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Constrained-Storage Vector Quantization
with a Universal Codebook
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Abstract—Many image compression techniques require the
quantization of multiple vector sources with significantly differ-
ent distributions. With vector quantization (VQ), these sources
are optimally quantized using separate codebooks, which may
collectively require an enormous memory space. Since storage
is limited in most applications, a convenient way to gracefully
trade between performance and storage is needed. Earlier work
addressed this problem by clustering the multiple sources into
a small number of source groups, where each group shares a
codebook. We propose a new solution based on a size-limited uni-
versal codebook that can be viewed as the union of overlapping
source codebooks. This framework allows each source codebook
to consist of any desired subset of the universal codevectors and
provides greater design flexibility which improves the storage-
constrained performance. A key feature of this approach is
that no two sources need be encoded at the same rate. An
additional advantage of the proposed method is its close relation
to universal, adaptive, finite-state and classified quantization.
Necessary conditions for optimality of the universal codebook
and the extracted source codebooks are derived. An iterative
design algorithm is introduced to obtain a solution satisfying
these conditions. Possible applications of the proposed technique
are enumerated, and its effectiveness is illustrated for coding of
images using finite-state vector quantization, multistage vector
quantization, and tree-structured vector quantization.

Index Terms—Adaptive quantization, constrained storage, uni-
versal codebook, universal source coding, vector quantization.

I. INTRODUCTION

A. Motivation and Applications

V ECTOR quantization (VQ) is an appealing coding
technique because the rate-distortion bound can be

approached by increasing vector dimension [1]. In applications
where high reproduction quality is required, relatively high
bit rates are needed. This can lead to very high complexity
for such applications, because the computational and storage
complexity of unstructured vector quantization grows expo-
nentially with the rate and dimension. In applications where
signals from multiple sources are to be encoded, each would
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normally require separate quantization codebooks, thus further
compounding the problem of storage. As a result, codebook
storage can become the dominant complexity obstacle.

Constraining the amount of stored data tables in VQ-based
coding systems while designing the tables to obtain optimal
performance has several applications. Inadaptive VQ(AVQ)
[2], [3], updated codebooks need to be communicated to the
receiver periodically. Here, the bit rate overhead incurred in
transmitting codebooks can be greatly reduced by having a
fixed “universal” codebook in the receiver from which new
codebooks can be specified. If, further, fixed-rate coding is
used to specify the new codebook, then the size of the
universal codebook determines the cost in bit rate incurred in
updating the codebook. Since the storage space of the universal
codebook is a key limitation, a constrained storage approach
offers an effective solution. In applications where different
types of sources need to be encoded, the proposed scheme
would be an excellent candidate. For example in image coding,
where a wide variety of images like portraits, textures, medical
images, text documents, etc., need to be encoded, the storage
requirements can be reduced by use of a constrained-storage
VQ scheme, rather than having individual codebooks for each
type of image to be encoded.

In tree-structured VQ(TSVQ) [4], the key limitation is stor-
age space, since VQ encoding complexity is greatly reduced
by the tree structure. A family of structured VQ schemes
that include TSVQ as a special case is based ongeneralized
product code VQ(GPC-VQ), where a source is sequentially
coded in stages and the codebook for each stage depends on
the outcome of the previous stage [5]. The use of constrained-
storage methods is essential for GPC-VQ. As a final example,
we observe that inclassified VQ(CVQ) [1], [6] andfinite-state
VQ (FSVQ) [7], [20], the critical performance limitation is the
storage of a large number of class/state specific codebooks.

B. Relevant Prior Work

An earlier approach to mitigating the problem of storage
complexity in VQ, calledconstrained-storage VQ(CSVQ)
was introduced by Chan and Gersho and was based on the
concept ofcodebook sharing. Given a set of sources, a set
of codebooks is designed, where each codebook is
assigned to be shared by a group of sources, so as to optimize
an overall performance measure. The basic theory is given in
[8], and the approach is specialized for TSVQ codebook design
in [10]. In this paper, we use the acronymCSVQ to refer
more generally to VQ coding schemes that employ storage
constraints rather than narrowly to the work of [8].
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Another approach suggested for AVQ by Gersho and Gray
[1, p. 620] and studied for universal VQ by Zegeret al.
[11], [12] is to identify a subset of codevectors from a fixed
universal codebookthat is chosen to represent the current
statistics of the source. This problem is directly related to the
one we address here, and further, by effectively designing a
suitable universal codebook of limited size, we can provide a
constrained-storage solution to AVQ.

