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Constrained-Storage Vector Quantization
with a Universal Codebook

Sangeeta Ramakrishnan, Kenneth Rosenber, IEEE,and Allen GershoFellow, IEEE

Abstract—Many image compression techniques require the normally require separate quantization codebooks, thus further
quantization of multiple vector sources with significantly differ- Compounding the pr0b|em of storage. AsS a resun’ codebook
ent distributions. With vector quantization (VQ), these sources storage can become the dominant complexity obstacle

are optimally quantized using separate codebooks, which may .. .
collectively require an enormous memory space. Since storage COnstraining the amount of stored data tables in VQ-based

is limited in most applications, a convenient way to gracefully coding systems while designing the tables to obtain optimal
trade between performance and storage is needed. Earlier work performance has several applications.atfaptive VQ(AVQ)
addressed this problem by clustering the multiple sources into [2], [3], updated codebooks need to be communicated to the

a small number of source groups, where each group shares a . L . . .
codebook. We propose a new solution based on a size-limited uni."eceiver periodically. Here, the bit rate overhead incurred in

versal codebook that can be viewed as the union of overlapping t.ransmitti.ng codebooks can be grea“Y reduced by. having a
source codebooks. This framework allows each source codebookfixed “universal” codebook in the receiver from which new

to consist of any desired subset of the universal codevectors andcodebooks can be specified. If, further, fixed-rate coding is
provides greater design flexibility which improves the storage- used to specify the new codebook, then the size of the

constrained performance. A key feature of this approach is . . L . .
that no two sources need be encoded at the same rate. AnUniversal codebook determines the cost in bit rate incurred in

additional advantage of the proposed method is its close relation Updating the codebook. Since the storage space of the universal
to universal, adaptive, finite-state and classified quantization. codebook is a key limitation, a constrained storage approach
Necessary conditions for optimality of the universal codebook offers an effective solution. In applications where different

and the extracted source codebooks are derived. An iterative
design algorithm is introduced to obtain a solution satisfying types of sources need to be encoded, the proposed scheme

these conditions. Possible applications of the proposed techniqueWould be an excgllent cgndidate: For example inimage Cod.ing,
are enumerated, and its effectiveness is illustrated for coding of where a wide variety of images like portraits, textures, medical
images using finite-state vector quantization, multistage vector images, text documents, etc., need to be encoded, the storage
quantization, and tree-structured vector quantization. requirements can be reduced by use of a constrained-storage

Index Terms—Adaptive quantization, constrained storage, uni- VQ scheme, rather than having individual codebooks for each
versal codebook, universal source coding, vector quantization.  type of image to be encoded.

In tree-structured VETSVQ) [4], the key limitation is stor-

I. INTRODUCTION age space, since VQ encoding complexity is greatly reduced
by the tree structure. A family of structured VQ schemes
A. Motivation and Applications that include TSVQ as a special case is basedj@meralized

ECTOR quantization (VQ) is an appealing codin@mduq code VQ(GPC-VQ), where a source is sequentially
Vtechnique because the rate-distortion bound can @ded in stages and the codebook for each stage depends on
approached by increasing vector dimension [1]. In applicatioH outcome of the previous stage [5]. The use of constrained-
where high reproduction quality is required, relatively higﬁtorage methods is essential for GPC-VQ. As a final example,
bit rates are needed. This can lead to very high complexi{g observe that islassified VQICVQ) [1], [6] andfinite-state
for such applications, because the computational and storgeé (FSVQ) [7], [20], the critical performance limitation is the
complexity of unstructured vector quantization grows exp&forage of a large number of class/state specific codebooks.
nentially with the rate and dimension. In applications wher .
signals from multiple sources are to be encoded, each wo dRGIGV"’mt Prior Work
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Another approach suggested for AVQ by Gersho and Grashere adaptation is realized by extracting the current codebook
[1, p. 620] and studied for universal VQ by Zeget al. from the universal codebook and transmitting the selection
[11], [12] is to identify a subset of codevectors from a fixeparameters to the decoder. In such applications, the size of
universal codebookhat is chosen to represent the currenthe universal codebook has a direct impact on the cost in bit
statistics of the source. This problem is directly related to thate associated with specifying a codebook to the decoder, in
one we address here, and further, by effectively designingaddition to the obvious storage considerations. Our approach
suitable universal codebook of limited size, we can provideadso finds application in FSVQ and CVQ where, typically,
constrained-storage solution to AVQ. individual codebooks are used for each state or class. By

