
sively in probability theory [24], [25]. It is known that
Poisson, gamma, and geometric distributions (and their mixed
variations) as well as the set of stable distributions (which
includes the Gaussian distribution) are infinitely divisible.
In the following, we present another matching case.

Corollary 3: In the setting where there is no channel noise
N, i.e., σ 2

N = 0, if the source is infinitely divisible, there exists
a matching jamming noise Z for all PT ∈ R

+ and PA ∈ R
+.

Proof: We first note that if fX (·) is infinitely divisible,
F1/j

X (αTω) is a valid characteristic function for all natural j
and αT ∈ R

+, as follows directly from the definition of infinite
divisibility. Then, by using the arguments in the proof of
Corollary 1, one can show that Fi/j

X (αTω) is also a valid
characteristic function, which implies that so is Fr

X (αTω)
for all positive rational r > 0, since a rational r implies
that r = i/j for some natural i and j . Using the fact
that every β ∈ R

+ is a limit of a sequence of rational
numbers rn , and by the continuity theorem [23], we conclude

that FZ (ω) = FβX (αTω) is a valid characteristic function, and
hence a matching jamming noise exists. �

However, note that at a given CSNR, there may exist a
matching jamming noise, even though fX (·) is not infinitely
divisible. For example, a finite alphabet discrete random
variable V is not infinitely divisible but still can be k-divisible,
where k < |V | − 1 and |V | is the cardinality of V . Hence,
when β = 1/k, there may exist a matching jamming density,
even when the source distribution is not infinitely divisible.

Remark 7: Corollaries 1, 2, and 3 demonstrate that there is
indeed a rich set of source and channel densities that make the
optimal mappings linear. Hence, the Gaussianity assumption
of the source and channel is not necessary to achieve the
saddle-point solution.

Let us next consider a case where the jammer does not need
to know the density of the source, i.e., it can perform optimally
regardless of the source density.

Corollary 4: At asymptotically low CSNR level, i.e., as
β → ∞, for a Gaussian channel, the optimal jamming strat-
egy, regardless of the source density, is to generate Gaussian
noise that is independent of the source.

Proof: As we have shown in the proof of Theorem 5, the
jammer’s aim is to force the transmitter and the receiver to
use linear mappings. Hence, the matching jamming noise
(if exists) satisfies the following:

FZ (ω)FN (ω) = FβX (αTω). (24)

As β → ∞, RHS of (24) converges to Gaussian characteristic
function, due to central limit theorem [23], and hence (16) is
asymptotically satisfied. �

Another interesting case is the high CSNR level (β → 0)
and Gaussian source. The following corollary states our result
associated with this setting.

Corollary 5: At an asymptotically high CSNR level, i.e., as
β → 0, for a Gaussian source, the optimal jamming strategy
is to generate noise independent of the source regardless of
(either channel or jamming) noise density.

Proof: Again, the matching jamming noise (if exists) must
satisfy

(FZ (ω)FN (ω))
1
β = FX (αTω). (25)

As β → 0, LHS of (25) converges to the Gaussian character-
istic function and, hence (16) is asymptotically satisfied. �

VI. THE NON-MATCHING CASE

We note that given valid characteristic functions FX (αTω)
and FN (ω) and for some β ∈ R

+ and αT ∈ R
+, the function

FβX (αTω)

FN (ω)
may or may not be a valid characteristic function,

which determines the existence of a matching jamming noise
density fZ that enforces linearity on the communication
mapping. For example, the existence of a matching jamming
density is guaranteed for integer β with FX (αTω) = FN (ω)

almost everywhere. Conditions on β and FX (ω) for FβX (ω)
to be a valid characteristic function were studied in detail
in [19], to which we refer to avoid repetition. In the following,
we address this question: what is the optimal jamming noise
density fZ (·), when the jammer cannot make the optimal
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mappings linear, i.e.,
FβX (ω)
FZ (ω)

is not a valid characteristic
function? We first examine the case of the basic estimation
setting, and then extend our analysis to the jamming setting.

