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Nonsquare Transform Vector Quantization

Peter Lupini and Vladimir Cuperman

Abstract—Several techniques for low-rate speech coding have
emerged, requiring quantization of the spectral magnitudes. The
set of spectral magnitudes may be considered as a variable-
dimension vector with dimension dependent on the pitch period.
In this letter, we present a technique called nonsquare trans-
form vector quantization (NSTVQ). This technique addresses the
problem of variable-dimension vector quantization by combining
a fixed-dimension vector quantizer with a variable-sized non-
square transform. The experimental results presented show that
NSTVQ outperforms existing harmonic magnitude quantization
techniques.

I. INTRODUCTION

N recent years, several techniques for speech coding at rates

of 4 kb/s and lower have emerged, requiring quantization of
spectral magnitudes at a set of frequencies that are harmonics
of the fundamental pitch period of the talker [1]-[3]. Because
the pitch period is time varying, the number of components to
be quantized changes from frame to frame, causing a variable-
dimension vector quantization problem. In an attempt to solve
this problem, the IMBE codec [1] uses a complicated encoding
scheme with variable-bit assignments and hybrid scalar/vector
quantization. Recently, a technique called variable dimension
vector quantization (VDVQ) [4] has been proposed. VDVQ
has been shown to perform better than the IMBE quantization
scheme and all-pole modeling.

In this letter, we present a quantization technique called non-
square transform vector quantization (NSTVQ). This technique
addresses the problem of variable-dimension vector quantiza-
tion by combining a fixed-dimension vector quantizer with
a variable-sized nonsquare transform. Experimental results
comparing NSTVQ to all-pole modeling, VDVQ, and IMBE
magnitude quantization are provided.

II. THE NONSQUARE TRANSFORM

Let ¢ be a vector of length N where N is variable. For
example, if 7 is a vector of harmonic magnitudes for a frame
of speech, then IV depends on the pitch period for that frame.
Given a known N X M matrix A (to be specified below), we
want to find a fixed-length M-dimensional vector Z that can
be used to compute an estimate of 4 using the transformation
Jm = AZ. For any given A, our goal is to minimize the mean
squared error distortion criterion D,,, with respect to Z where
Du(F, Jm) = 1/N||Zm — #]|2. It can be shown that the vector
7.p+ that minimizes D, (7, ) is obtained as the solution to
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the set of linear equations
(AT 8)Zop = ATy (1)

A solution to this equation can always be found (regardless of
the rank of A) using one of the linear algebra techniques for
inverting ill-conditioned matrices, for example, singular value
decomposition (SVD). If N > M and the M columns of
A are linearly independent, the matrix AT A is of full rank
and, therefore, has an explicit inverse that gives a unique
solution. Furthermore, if N > M and the columns of A are
orthonormal, the optimal solution vector is simply Zopy =
AT, For the case of N < M, (1) is underdetermined and
therefore has no unique solution. It was found experimentally
that a zero-padded solution works well when combined with
vector quantization. The zero-padded solution is obtained by
using N orthonormal vectors for the first N columns of A and
setting the last M — N columns to zeros. Using orthonormal
columns and zero-padding, the general solution for Z,,; can
be- written as

Zopt = Ap™ 4. @
4, is defined as
_ J@az - am)
A= {(5152 - dn|O)
where d; are orthonormal column vectors, and O is an N X
(M — N) all-zero matrix. For our tests, we chose the columns

of A, using variable-length basis functions derived from the
discrete cosine transform (DCT). In this case, the elements

iftN>M

ifN<M 3)

“a[n] for n = 1--- N are given by

o] = <%)/ G cos ([2(n - 1)2+N117r<z' - 1)) @

where C; = 1 when i # 1, and C; = 1/4/2 when i = 1.

III. VECTOR QUANTIZER DDESIGN

The nonsquare transformation derived in Section II trans-
forms a variable-length vector  into Z’ which can be encoded
using a fixed-dimension VQ. The quantized fixed-length vector
Z, is then transformed into the quantized variable-length vector
Jq using §; = ApZ,. The vector quantizer should be designed
to minimize the distortion Dy(, 7,) = 1/N||F — Fql|>. It can
be shown that

1 1 .
Dy(§, ) = ;1147 = 91I* + 5 14p(Z = DI”. )

The first term of (5) is the modeling distortion due to the
nonsquare transform, and the second term is the quantization
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distortion due to the VQ. The fact that these distortions can be
separated shows that, once we have chosen an orthonormal
transformation matrix A,, we need not consider it during
training. The distortion measure for vector quantizer error
minimization is given by

min(M, N)

DEZ) =5 Y G-z} ©

where z[7] is the ith element of the vector Z.

We trained our vector quantizers using the generalized Lloyd
algorithm (GLA). A training set of size L consists of fixed-
length vectors Zj and corresponding vector lengths N;, where
[ =1-..L. Given an initial codebook of size K with entries
&, k= 1--- K, we encode the training set by assigning each
vector 7 to partition S° if D,(Z, &) is minimum over all
codebook entries. The centroid rule for computing the new
kth codebook entry &), is given by

e 37 alnlpil)

1
Elesk 7\’7 2! [”]

cln] = forn=1---M (7)

where z;[n] is the nth element of the /th training vector. p;[n]
are the components of a vector that eliminates zero-padded
elements from the distortion calculation and are defined as

_J1 if n <min(N, M)
piln} = { 0 otherwise.

®

An extensive discussion on the training of vector quantizers
can be found in [5].