Another study of relevance to CSVQ was reported by Lyorslopting the proposed CSVQ approach, it is possible to
et al. [14]. In this work, the storage space of a large TSV@crease the number of states or classes without an increase
codebook is reduced by quantizing the codevector and teéstmemory requirements.
vector components with a smaller secondary quantizer of lowTSVQ is another structured vector quantizer which suffers
dimensionality (in most cases, a scalar quantizer is preferreflpm the problem of substantial memory requirements. An
There are important ties between this approach and the oneappropriate modification of our problem formulation leads
take in this paper. We discuss these further in Section IV a method for TSVQ design that substantially reduces the
in the context of TSVQ design. memory requirements while maintaining the low computa-

The problem of FSVQ design subject to storage constrainignal complexity of standard TSVQ. Thus, the basic approach
was addressed by Kim [13] and by Nasrabeitkl. [15]. Here, proposed here is applicable to a large variety of vector
the high memory cost introduced by the use of a large numlrantization schemes.
of states is overcome by the use of a “super-codebook.”The organization of the paper is as follows. Section Il gives
The state codebooks are extracted as subsets of this ldige system description, some definitions, details about the
super-codebook in a heuristic adaptive manner, without diresicoding and decoding rules, and the formulation of the design

minimization of the distortion. problem. Section Il presents the design procedure. Section IV
_ _ provides the experimental results that validate the method and
C. CSVQ with a Universal Codebook Section V gives our conclusions and future directions.

In this work, we examine and solve the optimization prob-
lem for a general form of CSVQ which in most respects
encompasses the prior work of Chan and Gersho [8] as a
restricted special case, while offering a more versatile and!l: SYSTEM DESCRIPTION AND PROBLEM FORMULATION
powerful solution for several applications. We directly solve A variety of signal compression applications involving VQ
the problem of optimal VQ design under storage constraindan be modeled as using the encoder depicted in Fig. 1(a).
without imposing any additional constraints on how memori set of N stationary vector sources, where each source
should be shared by the sources. In particuteemory can be generates vectors of dimensidn are to be quantized under
shared by sources at the level of individual codevectatBer the same distortion measure with possibly different resolutions
than entire codebooks as proposed in [8]. Some aspects of aurb/vector). At a given time, the encoder is presented with
approach were presented in [9]. Since the method of Cheéme observed valug,, of a particular source vector and the
and Gersho can be viewed as a special case of our approatiel or index n that identifies to which of theV sources
where groups of sources are constrained to share the exatielongs. The encoder outputs a codewordrgfbits, also
same codebook, our CSVQ will always improve on (or atferred to as the index for the source vector. The decoder
the theoretical worst-case be the same as) such a solutieceives the codeword and is assumed to know the lapel
by removing these restrictions. Our framework provides moitethen uses codebook,, to producex, an approximation of
efficient storage and takes full advantage of the flexibilitthe source vectok,,.
allowed by the storage constraint. Generally, a separate codebook for each of haources

It is also important to note that this framework is directlyvould be required for best performance, where each VQ
applicable to the important case where different codebockdebook is tailored for the specific source’s statistics. Such
sizes are used by different sources. The ability to assignsystem is depicted in Fig. 1(a). To reduce storage require-
different codebook sizes to individual sources makes tineents, however, codevector sharing is introduced, wherein
method attractive for applications where bit allocation ighere exists a universal codebook containitig codevectors
needed, for example, when the sources correspond to differantl each source uses a particular subset of these vectors as
components or features extracted from a given signal. iis codebook. A careful choice of codebook, for each source,
such cases, one can optimize the bit allocation, and sfilbm the large number of possible codebooks is hence required.
impose a practical storage constraint on the overall numberTdfe selector function is designed to perform this choice. The
codevectors. This also has obvious application in structuralBSVQ system is depicted in Fig. 1(b).
constrained VQ, where all the codebooks used for the varioudn many applications, the various sources do not need to be
stages can be extracted from a universal codebook that satisfieantized at the same rate. CSVQ is very well suited for such
the given storage limitations. applications, as the only constraint on the source codebook is