A. Estimation Setting

The problem of interest as described above appears to be
open even in the more fundamental setting, i.e., for esti-
mation problem depicted in Figure 2. Note that there is no
encoder or a jammer, and hence no randomization is needed
in this problem. We are particularly interested in the noise
density fN (·) that maximizes minimum mean square error,
E((X − E(X |U))2). Clearly, if FβX (ω) is a valid characteristic
function, the worst-case noise will have the characteristic
function FN (ω) = FβX (ω), and make the optimal (MMSE)
estimator linear. Intuitively, it is expected that in the case
where FβX (ω) is not a valid characteristic function, the worst-
case noise would be the one that forces the optimal estimator
to be as close to linear as possible in some sense. The optimal
estimator h(u) = E{X |U = u} is given by:

h(u) =

∫
x fX (x) fN (u − x) dx

∫
fX (x) fN (u − x) dx

, (26)

which can also be written as:

h(u) =

∫
F ′

X (ω)FN (ω)e juωdω
∫

FX (ω)FN (ω)e juω dω
. (27)

We next replace FN (ω) and FX (ω) with their polyno-
mial expansions, particularly Gram-Charlier expansion over
the Gaussian densities N(0, σ 2

N ) and N(0, σ 2
X ) respectively

(see [26] for details):

FN (ω) =
M∑

m=0

(
1 + αm

m! ( jw)m
)

e−σ 2
Nw

2/2, (28)

FX (ω) =
M∑

m=0

(
1 + θm

m! ( jw)m
)

e−σ 2
Xw

2/2, (29)

where αm and θm are the polynomial coefficients associated
with FN (ω) and FX (ω), respectively. It is known that these
polynomial expansions converge (in mean) to FN (ω) and
FX (ω) as M → ∞. In the following, to render the analysis
exact, we assume M → ∞. Plugging (28) and (29) in (27), the
optimal estimator is expressed by a ratio of two polynomials:

h(u) = Pa(u)

P(u)
, (30)

where polynomial P(u) approximates the probability density
function fU (·), i.e., the density of U = X + N , and Pa(u) can
be computed in terms of αm and θm , for m = 1, 2, . . . ,M . Let
{Pn(u)} be a sequence of polynomials that are orthonormal
with respect to P(u), that is∫

Pk(u)Pm(u)P(u)du = δ(m, k), m, k = 0, 1, . . . (31)

Next, h(u) is expanded in terms of Pm(u):

h(u) =
M∑

m=0

cm Pm(u), (32)

where

cm =
∫

Pm(u)Pa(u)du. (33)

Then, the MMSE is

J = E((X − E(X |U))2)
= E(X2)− (E(X |U))2

= σ 2
X −

M∑
m=0

c2
m . (34)

where (34) follows from (31). The worst-case noise

maximizes J and hence, minimizes
M∑

m=0
c2

m . Note that c0 = 0

and c1 =
√

σ 2
X

σ 2
X +σ 2

N
. These two coefficients are determined by

the second-order statistics of the source and the noise, while
higher order coefficients, cm,m ≥ 2, depend on higher order
statistics. Note also that the polynomials associated with these

coefficients are P0(u) = 1 and P1(u) =
√

σ 2
X

σ 2
X +σ 2

N
u. We next

present our main result regarding this setting.

Lemma 2: The worst-case noise minimizes
M∑

m=0
c2

m, where

{cm} are the coefficients of the orthonormal polynomial expan-
sion with density fU (·).

Given the source density, we can approximate the optimal
estimator used in conjunction with the worst-case noise. In the
following, we focus on finding the worst-case noise that
matches this estimator.

Let us assume h(u) =
M∑

m=0
bmum for bm ∈ R. Then, the

following holds

M∑
m=0

bmum =

∫
x fX (x) fN (u − x) dx

∫
fX (x) fN (u − x) dx

. (35)

Expanding (35), and expressing integrals as convolutions,
we have

M∑
m=0

bmum( fX (u) ∗ fN (u)) = (u fX (u)) ∗ fN (u). (36)

Taking the Fourier transforms of both sides, we obtain

M∑
m=0

bm
dm

dωm
(FX (ω)FN (ω)) = F ′

X (ω)FN (ω) (37)

Hence, given the optimal estimator, we can find the approx-
imate worst-case noise by solving the differential equation
given in (37). Note that throughout our analysis we assumed
that M → ∞. In practice, M is a fixed, finite quantity, which
is determined by the allowed complexity of the approximation
scheme.
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B. Jamming Setting

Let us now return to the original problem of jamming.
Throughout our analysis, for brevity in the notation, we omit
the randomization factor γ in the encoding and decoding
policies, although we still study the same problem where
randomization is allowed, and hence the source input is useless
to the jammer and the jammer’s action space is limited
(without any loss of generality) to additive noise. We carry
out a similar analysis to approximate the best Mth order
polynomial expansion of the decoder, given the encoder. For
simplicity, and to enable the subsequent derivations, we have
the following assumption throughout this section.

