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Variable-Dimension Vector Quantization

Amitava Das, Ajit V. Rao, and Allen Gersho

Abstract— In many signal compression applications, the evo-
lution of the signal over time can be represented by a sequence
of random vectors with varying dimensionality. Frequently, the
generation of such variable-dimension vectors can be modeled as
a random sampling of another signal vector with a large but
fixed dimension. Efficient quantization of these variable-dimension
vectors is a challenging task and a critical issue in speech coding
algorithms based on harmonic spectral modeling. We introduce
a simple and effective formulation of the problem and present
a novel technique, called variable-dimension vector quantization
(VDVQ), where the input variable-dimension vector is directly
quantized with a single universal codebook. The application of
VDVQ to low bit-rate speech coding demonstrates significant gain
in subjective quality as well as in rate-distortion performance
over prior indirect methods.

1. INTRODUCTION

ECTOR quantization (VQ) [1] is a well-known tech-
Vnique for encoding a fixed-dimension random vector.
However, in many signal compression applications the evo-
lution of the signal over time is represented by a sequence
of variable-dimension random vectors. Efficient encoding of
these variable-dimension vectors is a challenging task that
is essential for effective design of state-of-the-art speech
coders such as the multiband excitation (MBE) coder [2] and
the sinusoidal transform coder (STC) [3]. In the MBE, for
example, the spectral information is represented by a set of
spectral magnitude samples taken at the harmonics of the
estimated fundamental frequency, or pitch, F,. As the pitch
varies from frame to frame, the number of samples in this
set, or the dimension of this spectral shape vector (SSV)
varies. The subjective quality of such spectral coders almost
entirely depends on how well these SSV’s are quantized. An
efficient compression scheme for variable-dimension vectors
will significantly improve the performance of these speech
coders.

Theoretically, the optimal VQ-based solution is multicode-
book VO (MCVQ), where a separate codebook is used for
each possible dimension. (See [4] for a treatment of MCVQ).
However, a practical implementation of MCVQ may not be
feasible due to the large requirements of codebook memory
and training. Most prior solutions to variable-dimension quan-
tization [5]-[7] are variations of an indirect procedure that
we generically call dimension conversion VQ (DCVQ), where
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the vector S with variable dimension L is first mapped into
a fixed-dimension vector Y prior to applying VQ. An L-
dimension estimate S is obtained from the decoded vector
Y by a reverse transformation. The problem of DCVQ is
that the overall distortion has two components: i) D,, due to
quantization and ii) D., due to dimension conversion. At low
rates, this additional distortion, D., is an unwelcome burden.

We present a novel technique, called variable-dimension
vector quantization (VDVQ) which, without any dimension-
conversion, offers a direct and efficient solution to the problem
of encoding variable-dimension vectors. VDVQ uses a single
universal codebook and a training set of reasonable size (as
compared to a large number of codebooks and an excessively
large training set needed in MCVQ). VDVQ does not have the
additional, dimension-conversion distortion, D., of DCVQ.
Therefore, as the bit rate is increased, the VDVQ distortion
approaches zero, whereas the DCVQ distortion approaches
D.. As we will see later, VDVQ outperforms prior indirect
solutions, such as the complex combination of scalar quanti-
zation and VQ used in improved multiband excitation coding
(IMBE) [2], and linear prediction (LP) modeling [5], a DCVQ
method, in terms of rate-distortion performance.

II. VARIABLE-DIMENSION VECTOR QUANTIZATION

We formulate the variable-dimension vector quantization
problem as follows. Let S be the variable-dimension vector,
formed from a randomly selected subset of the components
of an underlying K dimension random vector, X. Both the
choice of indexes and the size, L, of this subset are random.
The elements of S are the selected components of X in corre-
sponding order. This random selection g(X) can be represented
by a K dimension binary selector vector (Q, whose nonzero
components are pointers to the selected components of X. For
example, if K =4, X = (21, 22,73, 24) and Q = (0,1,0,1),
then S = ¢(X) = (z2,24).

A. VDVQ Encoding

Guided by the selector vector Q, the variable-dimension
vector S is mapped into the K-dimension space to form
an extended vector Z. For example, if Q = (0,1,0,1) and
S =(q,7), then Z = (0,4,0,7). Then Z is compared to each
codevector Y ; of the universal codebook to find the best match
that minimizes the distortion, as follows:

d(Z,Y;) =) QKdi(Z[k], Y;[k]) €]

where d;(-,-) is a suitable distortion measure between two
scalars. The index j*, for which d(Z,Y ;) is minimum over
all j = 1,2,---, N, is selected.
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VDVQ advantage: superior rate-distortion performance over existing

B. VDVQ Decoding

The decoder receives the selector vector Q (or equivalently,
F,, in harmonic speech coding applications) and the optimal
index j* and computes an L-dimension estimate S by sub-
sampling Y ,-. Specifically, it selects the components of Y ;-
for which the corresponding components of Q are nonzero,
proceeding in order of increasing index.