We note further that our approach is applicable to thbat it be extracted from the universal codebook. In particular,
context of adaptive and universal quantization (e.g., [11}ue allow for different codebook sizes and hence different rates.
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, Hence, we requirq:(n) to contain exactlyl, “1"s. Corre-
X W 7 spondingly, thenth source codebook is given by
S | '

Cp={s; €5:pun)=1}. Q)

Thus, the selector functiop is determined by the set a¥
binary vectors{u(n),n =1,---, N}, which will be referred
to asselector vectors

A constrained storage quantizer is then completely specified
by the following:
X, %U i 1) the universal codebook;

2) the mapping (selector function).

The notation is illustrated in Fig. 2 which shows a simple
example with three sourced] = 3, with codebook sizeg =
2, l; = 4, andlz = 3, and with memory constraim/ = 5.

Cy Cy | oo Cn

@

(o

Selector Functlion

o The arrows linking the sources; , X» and X5 to the universal
42 codevectors indicate which universal codevectors are included
¢ | Universal Codebook in the respective codebooks. For examplg, = {s1,s2} is

the codebook for the sourc&;. The corresponding binary
selector vectors are also indicated in the figure.

SM

(b)

Fig. 1. Multiple source encoding using (a) separate source codebooks &d Encoding and Decoding in CSVQ
(b) the CSVQ approach.

Suppose a universal codebook witd codevectorsS =
{si,;i =1,---, M}, and the mapping vectoys(-), are avail-
able at the encoder and decoder. Assume that when a wegctor

N =3 M=5 arrives at the encoder, its labe) indicating it is an outcome
9 b =3 of sourceX,, is given to both encoder and decoder.
| = 2, g = 4, i3 = . 5 &

Using (1) the encoder extrac, = {X,1,--, X, } and
w1)=[11000] performs a nearest neighbor search through this codebook by
p(2)=[11101 computing the distortion measutkx,,, %,,;) for each vector
p@) =[00111] in C,,. The optimal index;* is selected where

j* =arg min d(x,,%X.;).
el 1<4<i,,
Universal Codebook ==

Fig. 2. Example of a CSVQ scheme. The input vector,, is thus quantized to the codevectoy;-
and the optimal index* is transmitted. Assuming fixed-rate
coding, log, {,, bits are needed to specify.

The decoder receives the optimal indéxand has available

We are givenN sources, each generatingzadimensional the source labet. From its copy of the universal codebodk,
random vectorX,, € R¥, for n = 1,2,---,N. A vector and the mapping(n), the decoder extracts the selected code-
quantizerq,, for thenth source is a mapping@,, : R* — C,,, Vvectorx,;- and outputs it as the reproduced approximation to
whereC,, = {X,:,¢ = 1,2,---,1,,} is an ordered finite set of the original vectorx,,.
I,, codevectorsk,,; € R*. The setC,, is called the codebook Both encoder and decoder need to know to which source
for sourceX,,. the vector being encoded/decoded belongs. In AVQ, the type

A storage constraint is imposed wherein the total numbef source changes infrequently and a number of successive
of stored codevectors is limited t/ where typicallyM < input vectors are treated as emanating from one particular
>, l.. We therefore consider aniversal codebookS = source. This reduces the overhead in transmitting the source
{si,1 = 1,2,..., M}, from which each of theN source label. In certain other applications, the decoder is capable of
codebooks is extracted. To each source codebook we assigtermining the source index that has been assigned to the
a particular subset of universal codevectors. The codevectmcoded vector, due to some prior available information and
assignment is specified by the mapping {1,2,---,N} — the source index need not be explicitly transmitted. For such
{0, 1} which we call theselector functionMore specifically, cases, each successive input vector may be associated with a
the assignment for sourég,, is given by thed -dimensional different source label.
binary vectoru(n) whoseith component is defined as