Another study of relevance to CSVQ was reported by Lyons
et al. [14]. In this work, the storage space of a large TSVQ
codebook is reduced by quantizing the codevector and test
vector components with a smaller secondary quantizer of low
dimensionality (in most cases, a scalar quantizer is preferred).
There are important ties between this approach and the one we
take in this paper. We discuss these further in Section IV-B
in the context of TSVQ design.

The problem of FSVQ design subject to storage constraints
was addressed by Kim [13] and by Nasrabadiet al. [15]. Here,
the high memory cost introduced by the use of a large number
of states is overcome by the use of a “super-codebook.”
The state codebooks are extracted as subsets of this large
super-codebook in a heuristic adaptive manner, without direct
minimization of the distortion.

C. CSVQ with a Universal Codebook

In this work, we examine and solve the optimization prob-
lem for a general form of CSVQ which in most respects
encompasses the prior work of Chan and Gersho [8] as a
restricted special case, while offering a more versatile and
powerful solution for several applications. We directly solve
the problem of optimal VQ design under storage constraints
without imposing any additional constraints on how memory
should be shared by the sources. In particular,memory can be
shared by sources at the level of individual codevectorsrather
than entire codebooks as proposed in [8]. Some aspects of our
approach were presented in [9]. Since the method of Chan
and Gersho can be viewed as a special case of our approach
where groups of sources are constrained to share the exact
same codebook, our CSVQ will always improve on (or at
the theoretical worst-case be the same as) such a solution
by removing these restrictions. Our framework provides more
efficient storage and takes full advantage of the flexibility
allowed by the storage constraint.

It is also important to note that this framework is directly
applicable to the important case where different codebook
sizes are used by different sources. The ability to assign
different codebook sizes to individual sources makes the
method attractive for applications where bit allocation is
needed, for example, when the sources correspond to different
components or features extracted from a given signal. In
such cases, one can optimize the bit allocation, and still
impose a practical storage constraint on the overall number of
codevectors. This also has obvious application in structurally
constrained VQ, where all the codebooks used for the various
stages can be extracted from a universal codebook that satisfies
the given storage limitations.

We note further that our approach is applicable to the
context of adaptive and universal quantization (e.g., [11]),

where adaptation is realized by extracting the current codebook
from the universal codebook and transmitting the selection
parameters to the decoder. In such applications, the size of
the universal codebook has a direct impact on the cost in bit
rate associated with specifying a codebook to the decoder, in
addition to the obvious storage considerations. Our approach
also finds application in FSVQ and CVQ where, typically,
individual codebooks are used for each state or class. By
adopting the proposed CSVQ approach, it is possible to
increase the number of states or classes without an increase
in memory requirements.

TSVQ is another structured vector quantizer which suffers
from the problem of substantial memory requirements. An
appropriate modification of our problem formulation leads
to a method for TSVQ design that substantially reduces the
memory requirements while maintaining the low computa-
tional complexity of standard TSVQ. Thus, the basic approach
proposed here is applicable to a large variety of vector
quantization schemes.

The organization of the paper is as follows. Section II gives
the system description, some definitions, details about the
encoding and decoding rules, and the formulation of the design
problem. Section III presents the design procedure. Section IV
provides the experimental results that validate the method and
Section V gives our conclusions and future directions.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A variety of signal compression applications involving VQ
can be modeled as using the encoder depicted in Fig. 1(a).
A set of stationary vector sources, where each source
generates vectors of dimension, are to be quantized under
the same distortion measure with possibly different resolutions

(b/vector). At a given time, the encoder is presented with
the observed value of a particular source vector and the
label or index that identifies to which of the sources
it belongs. The encoder outputs a codeword ofbits, also
referred to as the index for the source vector. The decoder
receives the codeword and is assumed to know the label;
it then uses codebook to produce , an approximation of
the source vector .