IV. EXPERIMENTAL RESULTS

In order to evaluate the NSTVQ method for spectral mag-
nitude quantization, we compared the objective performance
of NSTVQ with three other methods: all-pole modeling [6];
the combination scalar/vector quantization scheme of IMBE
[1]; and the direct VQ approach of VDVQ [4]. For all
methods, the spectral log-magnitudes to be quantized and the
associated pitch periods were obtained exactly as specified
in the IMBE standard. A set of 40000 vectors was used for
training the quantizers, and a set of 12000 vectors outside the
training set was used for evaluation. For the comparison with
IMBE, we implemented a version of NSTVQ with predictive
vector quantization (NSTPVQ), which uses vector prediction
to exploit intervector correlations. Prediction is made simpler
with NSTVQ because the quantized vectors are of fixed length.
Other methods that use vector prediction, including IMBE,
must use interpolation prior to prediction.

The fixed vector length for NSTVQ was chosen by com-
paring the performance using values of M ranging from 10 to
60. As M increases, the modeling distortion decreases but the
quantization distortion increases. It was found that, depending
on the number of bits available to encode each spectrum,
increasing M beyond 30 or 40 resulted in no performance
improvement. Unless otherwise stated, M = 40 was used.
Because the complexity increases with A, there may be
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“TABLE 1
SPECTRAL DISTORTION (IN DECIBELS) FOR
LPC-10, VDVQ, anp NSTVQ (30 B/SPECTRUM)

METHOD FEMALE MALE BOTH
LPC-10 442 5.05 4.73
VDVQ 2.94 3.58 3.25
NSTVQ 2.86 3.46 3.17

applications that would benefit by trading performance for
lower M.

The distortion criterion used to evaluate performance is
the root mean square spectral distortion (SD). The spectral
distortion between the unquantized and quantized harmonic
magnitude vectors 7 and 773, is given by

s (mﬂ)r o

my[n]|?

=

2

n=iy

D=

13 — 11

where 1 and 23 are chosen such that only harmonics within
the frequency range of interest are included in the distortion
calculation.

We first compared NSTVQ to an all-pole modeling tech-
nique (LPC-10) similar to the algorithm used in [6] and to
VDVQ [4]. We quantized the LPC-10 model coefficients using
a 24-b multistage VQ (MSVQ) for the 10 LSP values and
a 6-b scalar gain quantizer. VDVQ uses two 10-b mean-
removed VQ’s to encode harmonics lying in the range of
64-1500 and 1500-3600 Hz respectively, and another 10-b
VQ to encode the means (actually the log-gains). Splitting
the spectrum in this way may improve subjective quality by
using more bits to encode the lower frequency harmonics,
but objective performance is often reduced. Because of this,
we kept the comparison with VDVQ fair by using exactly
the same spectral splitting and mean-removal, with NSTVQ
(M= 14) applied to each half-spectrum separately. Table I
shows the results of this comparison. For both male and
female speakers, the NSTVQ system outperformed the LPC-
10 system by approximately 1.6 dB. The improvement with

-respect to VDVQ is small (approximately 0.1 dB) and may

be affected by the choice of the training and test databases
(the databases were used for all systems, however the training
requirements may be different). NSTVQ shows an advantage
over VDVQ in terms of complexity and codebook storage
requirements. For this configuration, the complexity of the
NSTVQ system was estimated to be almost half that of the
VDVQ system, even when the worst-case complexity was
assumed for the NST transforms. It is expected that the use of
fast-transform algorithms for the DCT can further reduce the
NSTVQ complexity. The codebook storage requirement for
NSTVQ was about one-quarter that of the VDVQ algorithm.

The next test compared IMBE scalar/vector quantization
with NSTVQ. For this test, we applied NSTVQ to the entire
spectral range of 64-3600 Hz without splitting. We used
a 6-b per stage MSVQ structure with M-L search [7]. By
training 11 stages and dropping the stages sequentially, we
were able to obtain results for systems ranging from 6-66
b/spectrum. The same structure was used for our predictive
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Fig. 1. Spectral distortion versus number of bits per spectrum for (i) NSTVQ

and (ii) NSTPVQ. IMBE spectral magnitude quantization using an average of
66 bits/spectrum is indicated with an asterisk.

system, NSTPVQ. IMBE uses vector prediction and a variable-
bit assignment scheme, which obtained an average rate of 66
b/spectrum on our test data. Fig. 1 shows that performance
equivalent to 66-b IMBE can be obtained using 46-b NSTVQ,
or 41-b NSTPVQ. An IMBE codec with NSTVQ magnitude
quantization could save 20-25 b/frame, or 1000-1250 b/s.
Furthermore, the NSTVQ system shows a smooth drop in
performance as the number of bits per spectrum is reduced.
We have incorporated NSTVQ in a 2.4 kb/s harmonic
speech coder and found that the subjective performance is
consistent with the objective results presented here. The 2.4
kb/s coder with NSTVQ scored 3.2 in an informal MOS test

compared with a score 3.4 for the 4.15 kb/s IMBE codec and
1.8 for the 2.4 kb/s LPC-10e standard.

V. CONCLUSION

Motivated by the problems encountzred when encoding
variable-length vectors such as harmonic magnitudes, we
have introduced a quantization technique called NSTVQ that
uses a variable-size nonsquare transform combined with a
fixed-dimension vector quantizer. The technique is shown
experimentally to outperform all-pole modeling. Performance
comparable to VDVQ is achieved with lower complexity
and storage requirements. NSTVQ is also shown to pro-
vide significant bit-reduction potential when compared to
IMBE magnitude quantization. Furthermore, the performance
of NSTVQ is shown to degrade gracefully as the bit rate is
reduced, making it a good candidate for very low bit-rate
systems. ‘
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