C. VDVQ Training

Given a large training set of pairs {(Q;,S;)} and an initial
codebook of size N and dimension K, the universal codebook
is designed with an iterative procedure as in the generalized
Lloyd algorithm (GLA) [1]. Let Y;, 7 = 1,2,---, N be the
codevectors prior to the current iteration. The two steps of
each training iteration are as follows.

Nearest-Neighbor Clustering: i) For each training pair
(Q;, S;), form the extended vector Z;; ii) Assign Z; to a
cluster set Cp, if d(Z;, Ym) < d(Z;,Y;)forj=1,2,---,N.

Centroid Computation: For each clusterC,,,m = 1,2,
---, N, find a new code vector, Y., the cluster centroid,

that minimizes the cluster distortion D,,, = Y. d(Z;,y)
Z;eCn
over all vectors, y, in R¥.
For the mean squared error distortion, where d;(s,y) =
(s — )2, the centroid rule gives
OETACEAD
Y [k} — 7 m -

R
Z;€Cm

for k=1,2,---K

2
where L; denotes the number of nonzero elements of Q;.
A reasonably large training ratio (100 or so) is needed to
ensure adequate representation for each component sample of
the universal code vectors.
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III. PERFORMANCE OF VDVQ IN SPEECH CODING

In harmonic speech coders [2], let W represent the K
magnitude values of the short-term spectrum of a frame of
speech, where K is the number of discrete Fourier transform
(DFT) points and W|j] is a DFT magnitude sample. Then, let
U be the vector of subsamples of W where each subsample is
the nearest DFT sample to a pitch harmonic; and let S be the
SSV defined in the log domain with S[k] = 20 log1oU[k], k =
1,2,--- L. Here, the DFT resolution determines the larger
dimension K, whereas L, the variable dimension of S and the
selector vector Q are completely determined by the fundamen-
tal frequency F, (in Hz). Let F; be the sampling frequency;
then Q and Z are generated as

1 ifk=|2jKF,/Fs+0.5]
0 otherwise

Q[krlz{ i>0,1<k<K

(3)

20k = Slj] ifk=[2jKF,/F.+05]j>0,1<k<K
10 otherwise.

@

A mean-removed split VQ implementation of VDVQ [8] was
applied to the 2400 b/s enhanced multiband excitation coder
[9] and the 1400 b/s (average rate) variable rate spectral coder,
[9]. In informal subjective testing [9], both coders attained
speech quality comparable to or better than the 4150 b/s IMBE
coder. Similar perceptual quality was observed with VDVQ at
30 b/frame, as opposed to 66 b/frame used in IMBE.

For objective comparison, we used the spectral distortion
(SD) measure SD between the original SSV U and the
quantized SSV U, defined by

1/2
1 f2 . ,
SD = | — Y (20 logioU[k] — 20 logioU[k])
fomhi
)

in dB units, where (f1, f2) is the frequency range of interest
normalized to number of samples of the DFT. (We cover the
range 62.5-3562 Hz). Note that (5) is consistent with the usual
definition of spectral distortion, and since the extended vector
Z and the codevectors of the universal codebook are in the
log-spectral domain, the VDVQ design, based on mean-square
error, minimizes the SD.

Fig. 1 shows the SD of VDVQ at different bit rates
(b/frame) and the SD of the IMBE quantization method and
the tenth-order LP-method (LP-10) [5], a DCVQ method.
The test corpus used in this comparison had 12000 frames
of male and female speech, outside of the training set. The
results show that VDVQ outperforms LP-10 by 1.4 dB. VDVQ
also outperforms IMBE in terms of rate-distortion measure,
producing an SD of 1.58 dB at 52 b/frame as opposed to
the 1.61 dB SD of IMBE at 66 b/frame. This performance
gain is more remarkable since IMBE employs differential
coding across frames, whereas the VDVQ scheme reported
here does not.

IV. CONCLUSIONS

Variable-dimension vector quantization is a novel technique
that offers a direct and efficient solution to the problem
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of encoding variable-dimension vectors, outperforming prior
indirect methods. The application of VDVQ to harmonic
coding of speech demonstrates its effectiveness by achieving
a significant gain in subjective quality as well as in rate-
distortion performance. By integrating various forms of struc-
tured vector quantization, such as tree-structured VQ, mulri-
stage VQ, and predictive VQ [1], VDVQ can be customized to
fit the performance objectives and memory and complexity
constraints of a particular application. Such extensions are
currently being explored.
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