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Abstract

The basic vector quantization (VQ) technique em-
ployed in video coding belongs to the category of pre-
dictive vector quantization (PVQ), as it involves quan-
tization of the (motion compensated) frame prediction
error. It is well known that the design of PVQ suffers
from fundamental difficulties, due to the prediction
loop, which have an impact on the convergence and
the stability of the design procedure. In this paper we
propose an approach to PVQ design that enjoys the
stability of open-loop design while 1t ensures ultimate
optimization of the closed-loop system. The method
1s derived for general predictive quantization, and we
demonstrate it on video compression at low bit rates,
where it provides substantial improvement over stan-
dard open and closed loop design techniques.

1 Introduction

Most video coding systems use predictive ap-
proaches and are, hence, composed of two main func-
tional modules: the frame prediction module, and the
prediction error (residual) compression module. The
objective of the first module is to exploit the tem-
poral redundancy in the correlation between consec-
utive frames. The current frame contents are pre-
dicted based on past or future observations. This
module typically involves block-based motion com-
pensation (whose parameters are transmitted as side-
information) so as to achieve better approximation of
the current frame. The second module is the lossy part
of the codec where the prediction error, or residual, is
compressed to the appropriate bit rate. The predic-
tion residual is usually handled as a two-dimensional
signal and, more specifically, as if it were a still im-
age (intraframe coding). The predominant residual
compression approach involves application of the Dis-
crete Cosine Transform (DCT), and this is the method
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of choice in the major standards such as H.263 and
MPEG.

An important justification for the use of DCT in
still image compression hinges on the assumption that
the signal can be well modeled as a Gauss-Markov
process with a high autocorrelation coefficient. It
has been shown that the performance of the optimal
(Karhunen-Loeve) transform on such a signal is closely
approximated by that of DCT. However, this argu-
ment does not hold for the prediction residual signal
whose statistics are considerably different from those
of a still image. It is, therefore, plausible that some
other approach to residual compression, which takes
into account the actual signal statistics, would pro-
vide substantial gains. An interesting example of a
recent method, which departs from main-streamm DCT
techniques, is based on matching pursuit [1] where the
residual is approximated using entries from a library
of predefined two-dimensional functions.

We pursue a known alternative approach which is
based on vector quantization. There are several argu-
ments in support of VQ for video compression. Shan-
non’s theory implies that vector quantizers are asymp-
totically optimal, where asymptotic here is in terms
of vector length. (Note, in particular, that typical
blocks in video coding correspond to long vectors.)
Another important argument is that VQ is a very gen-
eral framework and includes, for example, DCT com-
pression as a special constrained case [2]. Thus, it may
be argued that DCT can not outperform the best VQ.

On the other hand, there exist various serious ob-
jections to the use of VQ in video coding. The first
difficulty is that of complexity. The VQ complexity
grows exponentially with the product of vector dimen-
sion and rate. This led to numerous methods which
constrain the VQ to reduce its search and/or memory
complexity, but also inevitably compromise its perfor-
mance. However, it is important to keep 1n mind that
at very low bit rates even unconstrained VQ would be
manageable. Another major objection is concerned
with difficulties in the design of VQ for video coding
applications. Predictive VQ (PVQ) design is problem-
atic, and the design often fails to produce an optimal,
or sometimes even a good, VQ. Another important
difficulty is the variation in local statistics of the sig-
nal which need to be exploited by an adaptive system
to achieve further gains.
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Figure 1: Open-loop procedure: x; denotes original
frame 7, and ¢; denotes motion compensation residual
j. P represents the motion compensator.

It is our premise here that suboptimal PVQ de-
sign is a major stumbling block on the way to a truly
competitive VQ approach for video coding. We hence
propose to first attack this fundamental problem. In
this paper, we cover traditional design methods and
explain the difficulties in the training stage (Section
2). We develop a novel approach to solve the PVQ
design problem (Section 3), and provide simulation
results as experimental evidence that VQ is indeed an
attractive approach for video coding (Section 4).