A. Definitions and Notation

C. Design Objective
) Each vector quantize€y,, performs the usual nearest neigh-
pi(n) = {L !f si € O bor operation, mapping an input vectas, to the nearest
0, ifsi g Ch. codevectork,, = Q),.(x,) in its codebookC,,. A codebook
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C,, is defined to be optimal with respect to the probabilith. Universal Codebook Optimization

distribution of the random vectoK,, if the codebookC, For a fixed set of selector vectors, the universal codevectors

minimizes the expected distortiof{d[X,, Qn(X,)]} oVer  can pe modified to match the effective sources they represent.

all codebooks of sizé, which can be extracted frori. _The overall distortion for the constrained-storage quantizer is
The performance measure of the multiple source COd'%/en by

system is the overall distortion, which is defined here as

N D:ZDj
J

D= w,E{d[X,,Qn(X, 2
; {dX, Qu(X)]} .
wherew,, are nonnegative weights, which measure the relativel; = Z wy B[d(Xn,85) | Xn € Rjn]P[Xy € Rjy]
importance of distortion incurred in quantizing the various nip;(n)=1
sources. These weights are application dependent and are 3)

assumed to be given prior to the design process. Often, f)gere R, is the nearest neighbor partition cell corresponding
weights would simply be the relative frequencies of occurrengg the codevectos. when the source, is being quantized:
of the sources, in which cade has the natural interpretation as ! X

R ={x e R" 1 d(x,s;) < d(x,s;)

the expected distortion (in quantizing a source vector selected

at random from the set of possible sources according to their Vi:pi(n) = pi(n) = 1}. (4)

given prior probability distribution). For the given selector vectors, and nearest neighbor partition
Problem StatementGiven N sourcesX,,, ratesr,, and R;,,, the optimal universal codevectey is given by

storage constrainfi/, minimize D over all choices for the R .
8; = argmin D;

universal codebool§' and selector functiom(n). 5
which defines the centroid for the partition regidi,,. For
IIl. CSVQ DESIGN METHOD the mean-square distortion measure, the explicit expression is
For a given set ofV sources and a storage constraintiéf o 2y ny=1 WnE (X | X € Ryn)
vectors, we wish to determine the optimal set= {s;,i = Sj = - : (5)

. . s 1w
1,2,---, M} of universal codevectors, and the optimal selector E"'“J (n)=1 "

function 4(). We propose an iterative algorithm, where eachince the centroid condition minimizes the distortion for the
step consists of fixing a subset of the parameters whiiéven selector vectors, this update of the universal codebook

optimizing over the others. In particular, it is closely relatedi€lds nonincreasing distortion.
to known clustering algorithms, such as the generalized Llo
algorithm (GLA) [17].

Starting with an initial universal codebook(®’ and an Consider the extraction @), given the universal codebook.
initial selector functionx(?, we iterate the following two The problem at hand is that of optimally choosing a subset of
steps. l,, codevectors from the set df universal codevectors. There

. . . i M! ihiliti
1) Fix the selector functiop. and optimizeS, the set of &ré obviously too many ;= 5y~ ) possibilities, for brute-
universal codevectors. force exhaustive approaches to be practical. Thus, a simpler,

2) Fix the universal codeboak and optimizey, the set of but possibly suboptimal method is required to determine
binary selector vectors. the selector vector. A similar problem has been addressed

Each of these steps is clearly monotonically nonincreasin uristically by Na_lsraba_d;t al.[15]. They cglculated the rel-
Ive frequency with which each of the universal codevectors

in distortion. Thus, by iterating we obtain a sequence of CS :
coding schemeg,S¢™), ;,(™)), wherem counts the iterations. would have been used by a particular source, had that source