Assumption 2: The transmitter function is linear,
i.e., g(X) = αT X.

Note however that as Theorem 2 implies, if the optimal
decoder is nonlinear so must be the encoder. However, the
jammer tries to render the optimal mappings linear, hence it
is expected that the encoder at the saddle-point solution is
close to linear. Even though taking the encoder to be linear is
not accurate in the strict sense, it is a reasonable assumption
used in the development of our approximation to the optimal
solution.

We follow the same steps as in the estimation setting,
starting with the derivation of the optimal Mth order poly-
nomial approximation of the decoder. We again assume that
M → ∞ throughout the analysis to make the approximations
exact. The optimal decoder can be expressed as:

h(u) =

∫
x fX (x) fN+Z (u − αT x) dx

∫
fX (x) fN+Z (u − αT x) dx

(38)

where αT =
√

PT
σ 2

X
and fN+Z is the density of N + Z . Noting

that X and Z are independent, we have

h(u) =

∫
F ′

X (αTω)FN (ω)FZ (ω)e juωdω
∫

FX (αTω)FN (ω)FZ (ω)e juω dω
(39)

Plugging the appropriate polynomial expressions for FX (ω),
FN (ω), and FZ (ω), we express h(u) as:

h(u) = Pb(u)

Pc(u)
, (40)

where Pb(u) and Pc(u) are polynomials. Again, expanding
h(u) in terms of the polynomials which are orthonormal under
the measure Pc(u) (which is the density of αT X + Z + N),
and following the same steps that led to (34), we obtain

J = σ 2
X −

M∑
m=0

c2
m, (41)

where cm’s are the coefficients of the polynomials that are
orthonormal with respect to the density of the channel output
U = αT X + Z + N . Hence, we can approximate the optimal

jamming density as the one that minimizes
M∑

m=0
c2

m . Note that

in our analysis we assumed that M → ∞, while in practice

a fixed, finite M can be used for approximation purposes.
Similar to the estimation setting, once the best polynomial
approximation is found, an approximation to the optimal
jamming density can be obtained by solving a differential
equation which can be obtained following the same steps that
yielded (37).

A Numerical Example: Let us demonstrate this numerical
approximation procedure with an example. We emphasize
that the objective of this example is not to obtain theoretical
optimality results or devise a numerically optimal jamming
system, but rather to present a picture of how the numerical
approach here can be used. We focus on a simple setting,
e.g., let the source density deviate from a Gaussian density as
follows:

fX (x) =
(

1 + ε

4! H4(x)
)

fG(x) (42)

where fG (·) is the Gaussian density with zero-mean and unit
variance, H4(x) is the Hermite polynomial of order 4 and we
have4 0 ≤ ε ≤ 4.

For simplicity, let us first assume that the channel is
noiseless (we will briefly consider the noisy channel case later
in the example), and also PA ≈ PT ≈ 1, i.e., deviations (ε)
are small enough. In the following, we will approximate the
jamming density, the (nonlinear) decoder and MSE cost at
the saddle-point solution, for a simple case of M = 3. First,
we note that by employing a linear encoder approximation,
we effectively end up with the estimator approximation prob-
lem analyzed in Section VI-A. Let us denote the jamming
noise density also in the form of Gaussian density perturbed
by Hermite polynomials as

fZ (z) =
(

1 +
∞∑

m=4

ηm

m! Hm(z)

)
fG(z) (43)

where Hm is the Hermite polynomial of order m and ηm = 0
for m = 1, 3, 5 . . . . Approximating U as Gaussian, we have
Hermite polynomials as {Pn(u)} as a set of basis polynomials
that the decoder h(u) is represented in, since the Hermite poly-
nomials are orthonormal under the Gaussian density. Then, we
have, by noting that the odd moments vanish due to symmetry,

P0(u) = 1, (44)

P1(u) = 1√
2

u, (45)

P2(u) = μ2u3 − μ4u√
μ2(μ2μ6 − μ2

4)
u, (46)

where μi = E{Ui } for i = 2, 4, 6. Computing these moments
explicitly, we have

μ2 = 2, (47)

μ4 = 12 + ε + η4, (48)

μ6 = η6 + 30μ4 − 240. (49)

4This condition on ε is needed to ensure that fX (x) ≥ 0.
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The polynomial coefficients cn are

c1 = 0, (50)

c2 = 1√
2
, (51)

c3 = ε − η4√
μ2(μ2μ6 − μ2

4)
. (52)