2 Conventional Predictive Vector

Quantizer Design

Predictive vector quantization was introduced in [3]
and was successfully utilized in the field of speech com-
pression. A major issue in PVQ design is that of ob-
taining the necessary training set for the quantizer de-
sign. To clarify this difficulty consider a regular VQ
system, where the quantizer design is simply based on
a set of source samples. It is thus possible to itera-
tively adjust the quantizer parameters while decreas-
ing the distortion, computed over the training set, un-
til convergence. In contrast with standard VQ, the
PVQ quantizer operates on the prediction error. But
since the prediction is based on the reconstruction of
the previous frame, it depends on the quantizer itself.
In other words, PVQ is essentially a closed loop sys-
tem. Clearly, the “effective training set” which is the
sequence of prediction errors, is not fixed but changes
every time the quantizer parameters are modified. In
[3], two techniques were introduced and have since
been the most widely used training algorithms. In
this section, we briefly sketch these approaches. The
presentation is geared toward emphasizing the unre-
solved issues, and highlighting the distinctions with
the approach proposed in this paper.

2.1

This simple approach is depicted in Figure 1. Here,
we generate a training set of prediction error vectors
for the original, unguantized input. It is called “open~
loop” because it is not the reconstructed frame which
is fed back through the predictor. The feedback is
eliminated during design. Specifically, given a set of
original samples (or frames) S : {zo, 21,22, -, N},

Open-loop approach
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we generate the required training set via

tp, =&, — P(zp-1),n=1,2,..., N, (1)

where P is the predictor operator.

Once the training set 7' : {t1,t5, -, in} is fixed,
we can apply a standard VQ design technique such as
the generalized Lloyd algorithm ([4]).

The open-loop approach suffers from obvious short-
comings. The decoder does not have access to the
previous original sample or frame. In order to avoid
the notorious decoder “drift”, we must predict from
the reconstructed previous frame. Thus, the training
set used for the design, is statistically different from
the prediction error to be quantized in practice. This
statistical mismatch results in accumulation of errors
through the prediction feedback, and the performance
is usually poor.

2.2

To alleviate the statistical mismatch problem of the
open-loop method, a closed-loop approach was pre-
sented in [3]. Figure 2 shows the main steps. An
iterative algorithm is applied whereby a closed-loop
(real) system is used to generate the prediction er-
rors. Given a quantizer at iteration ¢ — 1, which we

denote by in_l), a training set of prediction errors
7@ - (10 49 10 is generated for iteration i:

Closed-loop approach

) = 2, — P(s(), (2)
where
iD= Pl )+ QU V(x, - P25 (3)

These errors are now fixed and a new quantizer, Q®),
is optimized for them (via the GLA technique). Next,
a new sequence of prediction errors is generated for
iteration ¢ + 1, and so on.

The result depends on the choice of initial quantizer

Q. We have taken as initial quantizer the outcome
of the open-loop method. Although results are gener-
ally superior to the open-loop approach, performance
is still far from optimal in video coding applications.

2.3 Summary of shortcomings

The central design difficulty in predictive quantiza-
tion is that quantization errors are fed back through
the prediction loop, thus making the training of the
quantizer a highly unstable procedure. More specifi-
cally, the actual effective training set (the sequence of
prediction errors), in a straightforward design, changes
in every iteration, and the effect of quantizer adjust-
ment on the performance is unpredictable. In partic-
ular, there is a common effect of error build-up which
causes large deviations in the statistics and tends to
confuse the design procedure. Closed-loop training
“ignores” the above difficulty and iterates as if an
improvement of the quantizer for the current set of
prediction errors ensures better performance once we
close the loop to produce the prediction errors for the
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Figure 2: Closed-loop procedure: x; denotes origi-
nal frame j, w?) denotes the j** reconstructed frame
at iteration 7 , and t§i) denotes the j'* motion com-

pensation residual at iteration i. QU~1) is the vector
quantizer trained on residuals from iteration 7 — 1.

next iteratton. Open-loop training, though it has a
fixed training set, and hence is ensured to converge,
is mismatched with the true mode of operation of the
quantizer. A notable alternative closed-loop method
is the stochastic approach of Chang and Gray [5]. It
is, however, generally known that the problem has not
been satisfactorily solved as yet [6], 7], [2].

3 Proposed Method

The objective of the proposed design approach is to
enjoy the best of both worlds, namely, to enjoy the de-
sign stability of the open-loop mode while ultimately
optimizing the system for closed loop operation. We
achieve this with the following procedure (see also the
block diagram of Figure 3):

Step 1. Apply some initial PVQ to the training se-
quence of frames to obtain a reconstructed se-
quence, with the corresponding sequences of next-
frame prediction, and prediction error.

Step 2. Design an optimal VQ for the given (fixed)
sequence of prediction errors.

Step 3. Apply the optimized VQ to quantize the
same prediction errors used in Step 2.

Step 4. Add the sequence of quantized prediction er-
rors to the next-frame-prediction sequence to ob-
tain a new reconstructed sequence.

