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Joint Bit Allocation and Dimensions Optimization
for Vector Transform Quantization

Vladimir Cuperman

Abstract—In vector transform quantization (VTQ), vectors consisting
of M consecutive samples of a waveform are transformed into a set
of M coefficients that are quantized by m <« M vector quantizers.
The bit allocation problem in the transform domain is considered for
a memoryless stationary vector source encoded by a VTQ system. It
is assumed that the vector quantizer parameters (dimension, codebook
size) are subject to a complexity constraint. The vector quantization
lower bound on the attainable distortion at a given (high) rate is used
for -deriving the bit allocation algorithm for given vector dimensions.
Then, the joint optimization of vector dimensions and bit allocations is
considered. Given a complexity constraint, the optimal dimensions depend
on the bit allocation, which, in turn, d pends on the di i An
iterative algorithm is proposed for solving this problem.

Index Terms— Source coding, vector quantization, transform coding,
bit allocation.

[. INTRODUCTION

The problem considered in this correspondence is the efficient
coding of a memoryless vector source by using a transform coding
approach. Traditionally, in such a system, the transform coefficients
are quantized independently by a set of M scalar quantizers, where
M is the transform size [2], [3].

It is easy to see that an M-dimensional vector quantizer (VQ) will
achieve better performance than the scalar transform coder. Actually,
a size M transform followed by M scalar quantizers is a particular
case of an M-dimensional VQ, though not an optimal one. However,
the implementation complexity of an M-dimensional VQ is of the
order of 2™ multiplications/additions per sample where r is the rate
in bits/sample. For typical values of interest such as r = 1 — 2
bits/sample and M = 32 — 256, the implementation complexity
becomes untractable.

In vector transform quantization (VTQ), a size M transform is
followed by a set of m VQ’s, each having dimension k;,i =
1,2,---,m so that 3°7* | k; = M [4]. In the system shown in Fig.
1, the transform S is applied to the input vector z to obtain the
transformed vector y. The components of the transformed vector y
are regrouped in vectors y;, 7 = 1,2,---,m and each vector y, is
quantized independently by the vector quantizer V' QQ;. At the receiver,
the vector y* results by concatenating the reconstructed transformed
vectors y; obtained from the inverse vector quantizers IV Q); by using
the received indices in the V' Q; codebooks. Exhaustive (full) search
is used to select the indices in the codebooks V Q;. The reconstructed
vector " is then obtained using the transform R, which in general
may be different than the transform S employed in the encoder. The
channel is assumed noiseless.

We assume that codebook sizes, N;, and dimensions, k;, are subject
to a complexity constraint. The objective of this paper is to present a
design procedure for VTQ which considers the joint optimization of
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Fig. 1. Vector transform quantization (VTQ) block diagram.

bit allocations and VQ dimensions. The bit allocation design based
on the VQ lower bound was introduced in [4] and applications to
speech coding were discussed. The present paper extends the results
in [4] by considering integer constraints on rate, joint optimization of
bit allocations and dimensions, and evaluation of the rate-distortion
performance for memoryless vector sources. The coding gain of the
resulting VTQ configuration is also discussed.

II. OPTIMAL BIT ALLOCATION BASED ON THE VQ BOUND

Let z9) be a sequence of i.i.d. M-dimensional vectors having
a jointly Gaussian distribution. The vectors z are transformed by
a nonsingular decorrelating transform, S, into vectors y having
independent components. (See Fig. 1.) The vectors y are encoded
by a set of m VQ’s, VQ,, ¢ = 1,2,---,m, having the dimensions
ki, such that 377 k; = M. The objective is to minimize the
average encoding distortion by adjusting the V' Q; bit allocations,
B; = log, NV;, and the dimensions k;, given a number of available
bits per M-dimensional vector. The fidelity criterion used in this
correspondence is the mean-squared error.

