Motion Vector Quantization in a Rate-Distortion Framework
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It is well known that the performance of the cod-
ing scheme depends, to a large extent, on achieving
the “right” level of accuracy in motion representa-
tion. A more accurate rendering of the motion field
leads to a better prediction, thus requiring a lower
rate for adequate compression of the prediction error.
On the other hand, a greater side information rate is
needed for specifying to the decoder this accurate mo-
tion field. Conventionally, the accuracy of the encoded
motion field has been selected as a heuristic compro-
mise between these two conflicting objectives.

In this work, we optimize the accuracy in motion
representation so as to maximize the compression ef-
ficiency of the overall coding scheme. To this end,
we attack the problem of motion compensation in an
overall rate-distortion (RD) framework by viewing it
as quantization of the true motion field.

The organization of the paper is as follows: In sec-
tion 2, we review some existing methods to optimize
the motion estimation accuracy. In section 3, motion
estimation is reformulated as quantization of the mo-
tion field via a codebook of motion vectors. We show
that the desired accuracy in motion field representa-
tion can be achieved via a well desighed codebook for
the motion quantizer. Section 4 outlines an iterative
algorithm to design the motion vector codebook so as
to optimize its rate-distortion performance. To obtain
a motion codebook with feasible storage requirements,
we introduce multistage quantization of motion. Sec-
tion 6 presents simulation results which illustrate the
gains obtained by RD optimized motion quantization
over conventional motion estimation techniques.

2 Conventional Approach to Motion

Estimation

In conventional motion estimation algorithms, the
accuracy of the motion field representation is limited
by the block sizes and the precision used to encode the
motion vectors. Smaller block sizes allow encoding the
motion field with greater spatial resolution and hence
lower prediction error. However they require transmis-
sion of a larger number of motion vectors per frame.
Typically, a block size of 16X16 is chosen as a reason-
able compromise for most video coding applications.
The effect of using smaller block sizes has been investi-
gated in [1], [12] where a criterion based on prediction
error was used to split the blocks and the resulting
motion vectors were quadtree encoded. The objective
in these studies was to minimize the prediction error



without significantly increasing the number of motion
vectors.

An alternate approach to increasing the spatial
resolution, is to use greater precision to encode the
motion vectors so as to obtain better motion field
representation. Interpolation on the previous recon-
structed frame allows motion estimation to be per-
formed at subpixel precision and leads to better pre-
diction. However, more bits are spent on each motion
vector in this case. The efficiency of motion estimation
at subpixel precision has been studied in [4].

Previous studies on motion estimation [1] [4] [12]
have focussed on optimizing the tradeoff between pre-
diction error cost and the side information rate spent
on motion vectors. To the best of our knowledge, there
has been no explicit analysis of the relation between
the the accuracy of motion field representation and
the compression performance of the coding scheme. In
this work, we propose to optimize the motion field en-
coding in an overall RD framework with the objective
of directly maximizing the compression efficiency.

3 Motion Vector Quantization

We first formulate motion estimation from a sig-
nal compression perspective. We view the selection of
motion vectors as a quantization operation applied to
the true, dense motion field. We therefore propose to
quantize this dense motion field directly as described
next.

The current frame is divided into a set of small
blocks (4X4, 8X8). These blocks represent a high res-
olution partition of the frame. A lower spatial res-
olution is simultaneously obtained by grouping sev-
eral adjacent small blocks into a superblock (whose
size is the same as the conventional block size 16X16).
We represent the motion field of each superblock by a
single “super motion vector”( SMV) index which ac-
counts for the motion of all the small blocks in the su-
perblock. Note that, in principle, the SMV can allow
each block in a superblock to have a different motion
vector. A motion codebook contains the candidate
SMVs from which the best match is selected to rep-
resent the motion field of the super block. Thus we
quantize the motion of all the blocks in a superblock
together (or vector quantize the motion field of the
superblock).

The accuracy of the motion field quantization de-
pends on the contents of the motion codebook. At
the extreme, if the codebook entries are constrained
to have uniform motion for all the blocks in the su-
perblock, we will be estimating motion with spatial
resolution corresponding to superblock size, i.e., the
motion estimation is equivalent to conventional block
matching. The motion ficld can be quantized at higher
spatial resolutions by allowing the codebook to consist
of entries which allow different motion for the individ-
ual blocks in a superblock. Similarly, the precision of
the codebook entries determines the precision of mo-
tion estimation. Thus, the problem of optimizing the
accuracy of motion estimation is now one of designing
a codebook of SMVs, tailored to maximize the overall
compression performance of the coding scheme.
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4 Rate-Distortion of

Codebook

A design algorithm for a fixed rate motion codebook
was described in [8]. But the method suffered from
statistical mismatch and the authors found it unsuit-
able for coding applications. An adaptive extension of
this idea was proposed in [11], where a variable rate
motion codebook was designed online in a backward
adaptive manner. However, these design methods fo-
cussed only on minimization of the prediction error
instead of optimizing the overall rate-distortion per-
formance.

Our objective is to design a codebook of SMVs
which optimizes the compression efficiency of the cod-
ing scheme at the target rate. This is achieved by
minimizing the true RD cost associated with the mo-
tion codebook. Here, the rate R represents the total
number of bits needed for compression, which includes
both the side information rate for encoding the motion
vectors and the rate spent on quantizing the predic-
tion error. The distortion D represents the overall re-
construction error and not merely the prediction error
after motion compensation.