Step 5. Use the reconstructed sequence to generate
a new next-frame prediction sequence. (No quan-
tization)

Step 6. Compute the sequence of prediction errors.

Step 7. Go to Step 2.
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Figure 3: Proposed procedure: z; denotes original
frame j, :cg-z) denotes the j'* reconstructed frame at
iteration 7 , and tg»i) denotes the j** motion compen-

sation residual at iteration i. Q(¥) is the vector quan-
tizer trained on residuals from iteration 4, and fg.’) is

tg»i) quantized by Q.

Observations: i) The entire design is in open-loop
mode. Note that we compute prediction errors for the
entire sequence before quantization. ii) Steps 2, 3, and
4 ensure decrease in overall distortion as they simply
apply the best quantizer to the prediction errors. iii)
Step 5 does not strictly ensure decrease in distortion,
but does so to the extent that smaller prediction error
is expected to lead to smaller quantization error. (A
typical assumption in general predictive video coding,
see e.g. H.263).

As the distortion is generally decreasing, we expect
the process to converge. The minor difficulty with
step 5 causes a small limit cycle instead of perfect con-
vergence but this appears to have no practical signifi-
cance. Most important is to observe the implications
of convergence: At convergence the reconstructed se-
quence is unchanged from one iteration to the next.
This means that the next frame prediction would be
the same even if it were based on the reconstruction
of the current frame (instead of on the reconstructed
frame from the previous iteration). In other words,
this is equivalent to closed-loop operation. But the al-
gorithm is running all the time in open loop! We thus
have developed a procedure which is “open- loop” in
nature, yet converges to optimization of the closed-
loop performance.

We next introduce some mathematical notation and
further explain the algorithm. The main objective is
to avoid accumulation of errors through the predic-
tion loop. We therefore base our prediction on the



reconstructed samples of the previous iteration. The
training set is , in effect, generated by

t =g, —P@EYZD)n=12-- N (4

Compare this equation with (1) for standard open-
loop, and (2) for the closed loop design. Note further
that execution of equation (4) is done for the whole
sequence, without the effect of quantization error ac-
cumulation. Having collected the set of training sam-
ples, we optimize a new quantizer Q). The new quan-
tizer is used to generate the new set of reconstruction
frames based on

8 = P D)4QW (2, —P(YT))) = 1,2, N
(5)

In effect, we are quantizing here the exact same
training vectors that went into the training procedure.
Neglecting the possible suboptimality of GLA itself,
this is the best quantizer for these vectors. We are thus
assured that we are quantizing them to the best of our
resources and that the resulting reconstructed frames
are improved. Under the reasonable (and common)
assumption that better reconstruction provides better
next-frame prediction, we get monotone improvement
throughout the process.

The rationale underlying the use of reconstruction
from the previous iteration for prediction becomes ap-
parent when we consider the implications of conver-
gence. The distortion is monotone decreasing, but the
rate of improvement is diminishing as the system ap-
proaches convergence. Thus, further iterations do not
modify the quantizer

which immediately ensures that the reconstruction se-
quence is fixed:

=&,

(7)

the training set is fixed:

£ =),

(8)

and that the next-frame prediction sequence is fixed:

P(#),) = P(#77). (9)
The significance of (9) is obvious: prediction from the
reconstruction of the previous iteration ts equivalent
to prediction from reconstructed samples in the same
steration. In other words, although we always work in
an open-loop mode, at convergence we have reached
a point where the prediction is effectively the same as
that of the normal closed-loop system. Thus, upon
convergence we have optimized the closed-loop sys-
tem.
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[ Sequence | Coder T PSNR | Rate [ D+ AR ]

Salesman | H.263 | 30.13 | 10.36 71.32
PVQ 30.19 [ 10.27 70.32

Claire H.263 | 34.33 | 6.62 29.23
PVQ 34.76 6.60 26.98

Akiyo H263 | 3258 | 6.02 4067
PVQ 13332 | 5.99 35.03

Table 1: Performance comparison of H.263 and PVQ
for the test image sequences “Salesman”, “Claire”,
and “Akiyo”. The comparison is in terms of PSNR in
dB, rate in Kb/s, and the rate-distortion Lagrangian.

4 Simulation Results

The PVQ design method has been adopted to and
tested on video sequences. We implemented a video
codec where 8 by 8 blocks of residuals are used as
vectors. A total of 30 frames of the sequence Clar-
phone were used as the training sequence. The de-
sign optimized an entropy-constrained [8] PVQ while
maintaining an open loop which gradually converges
to optimization of the closed-loop system, as described
in the previous section. The system uses half-pixel
motion compensation, and is basically a “bare-bones”
H.263 scheme where the DCT/quantization module
was replaced with the entropy-constrained VQ.