In this section, we will assume the number of VQ’s m, and the
dimensions, k;, are fixed and will consider the following minimization

problem.
Minimize
1 .2

= — - 1
D=+ E{ly -1’} M

under the constraints
B;>0 and Y B,=B, 9))

7=1

where B is the number of bits available per M-dimensional vector.
Let D; be the distortion for VQ;:

D: = E{ls, - v; 1} 3
then
1 m
D=—-—-% D, 4
‘M; @
Using the VQ bound (Gersho, [1]), the rate-distortion performance
of an optionally chosen V Q; can be approximated by
' D = yi57272Bilks ®)
where 67 = (det T;)'/*, T, is the covariance matrix of the vector

Y

ki/2+41
2) ©)

i =2meiki (14 —
Y, QﬂCk(+k,'

and c; is the coefficient of quantization for the quantizer VQ; [1].
Note that &; may be considered as an “equivalent” vector variance,
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and +; is actually a correction factor, depending on the coefficient of
quantization for V'@); and on the dimension k;.
~ The VQ bound (derived first by Zador [7]) is actually an ap-
proximate formula for the least distortion of a VQ with a given
dimension and a given large rate. For infinite dimension, this formula
is equivalent to Shannon’s lower bound [1]. The use of asymptotic
high rate performance in the VTQ design is justified by the superior
experimental results achieved by the resulting system design [4].

The rate-distortion performance (5) is a convex function of B;.
Hence, the solution to the minimization problem (1) can be found
by following a procedure similar to that of Segall [3]. The resulting
bit allocation is

~2 ‘
B; = max (O, k log, M) @)
2 v

where the constant v may be found from the constraint on the total
number of bits for encoding an M -dimensional vector:

~2
% 3 “k;log, ll"i =B ®)

i=1
Here, ~" indicates summation only for the terms that obey

2565 > v ©)

In the particular case k; = 1,7 = 1,2,---,m and m = M, (7)
gives a scalar bit assignment that minimizes the distortion D for a
given number of bits per vector B.

The coefficient of quantization values are unknown except for
dimensions one and two. However, a number of approximations
based on lower or upper bounds can be used in conjunction with
(7). Examples are the sphere lower bound [1], the Conway—Sloane
lower bound [8], and the Voronoi lattice upper bound [8]. The results
in this correspondence are based on using the values given by the
Voronoi lattice upper bound.

Consider now the minimization of E{|lz — z*||*} under the
constraints given in (2). Following the approach of [3], one can prove
that the optimal transform coder should employ matrices R, S (see
Fig. 1) such that R = S™! and S is given by the eigenvectors of
the covariance matrix of the input vector, . Hence, S is the well-
known Karhunen—Loeve transform (KLT) proven to be optimal for
scalar transform coding systems under the assumptions of high rate
and Gaussian input. The transform S decorrelates the components of
the vector y. This does not guarantee the components of y* will be
uncorrelated; however, the assumption that the components of y™ are
uncorrelated is made here as an approximation in order to simplify the
choice of matrix R tobe R = S™'. Under the assumptions previously
discussed, the bit allocations for minimizing E{||z — =* ||2} are still
given by (7).

III. THE CODING GAIN

An expression for the coding gain was derived in [4]. For complete-
ness, it is briefly reviewed here. Let Dpcm be the PCM distortion
evaluated by using the VQ bound (5) for k; = 1. The VTQ gain
over PCM is defined by

Dpcu
D

Gvrq = (10)

Assuming that the components of the vector y are independent and
using the allocation (7) and the relations (4), (5) for evaluating D,
one can prove that [4]

Gvrq = GrcGv (11)

where G'tc is the scalar transform gain equal to the ratio of arithmetic
and geometric mean of he transform coefficient variance. Gy is the
additional gain due to the use of vector rather than scalar quantizers
and

1 m
log Gy = lek,- log G, (12)
=
where G is the coding gain of V'Q); over PCM,
G; = leem (13)
R

and 7,y is the value of v; for k; = 1. To derive (12), the distortion
D is evaluated by (4), (5) using the bit allocations (7), while the
distortion Dpcw is obtained as the particular value of D for m = M
and k&, = 1,i = 1,2,---m.