This sequence of quantizers is nonincreasing in distortidhffen coded with the entire universal codebook. Thenijthe
and the distortion will converge to some limiting value. Thi§"0st frequently used universal codevectors were selected as

provides an (at least locally) optimal CSVQ system. members ofC,,. o _

It should be noted that the above algorithm description is !N this work, we introduce an iterative procedure for opti-
given mainly for its simplicity. It is a skeletal description emMizing the selector vectors, that unlike the heuristic of [15]
phasizing the main concepts. We thus view it as a concept§gsuresconvergence to a local optimuntor a particular
starting point whose optimality is easily demonstrated, as wéffUrceéX,,, we assume we have a training set representing the
as the relation to the GLA. However, an efficient, practic@ource statistics. At each iteration of the algorithm, we first
algorithm will require some modifications. In particular, wéiPdate the encoding partitiofi/z;, }, and then we recompute
shall see that there is a natural and straightforward Wayt{@ﬁcodevectors. This is almost identical to the GLA except that
implement step A above. On the other hand, Step 2 is Idigre we add the necessary constraint #aath of the updated
trivial and would, in fact, require an entire iterative procedurgodevectors be a member of the universal codebidekce, the
for its implementation alone. In the sequel we first considéglector function optimization algorithm proceeds as follows.
in detail and derive the conceptual algorithm, and then wel) Compute a nearest-neighbor partition.
provide an efficient algorithm by embedding step A within 2) Find the universal codevector which best represents each
the iterations needed to implement step 2. partition region.

%q Selector Function Optimization
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It is easily shown that each of these steps is nonincreasing
in distortion; It is well known from the GLA that Step 1

789

TABLE |
PseubpocobDE FOR THECSVQ DeSIGN ALGORITHM

cannot increase the distortion. Step 2 tries to find the best

universal codevector to represent the partition computed in Given: a training set, for each source.
Step 1. Switching from the current universal codevector to the Compute an initial universal codebook 5@ by applying GL.A to the entirc
best universal codevector can never increase the distortion. ™%

For Step 2, one would genera”y need to try all universal Compule initial codebooks CT(LO) by applying GLA to the source training

codevectors and select the one minimizing the distortion. But**

for the squared error distortion, we can equivalently compute
the “unconstrained” centroid, and then quantize it using the
universal codebook, as will be shown below. Thus a more
efficient algorithm for the squared-error case performs the
following steps at each iteration.

1) Compute a nearest-neighbor partition using the current
codebook.

2) a) Compute the partition centroids.
b) Quantize the centroids using the universal codebook.

(Note that quantizing centroids to codevectors from a pre-
defined set appeared in Rao and Pearlman’s work on alphabet
constrained quantizer design [21].) We now show that Steps
2a and 2b above, are equivalent to selecting the best universal

Set m = 1.
do {
Update the mapping :
Forn=1to N {
Perform nearest-neighbor partitioning of the X, training set
nsing codebook €, 1) {0 obtain {Rg::'),j =1,...,1 M}.
Compute centroids for every partition cell E[X,|X,, € Rj,.]
Quantize centroids to obtain (%, and store the selector vector:

1 ifsm=t e ¢ tm)
),y — 5 ' .
g (n) { 0 if s, g ¢, 0m) i e M

}

Update the universal codebook :
Compute cach universal codevector sgm) by (?7).

Increment m.

} while not converged

codevector for the given partition cell. We need to finid the
universal codebook to minimiz®,,, = E[(X, —s)? | X,, €
R, ]. Using the properties of second moments we rewlje
as

in the algorithm is monotonically nonincreasing in distortion.
Thus, this practical algorithm does not sacrifice optimality,
(6) yet significantly reduces the computational complexity of the
design. The algorithm is presented in pseudocode in Table |,
wherem;, = E[X, | X, € R;,] is the centroid of the and a flow-diagram is given in Fig. 3.
cell R;,,. Since only the last term in (6) depends snthe Similar to the GLA, the CSVQ method is applicable to
best universal codevector to choose is the one neareaf{o sources given by probability distributions, and to sources
Thus, finding the optimal codevector in the universal codeboogpresented by training sets. In the latter case, one simply
is equivalent to quantizingn;, with the nearest universalassumes that the source distribution is well approximated by
codevector. the discrete distribution induced by a uniform probability over
To summarize, the basic iteration is guaranteed not to ithe samples of the training set. Thus, all our results can
crease the distortion, hence it will decrease the distortion urttié restated within the context of a training algorithm in a
convergence is achieved. This procedure can be performstdghightforward manner.
on each source independently. At convergence, the algorithm
produces an (at least locally) optimal selector function and
encoding partition for the given fixed universal codebook.
A. Finite-State VQ