Generally, a separate codebook for each of thesources
would be required for best performance, where each VQ
codebook is tailored for the specific source’s statistics. Such
a system is depicted in Fig. 1(a). To reduce storage require-
ments, however, codevector sharing is introduced, wherein
there exists a universal codebook containingcodevectors
and each source uses a particular subset of these vectors as
its codebook. A careful choice of codebook, for each source,
from the large number of possible codebooks is hence required.
The selector function is designed to perform this choice. The
CSVQ system is depicted in Fig. 1(b).

In many applications, the various sources do not need to be
quantized at the same rate. CSVQ is very well suited for such
applications, as the only constraint on the source codebook is
that it be extracted from the universal codebook. In particular,
we allow for different codebook sizes and hence different rates.
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(a)

(b)

Fig. 1. Multiple source encoding using (a) separate source codebooks and
(b) the CSVQ approach.

Fig. 2. Example of a CSVQ scheme.

A. Definitions and Notation

We are given sources, each generating adimensional
random vector , for A vector
quantizer for the th source is a mapping ,
where is an ordered finite set of

codevectors . The set is called the codebook
for source .

A storage constraint is imposed wherein the total number
of stored codevectors is limited to where typically

. We therefore consider auniversal codebook
, from which each of the source

codebooks is extracted. To each source codebook we assign
a particular subset of universal codevectors. The codevector
assignment is specified by the mapping

which we call theselector function. More specifically,
the assignment for source is given by the -dimensional
binary vector whose th component is defined as

if
if

Hence, we require to contain exactly “1”s. Corre-
spondingly, the th source codebook is given by

(1)

Thus, the selector function is determined by the set of
binary vectors: , which will be referred
to as selector vectors.

A constrained storage quantizer is then completely specified
by the following:

1) the universal codebook;
2) the mapping (selector function).

The notation is illustrated in Fig. 2 which shows a simple
example with three sources, , with codebook sizes

, and , and with memory constraint .
The arrows linking the sources and to the universal
codevectors indicate which universal codevectors are included
in the respective codebooks. For example, is
the codebook for the source . The corresponding binary
selector vectors are also indicated in the figure.

B. Encoding and Decoding in CSVQ

Suppose a universal codebook with codevectors,
, and the mapping vectors , are avail-

able at the encoder and decoder. Assume that when a vector
arrives at the encoder, its label, indicating it is an outcome
of source , is given to both encoder and decoder.

Using (1) the encoder extracts and
performs a nearest neighbor search through this codebook by
computing the distortion measure for each vector
in . The optimal index is selected where

The input vector is thus quantized to the codevector
and the optimal index is transmitted. Assuming fixed-rate
coding, bits are needed to specify .

The decoder receives the optimal indexand has available
the source label . From its copy of the universal codebook,,
and the mapping , the decoder extracts the selected code-
vector and outputs it as the reproduced approximation to
the original vector .

Both encoder and decoder need to know to which source
the vector being encoded/decoded belongs. In AVQ, the type
of source changes infrequently and a number of successive
input vectors are treated as emanating from one particular
source. This reduces the overhead in transmitting the source
label. In certain other applications, the decoder is capable of
determining the source index that has been assigned to the
encoded vector, due to some prior available information and
the source index need not be explicitly transmitted. For such
cases, each successive input vector may be associated with a
different source label.

C. Design Objective

Each vector quantizer, performs the usual nearest neigh-
bor operation, mapping an input vector to the nearest
codevector in its codebook . A codebook
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is defined to be optimal with respect to the probability
distribution of the random vector if the codebook
minimizes the expected distortion over
all codebooks of size which can be extracted from.

The performance measure of the multiple source coding
system is the overall distortion, which is defined here as

(2)

where are nonnegative weights, which measure the relative
importance of distortion incurred in quantizing the various
sources. These weights are application dependent and are
assumed to be given prior to the design process. Often, the
weights would simply be the relative frequencies of occurrence
of the sources, in which casehas the natural interpretation as
the expected distortion (in quantizing a source vector selected
at random from the set of possible sources according to their
given prior probability distribution).