An entropy-constrained VQ design produces a vari-
able codeword-length codebook. Highly probable vec-
tors are assigned to shorter codewords than less prob-
able vectors, and this provides for a more efficient
source coder (see [2]). The quantizer design incor-
porates probability as follows: The codeword length
for codeword 7 is approximated by the first-order en-
tropy estimate l; = —logp; where p; is the probability
of choosing codeword ¢ (estimated from the training
set). A Lagrangian L = D; + A * [; is then used to
specify the total cost of encoding an input vector us-
ing codeword i. Here, D; is the squared error distor-
tion encurred when codeword i is chosen and A is a
constant multiplier that controls the Distortion/Rate
tradeoff. Low bit rates command large A. See [8],[2]
for detailed algorithm.

Figure 4 depicts the comparison in performance of
PVQ designed by the proposed design method with
that of the standard closed-loop technique. The PSNR
shown is that of the actual closed-loop performance
of the coder using a PVQ obtained at each iteration
and is equal to the average PSNR over the test se-
quence (which is the same as the training sequence,
in this case). Note that both systems start their iter-
ations by designing an open-loop-designed codebook,
and thus have the same performance at the first it-
eration. Both systems perform better initially by re-
iterating but note the gradual accumulation of error
in the closed-loop technique and the subsequent drop
in overall PSNR of the system. On the other hand,
the proposed approach shows gradual improvements,
and eventually provides performance that is superior
by several dB.

For reference, it should be mentioned that the cor-
responding “bare-bones” H.263 (with the standard
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Figure 4: Performance comparison of standard closed-
loop PVQ design with the proposed open-loop ap-
proach. The performance is given for real closed-loop
mode operation, and for the PVQ available at the end
of each iteration.

DCT module) achieved PSNR of about 31 dB which
is significantly below the performance of our PVQ.
The bit-rate was fixed at about 12 kb/s for coding the
residual of this QCIF sequence; all other side informa-
tion being the same for both coders.

So far we have considered the performance on the
training set so as to emphasize the power of the pro-
posed optimization technique as both PVQ design
methods attempt to directly minimize the distortion-
rate Lagrangian over the training set. Figure 4 shows
clearly the enhanced power of the PVQ design tech-
nique, and the evolution through the iterations.

Tests on other sequences outside the training set
also indicate improvements over H.263. Here, for the
PVQ to be general enough, we used a total of 13 video
sequences in the training phase. The test set is com-
posed of the three independent video sequences Sales-
man, Claire, and Akiyo. Table 1 shows the compari-
son between the H.263 performance with that of the
proposed PVQ. The PVQ design was stopped after
about 25 iterations of the proposed algorithm. The
H.263 bit rate was controlled so as to match that of
the PVQ system. It can be seen that gains of 0.06
dB, 0.43 dB, and 0.74 dB can be achieved for the
three sequences, respectively. Table 1 also provides
the avarage lagrangian D + A x R which is a combined
cost that takes into account both rate and distortion.
Considerable improvements was obtained in all test
sequences.

The design, in this case, involved two codebooks:
one codebook optimized for blocks whose motion vec-
tor was zero, and another codebook optimized for
blocks with nonzero motion. Note that the switch-
ing information need not be conveyed to the receiver
as it is determined by the motion. (One can design
more codebooks conditioned on the motion vector, but
it seems that two codebooks is a reasonable compro-
mise between compression performance and complex-
ity, memory, and training requirements.) Codebook
sizes used are about 10,000 and 2,500, respectively.
It should also be noted that a fast search algorithm
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was developed which exploits the fact that, at low bit
rates, a large number of residual blocks get quantized
to zero. The exact details are omitted here.

5 Conclusions

In this paper, we have described a new approach to
training predictive vector quantizers, which does not
suffer from the statistical mismatch typical of open-
loop training algorithms, nor from the instability ex-
perienced by closed-loop approaches. The proposed
iterative algorithm is open-loop in nature but asymp-
totically optimizes the closed-loop system. Experi-
mental results were first given for a simple PVQ de-
sign for video coding, and showed the superiority of
the proposed method. Further experimental results
were given to compare the system with standard DCT-
based video coding. The preliminary simulation re-
sults provide evidence for the promise of the method.
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