We design the motion codebook so as to minimize
the overall distortion D, subject to a constraint on
the rate R < Rq4,. (For a generic VQ codebook de-
sign procedure for such constrained optimization see
[2]. Another work that is particularly relevant here
18 [10].) The optimization problem can be rewritten
as an unconstrained minimization of the Lagrangian,
D+ AR, where ) is the Lagrange multiplier. We next
derive a design algorithm which minimizes this La-
grangian cost.

4.1 Design Algorithm

Start with an initial SMV codebook which encodes
the motion field with a very high degree of accuracy.
A correspondingly high side information rate is asso-
ciated with this codebook. We iteratively refine this
codebook to achieve the desired level of accuracy in
motion field representation.

Given a training set of video sequence, iterate the
following steps:

Optimization

Step 1. To each super block, assign the codebook en-
try which minimizes the Lagrangian cost of en-
coding this block; D + AR, where D and R are
the error and total rate associated with encoding
this block. This assignment forms a partition of
the training set among the codebook entries.

Step 2. Redesign the entropy code matched to the
population of the training subsets assigned to the
indices, so as to reduce the average side informa-
tion rate.

Step 4. If the convergence criterion is met, stop.
Otherwise go to Step 1.

The algorithm descends in the Lagrangian cost in
practice and we obtain a locally optimal motion code-
book.

During the iterative steps of the algorithm some
motion vector entries in the codebook may not have
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subpixel precision. Each stage of the quantizer has
a codebook of motion vector indices associated with
it. The overall SMV codebook is the product code
formed by the individual codebooks. The multistage
SMV codebook has a memory requirement compara-
ble to that of conventional motion estimation schemes.
Our basic design algorithm is extended to enforce the
structural constraint of multistage motion codebook
design. All stages are jointly designed to optimize the
rate-distortion performance. The simulation results
presented in the next section compare the compress-
sion performance of RD optimized multistage motion
quantization to that conventional motion estimation.

We note that multistage motion quantization has
a natural hierarchy of motion estimation accuracy. A
coarse representation of the motion field is provided by
the first stage of the motion quantizer, while the sub-
sequent stages refine this representation. Multistage
motion quantization is therefore particularly appropri-
ate for scalable video coding, where different motion
estimation accuracies are needed for the different lay-
ers of compressed video [5]. The motion representation
produced by the multistage motion quantizer can be
specifically optimized for such applications as in [9].
For example, the first stage of the motion codebook,
can be optimized for the rate of the base layer. and
the subsequent codebook stages can be optimized for
the total rate. Thus applications such as layered cod-
ing for ATM networks [3] can utilize RD optimized
multistage motion quantization profitably.

6 Results

To test the performance of optimal motion quanti-
zation, we carried out simulations on video sequences
corresponding to sif resolution images. The training
sequence was obtained from the sequence Table Ten-
nis. We use the training set to design a two stage
motion quantizer. The first stage of the quantizer per-
forms motion estimation with a 16 X 16 block size and
integer pel precision. The second stage of the quan-
tizer corresponds to an increased spatial resolution by
using a 8 x 8 block size and integer pel precision. We
restricted the codebook entries to be confined to a
search range of (-15,15) for the first stage and (-2,2)
for the second stage.

The design algorithm was used to jointly design the
codebook of both the stages of the quantizer so as
to minimize the rate-distortion cost. The Lagrangian
multiplier was varied to meet the target rate con-
straint. The prediction error was encoded by using a
residual quantization similar to H.263 [6]. The RD op-
timized motion codebook was then used to compress
the test sequence Football. For comparison we used
standard motion compensation corresponding to block
size of 16 X 16 and integer pel precision to compress
the test sequence to the same total rate. Table 1 shows
the average PSNR in dB of reconstructed frames of
the sequence Football. A sample reconstructed frame
is shown in figure 1. The total rate is 0.5 bpp or
equivalently 335 kbps (at a frame rate of 8 fps). The
results demonstrate gains of 1.3 dB in average PSNR
of the reconstructed picture over conventional block
matching algorithms over 1 second of encoded video.



| PSNR (in dB) of reconstructed “Football” ||

Standard Motion Compensation 30.29
RD Optimized Motion Quantization | 31.59

Table 1: Performance of Standard Motion Compensa-
tion and RD Optimized Motion Quantization on the
Sequence “Football” at a rate of 0.5 bpp. The se-
quence “Table Tennis” was used to optimize the mo-
tion quantizer

Further gains can be achieved by incorporating back-
ward adaptive design of the codebook as described in
[11].

Figure 1: Sample reconstructed frame of “Football”
for conventional motion estimation (top), and RD op-
timized motion quantization (bottom) for rate R = 0.5

bpp.

7 Conclusions

We use an overall rate-distortion framework to op-
timize the performance of motion compensation in
video coding schemes. A codebook of motion vec-
tors was used to directly quantize the dense motion
field and the accuracy of motion estimation was opti-
mized by designing the codebook for the target rate.
An iterative algorithm was proposed for the design of
the motion codebook which minimizes the Lagrangian
rate-distortion cost. A practical motion quantization
scheme is developed by imposing a multistage struc-
ture on the codebook, which is then optimized by joint
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design of the stages. Simulations on benchmark video
sequences demonstrate that RD motion quantization
significantly outperforms conventional motion estima-
tion and gains 1.3 dB in PSNR of the reconstructed
picture. Scalable video coding applications can also
profit from the hierarchical motion representation pro-
vided by multistage motion quantization.
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