C. Practical Design Algorithm The proposed technique was applied to FSVQ of images.
In Section IlI-B, we derived an iterative algorithm for opti-An FSVQ encoder, as shown in Fig. 4, consists of a finite
mizing the selector function given a fixed universal codebooget of subcodebooks where each subcodebook belongs to a
As we mentioned earlier, performing such optimization asdistinct state of the encoder. The current state of the encoder
single step in the “super iteration” of the design algorithms determined by the previously encoded blocks and the

might be highly impractical. The reason is that much compgprevious state. An input vectds,, is encoded by searching the
tation would be spent on finding the “perfect” selector functiooorresponding subcodebook of the current encoder state for the
for universal codebooks that are still suboptimal. Here wmest representative codevector. Synchronization between the
modify the basic algorithm to produce a practical methoehcoder and the decoder is achieved by employing the same
which effectively embeds the universal codebook optimizatiarext-state function and starting with the same initial state at
within the selector optimization iterations. More specificallythe transmitter and receiver.

after each iteration of the selector function optimization of For a given fixed rate, FSVQ’'s performance can be im-
Section 1lI-B we perform a universal codebook update gsoved by increasing the number of states. However, since a
described in Section IlI-A. Note that while we do find theodebook is assigned to each state, this results in increasing
optimal universal codebook for the given mapping, we onljmemory requirements. By viewing the different states as
take one step toward finding the optimal mapping for thelifferent sources,” we can apply the CSVQ design proce-
given universal codebook. It is easy to see that each swuyre described above directly to the FSVQ problem. Thus,

Dj, = E[(X, —my,)? | X, € Rjn] + (my, — s)?

IV. EXPERIMENTAL RESULTS
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(Initialjze 5(0),{6',(10)} and m=1. )

Partition training set vectors for

each source using C’n(’"’_l) into Ry, ()

i

Compute centroids .

Obtain €,(™ as the quantized centroids.
l ]fS (m—1) € (v m)
0 if 5;(m=1) ¢ ¢, (™)
" W E (X [ € (™) “ |1 Universal
Obtain S m) _ nuJ( Jmyer L E(Xn|xn €R; ) - Codebook
Zn:u (M) (r)=1 Wn Update
5 ()

Converged ?

el

Mapping
Update

Fig. 3. Flow-diagram for the CSVQ design algorithm.

o O .
X, — 7(, _ J Pixels that determine the
: state of the block to be
encoded -
© > Block to be
encoded
o—C,
Next-Stale . . . . . . .
Function Fig. 5 Current state is determined from the neighboring pixels in the
previously encoded blocks.
Unit the omniscient design method [20] to the training set and
Delay designed five standard FSVQ systems with number of states
_ N = 4,8,16,32, 64, respectively. All codebooks in all systems
Fig. 4. FSVQ encoder. were of the same size as determined by the fixed rate. The next