Problem Statement:Given sources , rates , and
storage constraint , minimize over all choices for the
universal codebook and selector function .

III. CSVQ DESIGN METHOD

For a given set of sources and a storage constraint of
vectors, we wish to determine the optimal set

of universal codevectors, and the optimal selector
function . We propose an iterative algorithm, where each
step consists of fixing a subset of the parameters while
optimizing over the others. In particular, it is closely related
to known clustering algorithms, such as the generalized Lloyd
algorithm (GLA) [17].

Starting with an initial universal codebook and an
initial selector function , we iterate the following two
steps.

1) Fix the selector function and optimize , the set of
universal codevectors.

2) Fix the universal codebook and optimize , the set of
binary selector vectors.

Each of these steps is clearly monotonically nonincreasing
in distortion. Thus, by iterating we obtain a sequence of CSVQ
coding schemes, , where counts the iterations.
This sequence of quantizers is nonincreasing in distortion,
and the distortion will converge to some limiting value. This
provides an (at least locally) optimal CSVQ system.

It should be noted that the above algorithm description is
given mainly for its simplicity. It is a skeletal description em-
phasizing the main concepts. We thus view it as a conceptual
starting point whose optimality is easily demonstrated, as well
as the relation to the GLA. However, an efficient, practical
algorithm will require some modifications. In particular, we
shall see that there is a natural and straightforward way to
implement step A above. On the other hand, Step 2 is less
trivial and would, in fact, require an entire iterative procedure
for its implementation alone. In the sequel we first consider
in detail and derive the conceptual algorithm, and then we
provide an efficient algorithm by embedding step A within
the iterations needed to implement step 2.

A. Universal Codebook Optimization

For a fixed set of selector vectors, the universal codevectors
can be modified to match the effective sources they represent.
The overall distortion for the constrained-storage quantizer is
given by

where

(3)

where is the nearest neighbor partition cell corresponding
to the codevector when the source is being quantized:

(4)

For the given selector vectors, and nearest neighbor partition
, the optimal universal codevector is given by

which defines the centroid for the partition region . For
the mean-square distortion measure, the explicit expression is

(5)

Since the centroid condition minimizes the distortion for the
given selector vectors, this update of the universal codebook
yields nonincreasing distortion.

B. Selector Function Optimization

Consider the extraction of given the universal codebook.
The problem at hand is that of optimally choosing a subset of

codevectors from the set of universal codevectors. There
are obviously too many possibilities, for brute-
force exhaustive approaches to be practical. Thus, a simpler,
but possibly suboptimal method is required to determine
the selector vector. A similar problem has been addressed
heuristically by Nasrabadiet al. [15]. They calculated the rel-
ative frequency with which each of the universal codevectors
would have been used by a particular source, had that source
been coded with the entire universal codebook. Then the
most frequently used universal codevectors were selected as
members of .

In this work, we introduce an iterative procedure for opti-
mizing the selector vectors, that unlike the heuristic of [15]
ensuresconvergence to a local optimum.For a particular
source , we assume we have a training set representing the
source statistics. At each iteration of the algorithm, we first
update the encoding partition, , and then we recompute
the codevectors. This is almost identical to the GLA except that
here we add the necessary constraint thateach of the updated
codevectors be a member of the universal codebook. Hence, the
selector function optimization algorithm proceeds as follows.

1) Compute a nearest-neighbor partition.
2) Find the universal codevector which best represents each

partition region.
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It is easily shown that each of these steps is nonincreasing
in distortion: It is well known from the GLA that Step 1
cannot increase the distortion. Step 2 tries to find the best
universal codevector to represent the partition computed in
Step 1. Switching from the current universal codevector to the
best universal codevector can never increase the distortion.

For Step 2, one would generally need to try all universal
codevectors and select the one minimizing the distortion. But
for the squared error distortion, we can equivalently compute
the “unconstrained” centroid, and then quantize it using the
universal codebook, as will be shown below. Thus a more
efficient algorithm for the squared-error case performs the
following steps at each iteration.

1) Compute a nearest-neighbor partition using the current
codebook.