The MSE cost can be then computed using (34) as

J = 1

2
− 1

2

(ε − η4)
2

(2μ6 − μ2
4)
. (53)

We first note that J ≤ JL = 1
2 . The jammer is trying to

maximize this cost (achieve J = JL ), hence optimal jammer
sets η4 = ε and achieves J = JL = 1

2 and sets all higher
order moments to zero (ηm = 0,∀m ≥ 6) to minimize the
jamming power. Hence, the jammer is essentially rendering the
jamming noise density identical to that of the source. Noting
also that PT ≈ PA ≈ 1, this result is intuitively expected from
the symmetry (by similar reasoning as done in the proof of
Corollary 2).

Next, let us consider the more practical case of noisy
channel. We again assume a 3rd order approximation (M = 3)
of the decoder and total channel noise variance is approx-
imately equal to transmit power and source variance,
i.e., PA + σ 2

N ≈ PT ≈ 1. In this case, if the channel noise
density is such that the jammer cannot make the effective
channel noise density (the density of N + Z ) identical to
the source density, i.e., η4 �= ε (where η4 is the perturbation
associated with the effective channel noise (N +Z )), from (53)

we conclude that it chooses η4 and η6 to minimize (ε−η4)
2

(2μ6−μ2
4)

.

Further numerical analysis, given the channel noise density,
can be done by following approach presented in this section
and routine procedures (see [26] for details).

VII. VECTOR EXTENSIONS

In this section, we extend our results obtained for the
scalar setting to higher dimensional source and channel spaces.
We first need two auxiliary lemmas in matrix analysis and
majorization theory, and some prior results on optimal linear
coding.

A. Background

Throughout this section, we assume that the effective
dimension5 of the source is identical to that of the chan-
nel noise (i.e., no bandwidth compression or expansion).
This assumption is essential in the sense that when source
and channel dimensions do not match, the jammer cannot
ensure linearity of encoding and decoding mappings. A well-
known example is 2:1 bandwidth compression where the
optimal mappings are highly nonlinear, even in the case of
Gaussian source and channel (see [20], [27] and the references
therein for details). Let us assume that the source and the

5The effective dimension refers to the number of source components actually
transmitted over the channel. This number depends on the source and channel
dimensions, and the encoding power PT .

channel are m-dimensional vectors with respective covariances
RX and RN , where RX and RN allow the diagonalization

RX = QX�X QT
X , and RN = QN�N QT

N (54)

where QX QT
X = QN QT

N = I , and �X and �N are
diagonal matrices, having ordered eigenvalues as entries,
i.e., �X = diag{λX } and �N = diag{λN } where λX and λX

are ordered (descending) eigenvalues and QT
X and QT

N are
the eigenmatrices of the source and the channel, respectively.
We will make use of the following auxiliary lemma; see [28]
for a proof.

Lemma 3: Let λX and λN be two ordered vectors in R
m+

with descending entries λX (1) ≥ λX (2), . . . , λX (m), and
λN (1) ≥ λN (2), . . . , λN (m); and � denote any permutation
of the indices {1, 2, . . . ,m}. Then,

min
�

m∑
i=1

λX (�(i))λN (i) =
m∑

i=1

λX (i)λN (m − i) (55)

and

max
�

m∑
i=1

λX (i)λN (�(i)) =
m∑

i=1

λX (i)λN (i) (56)

Toward deriving the vector extension, we need the optimal
encoding and decoding transforms for a general communi-
cation problem with source and channel noise covariances
RX and RN , and total encoding power limit PT . Here, we
first state the classical result due to [29] (see also [30]–[32]
for alternative derivations of this result).

Theorem 6 [29]–[32]: The encoding transform that
minimizes the MSE distortion subject to the power
constraint PT is

C = QN�QT
X (57)

where � is a diagonal power allocation matrix. Moreover
the total MSE distortion as a function of source and channel
eigenvalues is

J (λX ,λN ) =

(
w∑

i=1
(
√
λX (i)λN (m − i)

)2

PT +
w∑

i=1
λN (m − i)

+
m∑
w+1

λX (i) (58)

where w is the number of active channels determined by the
power PT .

Remark 8: The distortion expression (58) has an interesting
interpretation of power allocation as “reverse water-filling”
over the source eigenvalues. As we will show in the next
section, the optimal jammer also performs power allocation
as water-filling over the channel eigenvalues.