state function was implemented as a vector quantizer operating

we apply our storage-constrained approach to optimize th@ the pixels in the three neighboring blocks as shown in
overall FSVQ performance subject to the specified eatd Fig. 5.
available memory The resulting algorithm is referred to as We next used the standard FSVQ points #or= 16, 32, 64
constrained storage FSVQCS-FSVQ). We emphasize theto facilitate initialization and applied CS-FSVQ to constrain
important advantage: by the mechanism of codevector sharthg memory size. More precisely, the initial universal code-
we can increase the number of states while respecting thgok of size)/ was obtained by applying standard GLA to
given memory constraint. the union of state codebooks of a standard FSVQ. We then
For the simulations we selected a data set of images esfcoded a test set using the previously designed codebooks to
differing types. Seven images were used for training, amdbtain the curves depicted in Fig. 6.
ten other images were used for testing the performanceThe results demonstrate that the CS-FSVQ approach im-
We segmented these images intox4 4 blocks to create proves over standard FSVQ in two respects. First it pro-
the training and test sets. Given a fixed rate, we applieitles solutions at arbitrary levels of memory, while standard
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57 ] Before describing the CSVQ approach to TSVQ deign, it is
’ important to note that the TSVQ method of Lyaetsal.[14] is
closely related. There, the approach was based on the idea that
the codebook of testvectors can be quantized itself. Since, in
principle, quantization is a form of codevector sharing, the
methods have some important similarities. Some important
differences: the CSVQ approach offers joint optimization of
o FSVQ the overall system; Lyonat al.recommend scalar quantization
o N=8 : - C8_Fsva of the testvectors while CSVQ effectively “quantizes” them as
' ' ' I full dimensional vectors; and CSVQ is generally derived for
any mixture of sources regardless of the VQ structure.
: ‘ : In order to adapt our CSVQ approach to MSVQ/TSVQ, we
oN=4 consider the collection of vectors using the same codebook
255500 400 _ 600 _ 800 1000 _ 1200 1400 as an “‘independent source.” Hence, theary balanced tree
No. of codevectors to be stored .
has one source at the first layen, sources at the second
Fig. 6. Comparison of CS-FSVQ and standard FSVQ. The plot shows PSI}&Yer andm®1 sources at theth layer. We now require
versus memory size, ef_:lch curve corresponds to a different number of stattﬁa.t all the codebooks be extracted from some universal
The rate is 0.3125 b/pixel.
codebook of given sizé/. The memory requirement of this
FSVQ can only provide systems at distinct memory siz€$)nstrained storage approach to TSVQ (CS-TSVot
corresponding to multiples of state codebook size. Secondlyjetated by the structurdut is a variable whose value can
and more importantly, CS'FSVQ_ consistently outperfomlae chosen by the designer. Since the storage requirement is
standard FSVQ at all memory sizes. Please note that 8ependent of the fanout used in this CS-TSVQ approach,

memory values used in Fig. 6 were adjusted to include tE%Lefull fanout (i.e., a structure equivalent to TSVQ) might as

memory cost of implementing the next-state function. This I b d to best loit th lable desian flexibilit
gives a fair comparison and penalizes our CS-FSVQ result; € used fo best exploit he avara .e esign fiexi My
ered by a larger fanout. We thus design a TSVQ subject

that allow more states. In fact, other forms of next-sta ; A

function (instead of the VQ we used) may require less memof§), Storage constraints. By viewing our TSVQ as a full fanout
MSVQ, where residuals are used at each layer rather than the

B. Tree-Structured VQ original source vector itself, one can achieve equivalent overall

We begin by noting the similarity between tree—structured stortion with a smaller universal codebook. This is due to

VQ (TSVQ) and multistage VQ (MSVQ) [18]. In MSVQ,t e fact that _“re_:sidual _tegt vectqrs” are _smaller_ in magnitude
the final reproduction vector is obtained by summing 0V&nd are statistically similar. 'I_'h|s significantly improves the
the reproduction vectors at the different stages. At each stdifgformance of memory sharing. _
the conventional MSVQ uses a single codebook. We referHaving specified the sources that need to be quantized
to such a system as an MSVQ tdnout 1. Allowing more While satisfying the overall memory constraint, we now have
residual codebooks at each stage, will improve performan2eCSVQ problem that we can solve as we have done in
at the cost of increase in fanout [5], [19]. In this case, tH#e preceding sections. It should be noted that although we
codebook used in a certain stage would be dependent on llawe stated above that we could treat the sources using the
reproduction vector obtained in the previous stage. If thedéferent codebooks independently, the source index of a given
are as many codebooks in the current stage as there vasetor at layerp is in fact dependent on the codebooks in the
reproduction vectors in the previous stage, then the structurgjigvious layers. This allows the training set for a given source
an MSVQ offull fanout Such a structure is in fact equivalento change from iteration to iteration. Hence, the algorithm
to a TSVQ except for the technicality of operating on residualfyes not guarantee a nonincreasing sequence of distortion
at each layer instead of directly operating on the sourgg|yes and the universal codebook produced at termination
vector at the leaf layer (standard TSVQ). We generalize ojr ot necessarily optimal. What we practically observe in
terminology and refer to MSVQ with fanout as”'MSVQ'. simulations is a fluctuation about the minimum point. This
The standard MSVQ and th&-ary TSVQ are the special . . . .
cases 1-MSVQ andV-MSVQ, respectively. While alln- problem is practically handlgd by §tor|ng the besF universal
debook and selector function during the fluctuations.