2) a) Compute the partition centroids.
b) Quantize the centroids using the universal codebook.

(Note that quantizing centroids to codevectors from a pre-
defined set appeared in Rao and Pearlman’s work on alphabet
constrained quantizer design [21].) We now show that Steps
2a and 2b above, are equivalent to selecting the best universal
codevector for the given partition cell. We need to findin the
universal codebook to minimize

. Using the properties of second moments we rewrite
as

(6)

where is the centroid of the
cell . Since only the last term in (6) depends on, the
best universal codevector to choose is the one nearest to.
Thus, finding the optimal codevector in the universal codebook
is equivalent to quantizing with the nearest universal
codevector.

To summarize, the basic iteration is guaranteed not to in-
crease the distortion, hence it will decrease the distortion until
convergence is achieved. This procedure can be performed
on each source independently. At convergence, the algorithm
produces an (at least locally) optimal selector function and
encoding partition for the given fixed universal codebook.

C. Practical Design Algorithm

In Section III-B, we derived an iterative algorithm for opti-
mizing the selector function given a fixed universal codebook.
As we mentioned earlier, performing such optimization as a
single step in the “super iteration” of the design algorithm,
might be highly impractical. The reason is that much compu-
tation would be spent on finding the “perfect” selector function
for universal codebooks that are still suboptimal. Here we
modify the basic algorithm to produce a practical method
which effectively embeds the universal codebook optimization
within the selector optimization iterations. More specifically,
after each iteration of the selector function optimization of
Section III-B we perform a universal codebook update as
described in Section III-A. Note that while we do find the
optimal universal codebook for the given mapping, we only
take one step toward finding the optimal mapping for the
given universal codebook. It is easy to see that each step

TABLE I
PSEUDOCODE FOR THECSVQ DESIGN ALGORITHM

in the algorithm is monotonically nonincreasing in distortion.
Thus, this practical algorithm does not sacrifice optimality,
yet significantly reduces the computational complexity of the
design. The algorithm is presented in pseudocode in Table I,
and a flow-diagram is given in Fig. 3.

Similar to the GLA, the CSVQ method is applicable to
sources given by probability distributions, and to sources
represented by training sets. In the latter case, one simply
assumes that the source distribution is well approximated by
the discrete distribution induced by a uniform probability over
the samples of the training set. Thus, all our results can
be restated within the context of a training algorithm in a
straightforward manner.

IV. EXPERIMENTAL RESULTS

A. Finite-State VQ

The proposed technique was applied to FSVQ of images.
An FSVQ encoder, as shown in Fig. 4, consists of a finite
set of subcodebooks where each subcodebook belongs to a
distinct state of the encoder. The current state of the encoder
is determined by the previously encoded blocks and the
previous state. An input vector is encoded by searching the
corresponding subcodebook of the current encoder state for the
best representative codevector. Synchronization between the
encoder and the decoder is achieved by employing the same
next-state function and starting with the same initial state at
the transmitter and receiver.

For a given fixed rate, FSVQ’s performance can be im-
proved by increasing the number of states. However, since a
codebook is assigned to each state, this results in increasing
memory requirements. By viewing the different states as
“different sources,” we can apply the CSVQ design proce-
dure described above directly to the FSVQ problem. Thus,
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Fig. 3. Flow-diagram for the CSVQ design algorithm.

Fig. 4. FSVQ encoder.

we apply our storage-constrained approach to optimize the
overall FSVQ performance subject to the specified rateand
available memory. The resulting algorithm is referred to as
constrained storage FSVQ(CS-FSVQ). We emphasize the
important advantage: by the mechanism of codevector sharing
we can increase the number of states while respecting the
given memory constraint.

For the simulations we selected a data set of images of
differing types. Seven images were used for training, and
ten other images were used for testing the performance.
We segmented these images into 4 4 blocks to create
the training and test sets. Given a fixed rate, we applied

Fig. 5. Current state is determined from the neighboring pixels in the
previously encoded blocks.

the omniscient design method [20] to the training set and
designed five standard FSVQ systems with number of states

, respectively. All codebooks in all systems
were of the same size as determined by the fixed rate. The next
state function was implemented as a vector quantizer operating
on the pixels in the three neighboring blocks as shown in
Fig. 5.