Remark 9: Note that the ordering of the eigenvalues is such
that the largest source eigenvalue is multiplied by the smallest
noise eigenvalue and so on, which physically means that the
encoder uses the best channel for the smallest variance source
component. This is a direct consequence of Lemma 3.

Assumption 3: PT is high enough, so that all source and
channel components are active (no channel is allocated
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zero transmit power), i.e., w = m, and hence (58) can be
rewritten as

J (λX ,λN ) =

(
m∑

i=1

√
λX (i)λN (m − i)

)2

PT +
m∑

i=1
λN (i)

(59)

Assumption 3 is not necessary but it leads to substantial
simplification in the results.

Assumption 4: There exists a matching vector noise,
i.e., the problem parameters are such that optimal encoding
and decoding mappings can be made linear.

The precise condition for the existence of the matching
specified in Assumption 4 is presented in Theorem 8.

Next, we state two results in matrix analysis, which we
will prove using majorization theory [33]. These results admit
shorter proofs by contradiction, i.e., by showing that any solu-
tion other than those stated in the lemmas will incur strictly
higher cost. Nevertheless, we proceed with constructive proofs
using majorization. The needed background on majorization
theory is provided in Appendix A.

Lemma 4: Let a and b be vectors in R
n+, with 0 < a(i) ≤

a(i + 1) for i = 1, 2 . . .m − 1 and 0 < b(i) ≤ b(i + 1) for
i = 1, 2 . . .m − 1. The globally optimal solution to the convex
optimization problem

maximize
x

f (x) =
n∑

i=1

a(i) (x(i)+ b(i))

subject to x(i)+ b(i) ≥ x(i + 1)+ b(i + 1),
n∑

i=1

x(i) = P and x(i) ≥ 0, ∀i

is given by

x(i) = (θ − b(i))+ (60)

where
n∑

i=1

(θ − b(i))+ = P (61)

Proof: From an intuitive viewpoint, the choice of x will
aim to make x + b uniform, e.g., if b is uniform, the uniform
selection of x i.e, x(i) = P/n will be optimal. This is a
direct consequence of well-known results on the uniformity of
solutions to such optimization problems, see [34]. The optimal
solution aims to make x + b as close to uniform as possible,
which implies that it maximizes the smallest element of x +b:
the well-known water-filling solution.

In the following, we formally prove this lemma using
majorization theory [33]. First, we rewrite the objective as∑

fi (x(i)) where fi (x(i)) = a(i) (x(i)+ b(i)). Noting that
f ′
i (α) ≤ f ′

i+1(β) whenever α ≥ β, we note that f (x) is Schur
concave (see [33, 3.H.2]). Uniform x(i) = P/n,∀i is majored

by any other x satisfying
n∑

i=1
x(i) = P . Hence, if this choice

satisfies the constraint, x(i) + b(i) ≥ x(i + 1) + b(i + 1),
it would be the solution to the optimization problem above.
In general, it is straightforward to show that
x(i) = (θ − b(i))+ is majored by any other x satisfying the

constraints and hence it maximizes the objective function.
This result can also be proved using convex optimization
theory [35]. �

Corollary 6: Let the channel noise covariance RN be fixed.
Let λN+Z denote the eigenvalues of the matrix RN + RZ ,
λN denote the ordered (ascending) eigenvalues of RN , and
λZ denote the inverse ordered eigenvalues of RZ . Also assume
that λZ is chosen so that it performs water filling over λN ,
i.e., λN (i) = (θ − λZ (i))+. Then, λN+Z majorizes λN + λZ

for any RZ that satisfies a power constraint tr(RZ ) ≤ P.
Proof: The proof follows directly from Lemma 4 and

Lemma 6 in Appendix A. �

B. An Upper Bound on Distortion

In this section, we extend Lemma 1 to the non-scalar case.
Note that a variation of Lemma 5 appeared in [18, Th. 3.1]
where optimal jamming, encoding and decoding strategies are
derived for vector Gaussian settings. In [18], the policies are
restricted to (randomized) linear strategies, while in this paper,
we do not a priori restrict encoding and decoding mappings
to be linear6 and show that linearity is a natural consequence
of the problem formulation.