MSVQ have the same encoding search complexity as TS . .
Q g piexry The proposed algorithm was applied to the tree-structured

their memory requirements differ. In fact, they provide many o ) T

intermediate levels of memory between the least—stand&fgClor quantization of images. The same training set as that
MSVQ and the largest memory requirement of TSVQ. Thu¥Sed for our FSVQ simulations was used. A binary tree with 11
the n-MSVQ family provides us with a tool for trading layers was grown, where the codebook at each layer operates
memory for performance. However, we emphasize that withffl the residue obtained in the previous level. The constrained-
this family the memory requirements determine the structugéorage approach was used to design universal codebooks of
to be used. CSVQ provides the means for restricting mematifferent sizes. Fig. 7 shows the loss of performance in dB
without compromising the structure. compared to a conventional (full memory) TSVQ versus the

26.5-

PSNR (in db)
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Bit rate 0.6875 bpp requirements. Also note that the CSVQ approach allows one

1.6 ; ; ; ! ! ! to obtain intermediate solutions at any memory requirement
1AL e e P between standard MSVQ and standard TSVQ.
% fho L : “oTeva i
gjo d : ‘ ' | V. CONCLUSION AND FUTURE DIRECTIONS
;0 od :,, We introduced a new codevector sharing approach to
9" : constrained-storage VQ, for quantizing multiple sources. The
L N method uses a single universal codebook whose size is limited
02k N L] by the specific application. A number of sources may use the
o : ; : a ; ; same universal codevector, but they are not constrained to
0 01 o2 0'3Storage ReoD XS i 07 08 09 use exactly the same set of codevectors for their codebooks.
As confirmed by the experimental results reported here, this
technique trades off very modest reductions in performance
Bit rate 0.625 bpp for very large savings in storage complexity, and provides an

1.6 T T T T T T T T (at least locally) optimal design for a given memory size.

L T 1 Besides the applications with which we have already exper-
P [ N S SO SOV N xmsva | imented, there are a number of other interesting applications.
é’f ; Perhaps a less obvious possible application of the CSVQ
% T S S S S oT8VQ approach is in fine-coarse VQ (FCVQ) [16] whose Objective
_"E'o.sw- 5 : is to reduce the computational complexity of vector quantiz-
0.6 | ers. When using a tree for this purpose, the design method

suggested in [16] could be improved by using our approach,

04 | by associating the fine quantizer with the source codebooks

02+ N -  of size one, and the coarse codebook with our definition of a

0 : . ; i universal codebook.

0 01 02 03 07 08 09

Thus, the proposed CSVQ technique is a fundamental one
in the sense that it is directly applicable to many different

Fig. 7. Comparison of CS-TSVQ, TSVQ and MSVQ. The plot displays th ; ; ;
loss in PSNR when compared to the performance of TSVQ. The end-po nIiObIems' mCIUdmg a variety of structured VQ schemes, such

of the curve with a 0 dB loss is the TSVQ solution. The disconnected poid FSVQ, CVQ, and TSVQ, various problems of universal
with the maximum loss corresponds to the solution obtained by MSVQ. Afjuantization, and other problems. The practical importance of

intermediate points are the CS-TSVQ solutions. the method is in the fact that it can be used to impose memory
constraints on virtually any VQ-based system.
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