For a Gaussian pdf, G; estimated with the sphere lower bound
used for the coefficients of quantization may be as high as 4.35 dB
(asymptotically for large dimensions). A more conservative estimate
of 3.2 dB is obtained using the Voronoi lattice upper bound for the
coefficients of quantization. Expressions for +; for other dpf’s and a
discussion of the corresponding gain values can be found in [4].

VTQ has a couple of rather obvious properties which are reflected
in (12), (13). First, VTQ is asymptotically optimal for increasing
complexity (it reduces to a full search VQ which in its turn is
asymptotically optimal). Second, for a given complexity constraint
the performance degradation can be easily estimated, assuming the
VQ gain for different dimensions is known.

IV. JOINT OPTIMIZATION OF DIMENSIONS AND BIT ALLOCATIONS

Relation (7) assumes that the bit assignment for each vector
quantizer is a real positive number. In practical applications, the
number of codewords in V'();, N;, must be an integer. The constraint
of the minimization problem (1) can be written for this case as

> log, N; =B (14)
j=1

The problem of finding the minimum of D under the constraint (14)
with N; integers can be solved by marginal analysis [5]. Marginal
analysis is a discrete optimization technique in which the codebook
size allocations are found incrementally: the codebook size for the
quantizer VQ; is increased by one if the incremental return M
for VQ; is the largest. Here the incremental return criterion is the
decrease of the squared mean error D; when increasing N; by one.

The distortion D; can be written as a function of the number of
codewords N;:

R\ P (15)
and taking into account the nonlinearity of the constraint (14), the
incremental return criterion, M;, is given by [5]

7

log, (14 1/N;)

o3 [N - (N + /4]
M; =

(16)

The bit assignment algorithm based on marginal analysis consists
of the following steps.
Step 1) Start with N; =1, i =1,2,---,m.
Step 2) Find the index j for which A is maximum. Increase N;
by 1.
Step 3) If 37~ log, N; > B terminate. Else go to Step 2).
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Now, we consider the joint optimization of vector dimensions and
bit allocations for the encoding scheme given in Fig. 1 under the
following complexity constraints:

N; < Nmax

k]' < kmameax/JVj (17)
where kmax is the maximum dimension and Ny is the maximum
number of codewords acceptable for V@Q; under the given complex-
ity constraint. Note that a full search vector quantizer requires a
memory of N;k; words and the computational complexity is pro-
portional to 23,

The optimization of vector dimensions will be based on maxi-
mizing the VTQ coding gain Gvrq. The transform coding gain,
Gc, being independent of vector dimensions, (11) shows that the
maximization of Gvrq is equivalent to the maximization of G . the
additional gain due to the use of vector rather than scalar quantizers.

Assume that the transform coefficients are ordered in the increas-
ing order of their variances before defining the vectors y, i =
1,2,---,m. Then based on (12), (13), it can be shown that the
following procedure generates the dimensions which maximizes Gy
under a given complexity constraint. First, m = 1, k; = M is an
optimal solution if it satisfies the complexity constraints. If for m = 1
the complexity constraint is not satisfied, m = 2, ki + k= M,
k1 > ko, is an optimal solution if k; has the largest value for which
the complexity constraint is still satisfied. Finally, if for m — 1 the
complexity constraint is not satisfied, k1, ko, - -, km is an optimal
solution if k1 > k2 > -+~ > k,, and the dimensions k1, ks, - - -, km
have the largest values for which the complexity constraint is still
satisfied. Of course, for each set k;, i = 1,2,--- ,m, checking the
complexity constraints requires the computation of the bit allocation

- using marginal returns. Note that a given solution is considered here
as “optimal” if it maximizes the gain G under a given complexity
constraint. A

The procedure previously defined requires an iterative algorithm for
finding dimensions and bit allocations. The flowchart of the iterative
algorithm is given in Fig. 2. The algorithm starts with an initial set of
dimensions and computes the. bit allocations using marginal analysis
(16). Then, the dimensions are adjusted toward their optimal values,
and the complexity constraints are tested. For practical (complexity)
reasons, it is preferred to start with m = M (scalar quantizers), rather
than following the more “intuitive” approach and start with m = 1.