We next used the standard FSVQ points for
to facilitate initialization and applied CS-FSVQ to constrain
the memory size. More precisely, the initial universal code-
book of size was obtained by applying standard GLA to
the union of state codebooks of a standard FSVQ. We then
encoded a test set using the previously designed codebooks to
obtain the curves depicted in Fig. 6.

The results demonstrate that the CS-FSVQ approach im-
proves over standard FSVQ in two respects. First it pro-
vides solutions at arbitrary levels of memory, while standard
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Fig. 6. Comparison of CS-FSVQ and standard FSVQ. The plot shows PSNR
versus memory size, each curve corresponds to a different number of states.
The rate is 0.3125 b/pixel.

FSVQ can only provide systems at distinct memory sizes
corresponding to multiples of state codebook size. Secondly,
and more importantly, CS-FSVQ consistently outperforms
standard FSVQ at all memory sizes. Please note that the
memory values used in Fig. 6 were adjusted to include the
memory cost of implementing the next-state function. This
gives a fair comparison and penalizes our CS-FSVQ results
that allow more states. In fact, other forms of next-state
function (instead of the VQ we used) may require less memory.

B. Tree-Structured VQ

We begin by noting the similarity between tree-structured
VQ (TSVQ) and multistage VQ (MSVQ) [18]. In MSVQ,
the final reproduction vector is obtained by summing over
the reproduction vectors at the different stages. At each stage
the conventional MSVQ uses a single codebook. We refer
to such a system as an MSVQ offanout 1. Allowing more
residual codebooks at each stage, will improve performance
at the cost of increase in fanout [5], [19]. In this case, the
codebook used in a certain stage would be dependent on the
reproduction vector obtained in the previous stage. If there
are as many codebooks in the current stage as there are
reproduction vectors in the previous stage, then the structure is
an MSVQ offull fanout. Such a structure is in fact equivalent
to a TSVQ except for the technicality of operating on residuals
at each layer instead of directly operating on the source
vector at the leaf layer (standard TSVQ). We generalize our
terminology and refer to MSVQ with fanout as -MSVQ.
The standard MSVQ and the -ary TSVQ are the special
cases 1-MSVQ and -MSVQ, respectively. While all -
MSVQ have the same encoding search complexity as TSVQ,
their memory requirements differ. In fact, they provide many
intermediate levels of memory between the least—standard
MSVQ and the largest memory requirement of TSVQ. Thus,
the -MSVQ family provides us with a tool for trading
memory for performance. However, we emphasize that within
this family the memory requirements determine the structure
to be used. CSVQ provides the means for restricting memory
without compromising the structure.

Before describing the CSVQ approach to TSVQ deign, it is
important to note that the TSVQ method of Lyonset al. [14] is
closely related. There, the approach was based on the idea that
the codebook of testvectors can be quantized itself. Since, in
principle, quantization is a form of codevector sharing, the
methods have some important similarities. Some important
differences: the CSVQ approach offers joint optimization of
the overall system; Lyonset al. recommend scalar quantization
of the testvectors while CSVQ effectively “quantizes” them as
full dimensional vectors; and CSVQ is generally derived for
any mixture of sources regardless of the VQ structure.

In order to adapt our CSVQ approach to MSVQ/TSVQ, we
consider the collection of vectors using the same codebook
as an “independent source.” Hence, the-ary balanced tree
has one source at the first layer, sources at the second
layer and sources at the th layer. We now require
that all the codebooks be extracted from some universal
codebook of given size . The memory requirement of this
constrained storage approach to TSVQ (CS-TSVQ)is not
dictated by the structurebut is a variable whose value can
be chosen by the designer. Since the storage requirement is
independent of the fanout used in this CS-TSVQ approach,
a full fanout (i.e., a structure equivalent to TSVQ) might as
well be used to best exploit the available design flexibility
offered by a larger fanout. We thus design a TSVQ subject
to storage constraints. By viewing our TSVQ as a full fanout
MSVQ, where residuals are used at each layer rather than the
original source vector itself, one can achieve equivalent overall
distortion with a smaller universal codebook. This is due to
the fact that “residual test vectors” are smaller in magnitude
and are statistically similar. This significantly improves the
performance of memory sharing.