Lemma 5: Consider the problem setting in Figure 1. For
any given jammer Z, the distortion achievable by the
transmitter-receiver, D, is upper bounded by DL, i.e., DL ≥ D
where

DL =

(
m∑

i=1

√
λX (i)max(θ, λN (m − i))

)2

PT +
m∑

i=1
max(θ, λN (i))

(62)

and θ satisfies the water-filling condition:
m∑

i=1

(θ − λN (i))
+ = PA. (63)

Proof: Similar to the scalar case (Lemma 1), the key idea
of the proof is to make use of the fact that the transmitter
and the receiver can always use randomized linear mappings
that satisfy the power constraints, hence the MSE resulting
from linear mappings will constitute an upper bound on the
actual distortion. In the rest of the proof, we show that optimal
linear solution yields (62), specifically i) the jammer performs
water-filling power allocation, and ii) the jammer aligns its
eigenvalues in the channel noise subspace.

Before proceeding further, we give an intuitive explanation
of why the jammer will perform water-filling power allocation.
Due to the symmetry of the problem, if the jammer does not
use a water-filling solution (trying to make λZ+N as close to
uniform as possible), the transmitter will perform an inverse
water-filling, i.e., it will redistribute source eigenvalues λX so
that the largest source eigenvalue is aligned with the smallest
effective λZ+N (see Lemma 3). Therefore, maximizing the
smallest effective channel eigenvalue λN+Z intuitively seems
to be appealing for the jammer. Indeed, this approach precisely

6By “linearity”, we mean here and throughout the rest of this section, linear
maps for each value of the randomization parameter.
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describes the water-filling power allocation for jammer over
the noise eigenvalues λN .

The formal proof directly follows from Lemma 4 and
Corollary 6. Lemma 6 guarantees that the jammer sets
RZ = QN�Z QT

N , i.e., the eigenvectors of the noise and
the jammer must be aligned. This result can be viewed as a
consequence of the well-known optimality of the diagonalizing
structure [34], [36]. Lemma 4 ensures that the quantity

min
�

J (λX (�),λN + λZ ) (64)

is maximized when λZ performs water filling over λN . �
Remark 10: The bound, presented in Lemma 5 is deter-

mined by second-order statistics, and, otherwise, does not
depend on the shape of the densities.

Remark 11: The optimal jammer performs water-filling
over the channel eigenvalues while the encoder allocates
power according to reverse water-filling over the source eigen-
values. This observation parallels the information theoretic
(at asymptotically long delay) water-filling duality, where the
rate distortion optimal vector encoding scheme allocates the
rate by reverse water-filling over the source eigenvalues, and
vector channel capacity achieving scheme allocates power
over the channel eigenvalues by water-filling (see [21]).

Remark 12: Lemma 5 is the key result that connects the
recent results on linearity of optimal estimation and commu-
nication mappings to the jamming problem in the vector case.
Lemma 5 implies that the optimal strategy for a jammer which
can only control the density of the additive noise channel, is to
force the transmitter and receiver to use (randomized) linear
mappings.

C. Conditions for Linearity of Communication
Mappings in Vector Spaces

In order to make use of Lemma 5, we need the conditions
for linearity of optimal encoder and decoder mappings in
non-scalar settings. We make use of the following result that
appeared in [20].

Theorem 7 [20]: Let the characteristic functions of the
transformed source and noise (�QT

X X and QT
N N) be

F�QT
X X (ω) and FQT

N N (ω), respectively. The necessary and

sufficient condition for linearity of optimal mappings is:

∂ log F�QT
X X (ω)

∂ωi
= Si

∂ log FQT
N N (ω)

∂ωi
, 1 ≤ i ≤ m (65)

where Si are the elements of the diagonal matrix
S � ��X��

−1
N .

Further insight into the above necessary and sufficient
condition is provided via the following corollaries. The first
one states that the scalar matching condition, necessary and
sufficient for linearity of optimal mappings, is also a necessary
condition for each source and channel component in the
transform domain.

Corollary 7 [20]: Let F[�QT
X X ]i

(ω) and F[QT
N N]i

(ω) be the

marginal characteristic functions of the transform coeffi-
cients [�QT

X X]i and [QT
N N]i , respectively. Then, a necessary

condition for linearity of optimal mappings is:

F[�QT
X X ]i

(ω) = F Si

[QT
N N]i

(ω), 1 ≤ i ≤ m (66)

Another set of necessary conditions is presented in the
following corollary.

Corollary 8 [20]: A necessary condition for linearity of
optimal mappings is that one of the following holds for every
pair i, j , 1 ≤ i, j ≤ m:

• i) Si = Sj

• ii) [QT
X X]i is independent of [QT

X X] j and [QT
N N]i is

independent of [QT
N N] j .

Note that the above corollaries focus on the necessary
conditions. In the following, we present a sufficient condition.