The main steps of the algorithm follow.

Step 1) Initialize the number of codebooks to m = M and the
dimensions to k; = 1. i = 1,2,---,m. Set the iteration
index to j = 1.

Step 2) Given dimensions k;, i = 1,2,---, m, find the codebook
sizes, N;, using the marginal return algorithm.

Step 3) Check complexity constraints (17) for i = 1,2,---,m.

* IF (17) is not satisfied for i = j. decrease k; by one,
increase m by one, set k,, = 1, increase j by one, and
GO TO Step 2).

* IF (17) is not satisfied for ¢ < j, decrease k; by one, increase
m by one, set k» = 1. set j =i + 1, and GO TO Step 2).

* Else, GO TO Step 4).

Step 4) IF j = m, sTOP. Else, increase k; by one, decrease m. by
one, and GO TO Step 2).

Note that the design algorithm starts with a scalar transform coder
(m = M) and then increases the dimension k; until the complexity
constraint for V'Q is reached. The same procedure is then applied
for ka, ks and so on. Due to the fact that the bit assignment depends
on all dimensions, the complexity constraints are checked for each

Initialization
m=M
ki=1,i=12,..,m
i=1
W v ¢ )
Compute optimal N; using kj+ 1——kj
marginal returns (16) m-1—>m

Complexity
constraints (17) satisfied
fori=1,2,..,m?

kj—1—>kj

m+1—>m
km =1
jr1—j

kij— 1—>k;

m+1—>m
km=1

j=i+1

Fig. 2. Algorithm for joint optimization of bit allocations and dimensions.

V' Q: whenever one of the dimensions is incremented or decremented.
In our experience, this algorithm converges in a few iterations.

V. SIMULATION RESULTS FOR A GAUSS-MARKOV PROCESS

The joint optimization of bit allocations and dimensions was
applied for designing vector transform quantizers (VTQ’s) for a scalar
Gauss—Markov source: :

z(n) =u(n)+ pz(n - 1), (18)

where u(n) is a Gaussian process with zero-mean and unit variance.
This process is often used for “benchmarking” encoding algorithms,
because it is considered a useful mathematical model for some real
sources (speech, images), and its performance bounds as given by
the distortion-rate function are known. The source was encoded by
“blocking” each M consecutive samples in an M -dimensional vect-
or x.

A file of 500 000 samples of the process (18) was used for training
the vector quantizers and a different file of 60 000 samples for testing
the encoders. The VTQ systems considered in the simulation use
exhaustive search in each of the m codebooks. The complexity
constraint used in the simulations was Npax = 512 and kmax = 16.
The vector dimension was set at M = 64 and the rate was 1
bit/sample, i.e., B = 64 bits were used for and M-dimensional
vector for all experiments.

Fig. 3 shows the signal-to-noise Ratio (SNR) achieved by the VIQ
encoders versus the process parameter p. The rate-distortion function
of this process and the best results achieved by an optimal DPCM
encoder are plotted on the same figure [6]. The optimal DPCM system
of [6] is a lower complexity system and the comparison is shown
only for reference purposes.

Experimentally, it was found that constraining the number of
codewords to be a power of two leads to only a slight performance
degradation (less than 0.1 dB). In many practical applications, the
number of codewords is constrained to be a power of two.
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Fig. 3. Performance of vector transform quantization (VTQ) at a rate of
1 bit/sample for a- Gauss—Markov source with correlation coefficient p.
VTQ uses 64-dimensional vectors, M = 64, and the complexity constraints
Nmax = 512, kmax = 16.