Having specified the sources that need to be quantized
while satisfying the overall memory constraint, we now have
a CSVQ problem that we can solve as we have done in
the preceding sections. It should be noted that although we
have stated above that we could treat the sources using the
different codebooks independently, the source index of a given
vector at layer is in fact dependent on the codebooks in the
previous layers. This allows the training set for a given source
to change from iteration to iteration. Hence, the algorithm
does not guarantee a nonincreasing sequence of distortion
values, and the universal codebook produced at termination
is not necessarily optimal. What we practically observe in
simulations is a fluctuation about the minimum point. This
problem is practically handled by storing the best universal
codebook and selector function during the fluctuations.

The proposed algorithm was applied to the tree-structured
vector quantization of images. The same training set as that
used for our FSVQ simulations was used. A binary tree with 11
layers was grown, where the codebook at each layer operates
on the residue obtained in the previous level. The constrained-
storage approach was used to design universal codebooks of
different sizes. Fig. 7 shows the loss of performance in dB
compared to a conventional (full memory) TSVQ versus the
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Fig. 7. Comparison of CS-TSVQ, TSVQ and MSVQ. The plot displays the
loss in PSNR when compared to the performance of TSVQ. The end-point
of the curve with a 0 dB loss is the TSVQ solution. The disconnected point
with the maximum loss corresponds to the solution obtained by MSVQ. All
intermediate points are the CS-TSVQ solutions.

storage reduction ratio (SRR) defined as

Memory required by the constrained-storage approach
Memory required by a standard tree

(7)

Thus, SRR corresponds to the conventional TSVQ and the
loss associated with it is 0 db. Also, for an 11 layer binary tree
(7) becomes SRR since for binary trees.

A test set was encoded using two trees of 10 and 11
layers, corresponding to rates of 0.625 and 0.6875 b/pixel,
respectively. The results obtained are displayed in the graphs
of Fig. 7. The graphs show that storage reduction by a factor
of up to five is obtained at the cost of less than 0.1 dB loss in
PSNR, while storage reduction by factors of up to 20 requires
less than 0.5 dB loss in PSNR. The point corresponding to
standard 1-MSVQ is also shown on the graph. Note that we
neglected the memory requirement for the selector function
in the SRR calculation. Detailed calculation shows that it
is less than 2% of the TSVQ memory cost in most cases
considered. It should be noted all the points in the above graph
have the same computational complexity as TSVQ. Hence CS-
TSVQ offers the low computational complexity and almost the
same performance as TSVQ, but with much reduced memory

requirements. Also note that the CSVQ approach allows one
to obtain intermediate solutions at any memory requirement
between standard MSVQ and standard TSVQ.

V. CONCLUSION AND FUTURE DIRECTIONS

We introduced a new codevector sharing approach to
constrained-storage VQ, for quantizing multiple sources. The
method uses a single universal codebook whose size is limited
by the specific application. A number of sources may use the
same universal codevector, but they are not constrained to
use exactly the same set of codevectors for their codebooks.
As confirmed by the experimental results reported here, this
technique trades off very modest reductions in performance
for very large savings in storage complexity, and provides an
(at least locally) optimal design for a given memory size.

Besides the applications with which we have already exper-
imented, there are a number of other interesting applications.
Perhaps a less obvious possible application of the CSVQ
approach is in fine-coarse VQ (FCVQ) [16] whose objective
is to reduce the computational complexity of vector quantiz-
ers. When using a tree for this purpose, the design method
suggested in [16] could be improved by using our approach,
by associating the fine quantizer with the source codebooks
of size one, and the coarse codebook with our definition of a
universal codebook.

Thus, the proposed CSVQ technique is a fundamental one
in the sense that it is directly applicable to many different
problems, including a variety of structured VQ schemes, such
as FSVQ, CVQ, and TSVQ, various problems of universal
quantization, and other problems. The practical importance of
the method is in the fact that it can be used to impose memory
constraints on virtually any VQ-based system.
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