Corollary 9 [20]: If the necessary condition of Corollary 7
is satisfied, then a sufficient condition for linearity of optimal
estimation is that the transform coefficients QT

X X and QT
N N

are both independent.
Remark 13: While the condition in Corollary 9 requires

independence of transform coefficients, the weaker property
of uncorrelatedness is already guaranteed by the use of eigen
transformations.

Corollary 10 [20]: For a vector Gaussian source and
channel, linear mappings are optimal, irrespective of the
covariance matrices and allowed power.

Remark 14: Linear mappings are optimal for a Gaussian
vector source and channel pair, in the zero-delay setting,
but they are not, in general, optimal from an informa-
tion theoretic point of view (asymptotically high delay),
see [21]. This observation highlights the difference between
the problem setting considered here and that considered
in prior work where mutual information is the objective
function [1]–[8].

D. Main Result-Vector Setting

The following theorem presents the optimal strategy for the
transmitter, the adversary and the receiver shown in Figure 1,
as extended to vector spaces (for the non-scalar case).

Theorem 8: For the jamming problem, the optimal encoding
function for the transmitter is:

g(X) = C X, (67)

where C = QN��QT
X and {�} is a zero-mean

m × m diagonal matrix, distributed independently of X and
with a symmetric density that satisfies �(i) ∼ Bern( 1

2) over
the alphabet {−1, 1}. The optimal jamming function is to
generate i.i.d. output {Z}, independent of X , that satisfies:

∂ log F�QT
X X (ω)

∂ωi
= Si

∂ log FQT
N (N+Z)(ω)

∂ωi
, 1 ≤ i ≤ m

(68)

for

S = ��X��
−1
Z (69)

and

RZ = QN�Z QT
N (70)
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where �Z is a diagonal m ×m matrix with diagonal elements

λZ (i) = (θ − λN (i))
+ (71)

and θ satisfies the water-filling condition:
m∑

i=1

(θ − λN (i))
+ = PA (72)

The optimal receiver is

h(U) = RX CT (C RX CT + RN + RZ )
−1U, (73)

and total cost is

J =

(
m∑

i=1

√
λX (i)max(θ, λN (m − i))

)2

PT +
m∑

i=1
max(θ, λN (i))

(74)

Moreover, this saddle-point solution is (almost surely)
unique.

Proof: The proof follows from verification of the saddle-
point inequalities given in (5), and is an extension of the scalar
result in Theorem 5. It is in the spirit of the proof given in [18]
for the Gaussian case, extended here to the non-Gaussian case.

RHS of (5): Suppose the policy of the jammer is given
as specified in the theorem statement. The communication
system at hand becomes identical to the one in Section VII-C.
Using Theorem 7, we conclude that if (68) is satisfied, the
linear encoder Y = QN��QT

X X is optimal (see Theorem 6)
for any diagonal randomization matrix that satisfy the power
constraint. Since elements of � are Bernoulli over the alphabet
{−1, 1}, Y = QN��QT

X X (irrespective of the joint density of
�(i)) yields the same MSE and power cost as Y = QN�QT

X X
(in conjunction the optimal decoder for this encoder) and
hence is optimal.

LHS of (5): Let us derive the overall cost conditioned on
the randomization matrix realizations (�) used in conjunction
with the decoder given in (73). Conditioned on a realization
of �,

J (�) =

(
m∑

i=1

√
λX (i)max(θ, λN (m − i))

)2

PT +
m∑

i=1
max(θ, λN (i))

+ ξ(�) tr(�T
E{ZX})+ φ(�) tr(�T

E{N X}) (75)

for some ξ(�), φ(�) : R
m × R

m → R that are even functions
of �, i.e., ξ(�) = ξ(−�) and φ(�) = φ(−�), ∀�. Taking an
expectation over �, interchanging trace and the expectation
operators, and noting that for a symmetric distribution over �,
all terms except the first in (75) vanish, and hence we
have (74). Noting that J is only a function of the second-order
statistics of the adversarial outputs, irrespective of the higher
order moments of Z, we conclude that the presented solution
is a saddle-point. Similar to the scalar case, we need the
following analysis for the essential uniqueness of the saddle-
point solution:

i) Characteristic Function of Z and Independence of
Z of X and N: The condition in (68) renders the transmitter

and receiver mappings (randomized) linear in conjunction with
independence of Z and X and N which maximizes MSE (see
Lemma 5). Note that correlating Z with X and N cannot
increase overall cost since terms involving E{ZN} and E{ZX}
in (75) cancel out due to the choice of randomization �.