For p = 0.9, the best performance achieved in training by a
VTQ with M = 128 at a rate of 1 bit/sample was 12.7 dB.
For comparison, comparable complexity systems based on finite
state vector quantization achieved 12.1 dB, and vector predictive
quantization achieved 11.6 dB [9]. The rate-distortion bound at a
rate of 1 bit/sample for p = 0.9 is 13.2 dB:
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Balanced Quadriphase Seqilences with Optimal
Periodic Correlation Properties Constructed
by Real-Valued Bent Functions

Shinya Matsufuji and Kyoki Imamura
Abstract—The real-valued bent function was récently introduced by

the present authors as a generalization of the usual p-ary bent function,
p a prime, in such a way that the range of the function is the set of

real numbers, i.e., not restricted to GF(p). The real-valued bent function
was used to construct a family of 2/2 balanced quadriphase sequences
of period 2" — 1 with optimal periodic correlation properties, where n
is a multiple of 4. A class of real-valued bent functions that map the
set of all the m-tuples over GF(2) into the set {0,1/2,1,3/2} for an
arbitrary m, is given. This is applied to generalize previous construction
to the case where n is even, i.e., not restricted to a multiple of 4. It is
also shown that the quadriphase sequences recently given by Novosad
can be considered as one kind of sequences constructed by real-valued
bent functions. Conditions are given for some families of the quadriphase
sequences constructed by some real-valued bent functions to be balanced.
The exact distributions of the periodic correlation values are derived for
the families of the balanced quadriphase sequences.

Index Terms— Real-valued bent function, sequence design, balanced
quadriphase sequences, periodic correlation, spread spectrum commu-
nication.

1. INTRODUCTION

Rothaus [1] defined a function from the set V,,, of m-tuples over
GF(2) into GF(2) to be bent if all the Fourier coefficients have unit
magnitudes and studied some properties of the binary bent function
with an even m. Olsen [2] showed that a family of 2™ balanced bi-
phase sequences of period 2>™ — 1 which have optimal correlation
properties in the sense of Welch’s lower bound [3] can be constructed
by using the binary bent function on V;, with an even m, where a
balanced sequence means that in one period —1 appears once more
than +1. Kumar [4] defined a p-ary bent function from the set V,
of m-tuples over GF(p) into GF(p) and showed that there exists a
bent function on V;,, if m is odd and p # 2, and that-a family
of p™ p-phase sequences of period p>™ — 1 with optimal correlation
properties can be constructed by the p-ary bent function in the similar
manner to that by Olsen. We [5] showed that the p-phase sequences by
Kumar are balanced sequences such that in one period each element
exp(j2mi/p), 1 < i < p — 1, appears once more than +1, and
derived the exact distribution of the periodic correlation values. We
call the sequence of period P>™ — 1 constructed by the p-ary bent
function on V;,, over GF(p) a “p-ary bent sequence.”

The families of the quadriphase {+1.+j} sequences applied to
the spread spectrum multiple access (SSMA) communication using
the quadriphase shift keying (QPSK), where j denotes imaginary
unit, are studied and constructed by Krone and Sarwate [6], but
these do not have optimal correlation properties. Sole [7] showed
that a family of 2" + 1 quadriphase sequences of period 2™ — 1 with
an odd n can be generated by using a unitary polynomial over the
residues modulo 4. Recently, Udaya ef al. [8] generalized the Sole’s
construction to an even n and Boztas et al. [9] also presented a
family of 2" + 1 quadriphase sequences with near optimal correlation
properties. We [10] gave a real-valued bent function extending the
p-ary bent function such that it maps the set V,,, with an even m over
GF(p) to the real numbers, and a family of 2 balanced quadriphase
sequences of period 2™ — 1 with optimal correlation properties
constructed by the real-valued bent function in the similar manner
to that by Olsen and Kumar. Novosad [11] recently constructed a
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