ii) Choice of Randomization: The choice of � must can-
cel out the cross terms in (75). These cross terms can be
exploited by the adversary to increase the cost, and hence an
optimal strategy for transmitter is to set �(i) ∼ Bern(1/2)
with a symmetric joint distribution over �, i.e., P(�) =
P(−�),∀�. �

Remark 15: The randomization choice for � includes
two extreme randomization methods as special cases. The
first one is using a scalar randomization (replacing � with
γ in the solution of the scalar problem in Theorem 5) which
corresponds to fully correlated �(i), and hence randomizing
the entire source vector at once. The second one is using
independent �(i), which corresponds to randomizing each
component independently. Both of these solutions render use-
less the source information available to the jammer and yield
the same saddle-point solution.

In this section, we assumed that there exists a matching
jamming density that satisfies (68). An approximation to
the matching jamming density can be numerically obtained,
extending the approach in Section VI to vector spaces. For
brevity, and to avoid repetition, we omit the details.

VIII. DISCUSSION

In this paper, we have studied the problem of optimal
zero-delay jamming over an additive noise channel. We first
studied the scalar case and showed that linearity is essential to
the jamming problem, in the sense that the optimal jamming
strategy is to effectively force both optimal encoder and
decoder to employ (randomized) linear mappings. We ana-
lyzed conditions and general settings where such a strategy
can indeed be implemented by the jammer, and provided a
“matching condition” which, if satisfied, guarantees linearity
of optimal encoder and decoder mappings. Moreover, we
provided a procedure to approximate optimal jamming strategy
in the cases where the jammer cannot impose linearity on the
encoder and the decoder. Intuitively, the jammer approximates
the matching solution in terms of an expansion in polynomials
that are orthogonal under the measure of the channel output.

Next, we extended the analysis to (higher dimensional) vec-
tor settings. Similar to the scalar setting, linearity conditions
for encoding and decoding mappings play a key role in the
vector jamming problem. We showed that the optimal strategy
is randomized linear encoding and decoding for the transmitter
and the receiver, and independent noise for the jammer. The
eigenvalues of the optimal jamming noise are allocated accord-
ing to water-filling over the eigenvalues of the channel noise,
and the density of the jamming noise is matched to the source
and the channel so as to render the optimal mappings linear.
We derived the matching condition to be satisfied by the jam-
ming noise. The power allocation solutions in the zero-delay
problems (water-filling for jammer and reverse water-filling
for the transmitter) parallel the resource allocation strategies
in asymptotically high delay (Shannon type) problems, such
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as rate allocation in rate-distortion (reverse water-filling) and
power allocation in channel capacity (water-filling).

Some directions for future work include extensions to
network settings (see [37], [38] for preliminary results in
this direction), and to sources and channels with memory,
and also a detailed numerical study on the optimal approx-
imation of encoding, decoding and jamming strategies in the
non-matching case analyzed in Section VI.

APPENDIX A
MAJORIZATION THEORY: BASIC CONCEPTS

This appendix summarizes a few basic concepts in majoriza-
tion which are useful in this paper (see [33] for complete
reference on majorization). Let x ∈ R

m be such that
x(1) ≥ x(2) ≥ ... ≥ x(m).

Majorization: y ∈ R
m majorizes x if and only if

k∑
i=1

y(i) ≥
k∑

i=1

x(i), 1 ≤ k ≤ m (76)

m∑
i=1

y(i) =
m∑

i=1

x(i), (77)

which is denoted as y � x.
Schur-Concave Functions: A real-valued function f is said

to be Schur-concave if and only if

x � y ⇒ f (x) ≤ f (y) (78)

A multivariate function is said to be symmetric if any two of its
arguments can be interchanged without modifying the value of
the function. Symmetry is a necessary condition for a function
to be Schur-concave. If a function is symmetric and concave,
then it is a Schur-concave function. For example, min(x) is a
Schur-concave function since it is concave and symmetric.

Lemma 6 [33]: Let A be a Hermitian matrix with ordered
diagonal elements denoted by the vector a and ordered
eigenvalues denoted by the vector λ. Then λ � a.
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[17] T. Başar and Y.-W. Wu, “A complete characterization of minimax and
maximin encoder- decoder policies for communication channels with
incomplete statistical description,” IEEE Trans. Inf. Theory, vol. 31,
no. 4, pp. 482–489, Jul. 1985.
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